nnet-compute-discriminative.cc
15.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
// nnet2/nnet-compute-discriminative.cc
// Copyright 2012-2013 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "nnet2/nnet-compute-discriminative.h"
#include "hmm/posterior.h"
#include "lat/lattice-functions.h"
namespace kaldi {
namespace nnet2 {
/*
This class does the forward and possibly backward computation for (typically)
a whole utterance of contiguous features. You'll instantiate one of
these classes each time you want to do this computation.
*/
class NnetDiscriminativeUpdater {
public:
NnetDiscriminativeUpdater(const AmNnet &am_nnet,
const TransitionModel &tmodel,
const NnetDiscriminativeUpdateOptions &opts,
const DiscriminativeNnetExample &eg,
Nnet *nnet_to_update,
NnetDiscriminativeStats *stats);
void Update() {
Propagate();
LatticeComputations();
if (nnet_to_update_ != NULL)
Backprop();
}
/// The forward-through-the-layers part of the computation.
void Propagate();
/// Does the parts between Propagate() and Backprop(), that
/// involve forward-backward over the lattice.
void LatticeComputations();
void Backprop();
/// Assuming the lattice already has the correct scores in
/// it, this function does the MPE or MMI forward-backward
/// and puts the resulting discriminative posteriors (which
/// may have positive or negative weight) into "post".
/// It returns, for MPFE/SMBR, the objective function, or
/// for MMI, the negative of the denominator-lattice log-likelihood.
double GetDiscriminativePosteriors(Posterior *post);
SubMatrix<BaseFloat> GetInputFeatures() const;
CuMatrixBase<BaseFloat> &GetOutput() { return forward_data_.back(); }
static inline Int32Pair MakePair(int32 first, int32 second) {
Int32Pair ans;
ans.first = first;
ans.second = second;
return ans;
}
private:
typedef LatticeArc Arc;
typedef Arc::StateId StateId;
const AmNnet &am_nnet_;
const TransitionModel &tmodel_;
const NnetDiscriminativeUpdateOptions &opts_;
const DiscriminativeNnetExample &eg_;
Nnet *nnet_to_update_; // will equal am_nnet_.GetNnet(), in SGD case, or
// another Nnet, in gradient-computation case, or
// NULL if we just need the objective function.
NnetDiscriminativeStats *stats_; // the objective function, etc.
std::vector<ChunkInfo> chunk_info_out_;
// forward_data_[i] is the input of the i'th component and (if i > 0)
// the output of the i-1'th component.
std::vector<CuMatrix<BaseFloat> > forward_data_;
Lattice lat_; // we convert the CompactLattice in the eg, into Lattice form.
CuMatrix<BaseFloat> backward_data_;
std::vector<int32> silence_phones_; // derived from opts_.silence_phones_str
};
NnetDiscriminativeUpdater::NnetDiscriminativeUpdater(
const AmNnet &am_nnet,
const TransitionModel &tmodel,
const NnetDiscriminativeUpdateOptions &opts,
const DiscriminativeNnetExample &eg,
Nnet *nnet_to_update,
NnetDiscriminativeStats *stats):
am_nnet_(am_nnet), tmodel_(tmodel), opts_(opts), eg_(eg),
nnet_to_update_(nnet_to_update), stats_(stats) {
if (!SplitStringToIntegers(opts_.silence_phones_str, ":", false,
&silence_phones_)) {
KALDI_ERR << "Bad value for --silence-phones option: "
<< opts_.silence_phones_str;
}
const Nnet &nnet = am_nnet_.GetNnet();
nnet.ComputeChunkInfo(eg_.input_frames.NumRows(), 1, &chunk_info_out_);
}
SubMatrix<BaseFloat> NnetDiscriminativeUpdater::GetInputFeatures() const {
int32 num_frames_output = eg_.num_ali.size();
int32 eg_left_context = eg_.left_context,
eg_right_context = eg_.input_frames.NumRows() -
num_frames_output - eg_left_context;
KALDI_ASSERT(eg_right_context >= 0);
const Nnet &nnet = am_nnet_.GetNnet();
// Make sure the example has enough acoustic left and right
// context... normally we'll use examples generated using the same model,
// which will have the exact context, but we enable a mismatch in context as
// long as it is more, not less.
KALDI_ASSERT(eg_left_context >= nnet.LeftContext() &&
eg_right_context >= nnet.RightContext());
int32 offset = eg_left_context - nnet.LeftContext(),
num_output_frames =
num_frames_output + nnet.LeftContext() + nnet.RightContext();
SubMatrix<BaseFloat> ans(eg_.input_frames, offset, num_output_frames,
0, eg_.input_frames.NumCols());
return ans;
}
void NnetDiscriminativeUpdater::Propagate() {
const Nnet &nnet = am_nnet_.GetNnet();
forward_data_.resize(nnet.NumComponents() + 1);
SubMatrix<BaseFloat> input_feats = GetInputFeatures();
int32 spk_dim = eg_.spk_info.Dim();
if (spk_dim == 0) {
forward_data_[0] = input_feats;
} else {
forward_data_[0].Resize(input_feats.NumRows(),
input_feats.NumCols() + eg_.spk_info.Dim());
forward_data_[0].Range(0, input_feats.NumRows(),
0, input_feats.NumCols()).CopyFromMat(input_feats);
forward_data_[0].Range(0, input_feats.NumRows(),
input_feats.NumCols(), spk_dim).CopyRowsFromVec(
eg_.spk_info);
}
for (int32 c = 0; c < nnet.NumComponents(); c++) {
const Component &component = nnet.GetComponent(c);
CuMatrix<BaseFloat> &input = forward_data_[c],
&output = forward_data_[c+1];
component.Propagate(chunk_info_out_[c] , chunk_info_out_[c+1], input, &output);
const Component *prev_component = (c == 0 ? NULL :
&(nnet.GetComponent(c-1)));
bool will_do_backprop = (nnet_to_update_ != NULL),
keep_last_output = will_do_backprop &&
((c>0 && prev_component->BackpropNeedsOutput()) ||
component.BackpropNeedsInput());
if (!keep_last_output)
forward_data_[c].Resize(0, 0); // We won't need this data; save memory.
}
}
void NnetDiscriminativeUpdater::LatticeComputations() {
ConvertLattice(eg_.den_lat, &lat_); // convert to Lattice.
TopSort(&lat_); // Topologically sort (required by forward-backward algorithms)
if (opts_.criterion == "mmi" && opts_.boost != 0.0) {
BaseFloat max_silence_error = 0.0;
LatticeBoost(tmodel_, eg_.num_ali, silence_phones_,
opts_.boost, max_silence_error, &lat_);
}
int32 num_frames = static_cast<int32>(eg_.num_ali.size());
stats_->tot_t += num_frames;
stats_->tot_t_weighted += num_frames * eg_.weight;
const VectorBase<BaseFloat> &priors = am_nnet_.Priors();
const CuMatrix<BaseFloat> &posteriors = forward_data_.back();
KALDI_ASSERT(posteriors.NumRows() == num_frames);
int32 num_pdfs = posteriors.NumCols();
KALDI_ASSERT(num_pdfs == priors.Dim());
// We need to look up the posteriors of some pdf-ids in the matrix
// "posteriors". Rather than looking them all up using operator (), which is
// very slow because each lookup involves a separate CUDA call with
// communication over PciExpress, we look them up all at once using
// CuMatrix::Lookup().
// Note: regardless of the criterion, we evaluate the likelihoods in
// the numerator alignment. Even though they may be irrelevant to
// the optimization, they will affect the value of the objective function.
std::vector<Int32Pair> requested_indexes;
BaseFloat wiggle_room = 1.3; // value not critical.. it's just 'reserve'
requested_indexes.reserve(num_frames + wiggle_room * lat_.NumStates());
if (opts_.criterion == "mmi") { // need numerator probabilities...
for (int32 t = 0; t < num_frames; t++) {
int32 tid = eg_.num_ali[t], pdf_id = tmodel_.TransitionIdToPdf(tid);
KALDI_ASSERT(pdf_id >= 0 && pdf_id < num_pdfs);
requested_indexes.push_back(MakePair(t, pdf_id));
}
}
std::vector<int32> state_times;
int32 T = LatticeStateTimes(lat_, &state_times);
KALDI_ASSERT(T == num_frames);
StateId num_states = lat_.NumStates();
for (StateId s = 0; s < num_states; s++) {
StateId t = state_times[s];
for (fst::ArcIterator<Lattice> aiter(lat_, s); !aiter.Done(); aiter.Next()) {
const Arc &arc = aiter.Value();
if (arc.ilabel != 0) { // input-side has transition-ids, output-side empty
int32 tid = arc.ilabel, pdf_id = tmodel_.TransitionIdToPdf(tid);
requested_indexes.push_back(MakePair(t, pdf_id));
}
}
}
std::vector<BaseFloat> answers;
CuArray<Int32Pair> cu_requested_indexes(requested_indexes);
answers.resize(requested_indexes.size());
posteriors.Lookup(cu_requested_indexes, &(answers[0]));
int32 num_floored = 0;
BaseFloat floor_val = 1.0e-20; // floor for posteriors.
size_t index;
// Replace "answers" with the vector of scaled log-probs. If this step takes
// too much time, we can look at other ways to do it, using the CUDA card.
for (index = 0; index < answers.size(); index++) {
BaseFloat post = answers[index];
if (post < floor_val) {
post = floor_val;
num_floored++;
}
int32 pdf_id = requested_indexes[index].second;
BaseFloat pseudo_loglike = Log(post / priors(pdf_id)) * opts_.acoustic_scale;
KALDI_ASSERT(!KALDI_ISINF(pseudo_loglike) && !KALDI_ISNAN(pseudo_loglike));
answers[index] = pseudo_loglike;
}
if (num_floored > 0) {
KALDI_WARN << "Floored " << num_floored << " probabilities from nnet.";
}
index = 0;
if (opts_.criterion == "mmi") {
double tot_num_like = 0.0;
for (; index < eg_.num_ali.size(); index++)
tot_num_like += answers[index];
stats_->tot_num_objf += eg_.weight * tot_num_like;
}
// Now put the (scaled) acoustic log-likelihoods in the lattice.
for (StateId s = 0; s < num_states; s++) {
for (fst::MutableArcIterator<Lattice> aiter(&lat_, s);
!aiter.Done(); aiter.Next()) {
Arc arc = aiter.Value();
if (arc.ilabel != 0) { // input-side has transition-ids, output-side empty
arc.weight.SetValue2(-answers[index]);
index++;
aiter.SetValue(arc);
}
}
LatticeWeight final = lat_.Final(s);
if (final != LatticeWeight::Zero()) {
final.SetValue2(0.0); // make sure no acoustic term in final-prob.
lat_.SetFinal(s, final);
}
}
KALDI_ASSERT(index == answers.size());
// Get the MPE or MMI posteriors.
Posterior post;
stats_->tot_den_objf += eg_.weight * GetDiscriminativePosteriors(&post);
ScalePosterior(eg_.weight, &post);
double tot_num_post = 0.0, tot_den_post = 0.0;
std::vector<MatrixElement<BaseFloat> > sv_labels;
sv_labels.reserve(answers.size());
for (int32 t = 0; t < post.size(); t++) {
for (int32 i = 0; i < post[t].size(); i++) {
int32 pdf_id = post[t][i].first;
BaseFloat weight = post[t][i].second;
if (weight > 0.0) { tot_num_post += weight; }
else { tot_den_post -= weight; }
MatrixElement<BaseFloat> elem = {t, pdf_id, weight};
sv_labels.push_back(elem);
}
}
stats_->tot_num_count += tot_num_post;
int32 num_components = am_nnet_.GetNnet().NumComponents();
const CuMatrix<BaseFloat> &output(forward_data_[num_components]);
backward_data_.Resize(output.NumRows(), output.NumCols()); // zeroes it.
{ // We don't actually need tot_objf and tot_weight; we have already
// computed the objective function.
BaseFloat tot_objf, tot_weight;
backward_data_.CompObjfAndDeriv(sv_labels, output, &tot_objf, &tot_weight);
// Now backward_data_ will contan the derivative at the output.
// Our work here is done..
}
}
double NnetDiscriminativeUpdater::GetDiscriminativePosteriors(Posterior *post) {
if (opts_.criterion == "mpfe" || opts_.criterion == "smbr") {
Posterior tid_post;
double ans;
ans = LatticeForwardBackwardMpeVariants(tmodel_, silence_phones_, lat_,
eg_.num_ali, opts_.criterion,
opts_.one_silence_class,
&tid_post);
ConvertPosteriorToPdfs(tmodel_, tid_post, post);
return ans; // returns the objective function.
} else {
KALDI_ASSERT(opts_.criterion == "mmi");
bool convert_to_pdfs = true, cancel = true;
// we'll return the denominator-lattice forward backward likelihood,
// which is one term in the objective function.
return LatticeForwardBackwardMmi(tmodel_, lat_, eg_.num_ali,
opts_.drop_frames, convert_to_pdfs,
cancel, post);
}
}
void NnetDiscriminativeUpdater::Backprop() {
const Nnet &nnet = am_nnet_.GetNnet();
for (int32 c = nnet.NumComponents() - 1; c >= 0; c--) {
const Component &component = nnet.GetComponent(c);
Component *component_to_update = &(nnet_to_update_->GetComponent(c));
const CuMatrix<BaseFloat> &input = forward_data_[c],
&output = forward_data_[c+1],
&output_deriv = backward_data_;
CuMatrix<BaseFloat> input_deriv;
component.Backprop(chunk_info_out_[c], chunk_info_out_[c+1], input, output, output_deriv,
component_to_update, &input_deriv);
backward_data_.Swap(&input_deriv); // backward_data_ = input_deriv.
}
}
void NnetDiscriminativeUpdate(const AmNnet &am_nnet,
const TransitionModel &tmodel,
const NnetDiscriminativeUpdateOptions &opts,
const DiscriminativeNnetExample &eg,
Nnet *nnet_to_update,
NnetDiscriminativeStats *stats) {
NnetDiscriminativeUpdater updater(am_nnet, tmodel, opts, eg,
nnet_to_update, stats);
updater.Update();
}
void NnetDiscriminativeStats::Add(const NnetDiscriminativeStats &other) {
tot_t += other.tot_t;
tot_t_weighted += other.tot_t_weighted;
tot_num_count += other.tot_num_count;
tot_num_objf += other.tot_num_objf;
tot_den_objf += other.tot_den_objf;
}
void NnetDiscriminativeStats::Print(std::string criterion) {
KALDI_ASSERT(criterion == "mmi" || criterion == "smbr" ||
criterion == "mpfe");
double avg_post_per_frame = tot_num_count / tot_t_weighted;
KALDI_LOG << "Number of frames is " << tot_t
<< " (weighted: " << tot_t_weighted
<< "), average (num or den) posterior per frame is "
<< avg_post_per_frame;
if (criterion == "mmi") {
double num_objf = tot_num_objf / tot_t_weighted,
den_objf = tot_den_objf / tot_t_weighted,
objf = num_objf - den_objf;
KALDI_LOG << "MMI objective function is " << num_objf << " - "
<< den_objf << " = " << objf << " per frame, over "
<< tot_t_weighted << " frames.";
} else if (criterion == "mpfe") {
double objf = tot_den_objf / tot_t_weighted; // this contains the actual
// summed objf
KALDI_LOG << "MPFE objective function is " << objf
<< " per frame, over " << tot_t_weighted << " frames.";
} else {
double objf = tot_den_objf / tot_t_weighted; // this contains the actual
// summed objf
KALDI_LOG << "SMBR objective function is " << objf
<< " per frame, over " << tot_t_weighted << " frames.";
}
}
} // namespace nnet2
} // namespace kaldi