nnet-example-functions.cc 35.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
// nnet2/nnet-example-functions.cc

// Copyright 2012-2013  Johns Hopkins University (author: Daniel Povey)

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include "nnet2/nnet-example-functions.h"
#include "lat/lattice-functions.h"

namespace kaldi {
namespace nnet2 {


bool LatticeToDiscriminativeExample(
    const std::vector<int32> &alignment,
    const Matrix<BaseFloat> &feats,
    const CompactLattice &clat,
    BaseFloat weight,
    int32 left_context,
    int32 right_context,
    DiscriminativeNnetExample *eg) {
  KALDI_ASSERT(left_context >= 0 && right_context >= 0);
  int32 num_frames = alignment.size();
  if (num_frames == 0) {
    KALDI_WARN << "Empty alignment";
    return false;
  }
  if (num_frames != feats.NumRows()) {
    KALDI_WARN << "Dimension mismatch: alignment " << num_frames
               << " versus feats " << feats.NumRows();
    return false;
  }
  std::vector<int32> times;
  int32 num_frames_clat = CompactLatticeStateTimes(clat, &times);  
  if (num_frames_clat != num_frames) {
    KALDI_WARN << "Numerator/frames versus denlat frames mismatch: "
               << num_frames << " versus " << num_frames_clat;
    return false;
  }
  eg->weight = weight;
  eg->num_ali = alignment;
  eg->den_lat = clat;

  int32 feat_dim = feats.NumCols();
  eg->input_frames.Resize(left_context + num_frames + right_context,
                          feat_dim);
  eg->input_frames.Range(left_context, num_frames,
                         0, feat_dim).CopyFromMat(feats);

  // Duplicate the first and last frames.
  for (int32 t = 0; t < left_context; t++)
    eg->input_frames.Row(t).CopyFromVec(feats.Row(0));
  for (int32 t = 0; t < right_context; t++)
    eg->input_frames.Row(left_context + num_frames + t).CopyFromVec(
        feats.Row(num_frames - 1));

  eg->left_context = left_context;
  eg->Check();
  return true;
}






/**
   For each frame, judge:
     - does it produce a nonzero derivative? [this differs MMI vs MPE]
     - can it be split here [or what is the penalty for splitting here.]
         - depends whether lattice has just one path at that point.

   Time taken to process segment of a certain length: [must be sub-linear.]
      [use quadratic function that's max at specified segment length and zero at zero.]

   No penalty for processing frames we don't need to process (already implicit in
   segment-processing time above.)

   Penalty for splitting where we should not split.  [Make it propto log(#paths).]
   
 */





class DiscriminativeExampleSplitter {
 public:
  DiscriminativeExampleSplitter(
      const SplitDiscriminativeExampleConfig &config,
      const TransitionModel &tmodel,
      const DiscriminativeNnetExample &eg,
      std::vector<DiscriminativeNnetExample> *egs_out):
      config_(config), tmodel_(tmodel), eg_(eg), egs_out_(egs_out) { }

  void Excise(SplitExampleStats *stats) {
    eg_.Check();
    PrepareLattice(false);
    ComputeFrameInfo();
    if (!config_.excise) {
      egs_out_->resize(1);
      (*egs_out_)[0] = eg_;
    } else {
      DoExcise(stats);
    }
  }
  
  void Split(SplitExampleStats *stats) {
    if (!config_.split) {
      egs_out_->resize(1);
      (*egs_out_)[0] = eg_;
    } else {
      eg_.Check();    
      PrepareLattice(true);
      ComputeFrameInfo();
      DoSplit(stats);
    }
  }

 private:
  typedef LatticeArc Arc;
  typedef Arc::StateId StateId;
  typedef Arc::Label Label;

  // converts compact lattice to lat_.  You should set first_time to true if
  // this is being called from DoSplit, but false if being called from DoExcise
  // (this saves some time, since we avoid some preparation steps that we know
  // are unnecessary because they were done before
  void PrepareLattice(bool first_time); 

  void CollapseTransitionIds(); // Modifies the transition-ids on lat_ so that
                                // on each frame, there is just one with any
                                // given pdf-id.  This allows us to determinize
                                // and minimize more completely.
  
  bool ComputeFrameInfo();

  static void RemoveAllOutputSymbols (Lattice *lat);

  void OutputOneSplit(int32 seg_begin, int32 seg_end);
  
  void DoSplit(SplitExampleStats *stats);

  void DoExcise(SplitExampleStats *stats);
  
  int32 NumFrames() const { return static_cast<int32>(eg_.num_ali.size()); }

  int32 RightContext() { return eg_.input_frames.NumRows() - NumFrames() - eg_.left_context; }
  

  // Put in lat_out, a slice of "clat" with first frame at time "seg_begin" and
  // with last frame at time "seg_end - 1".
  void CreateOutputLattice(int32 seg_begin, int32 seg_end,
                           CompactLattice *clat_out);

  // Returns the state-id in this output lattice (creates a
  // new state if needed).
  StateId GetOutputStateId(StateId s,
                           unordered_map<StateId, StateId> *state_map,
                           Lattice *lat_out);           

  struct FrameInfo {
    int32 den_state_count;
    int32 den_pdf_count; // number of distinct pdfs in denominator lattice
    bool multiple_transition_ids; // true if there are multiple distinct
                                  // transition-ids in the denominator lattice
                                  // at this point
    bool num_den_overlap; // true if num and den overlap.

    bool nonzero_derivative; // True if we need to keep this frame because the
    // derivative is nonzero on this frame.
    bool can_excise_frame; // True if the frame, if part of a segment, can be
    // excised, *but ignoring the effect of acoustic
    // context*.  I.e. true if the likelihoods and
    // derivatives from this frame do not matter because
    // the derivatives are zero and the likelihoods don't
    // affect lattice posteriors (because pdfs are all
    // the same on this frame, or if doing mpfe,
    // transition-ids are all the same.

    // start_state says, for a segment starting at frame t, what is the
    // earliest state in lat_ that we have to consider including in the split
    // lattice?  This relates to a kind of optimization for efficiency.
    StateId start_state;

    // end_state says, for a segment whose final frame is time t (i.e.  whose
    // "segment end" is time t+1), what is the latest state in lat_ that we have
    // to consider including in the split lattice?  This relates to a kind of
    // optimization for efficiency.
    StateId end_state;  
    FrameInfo(): den_state_count(0), den_pdf_count(0),
                 multiple_transition_ids(false),
                 num_den_overlap(false), nonzero_derivative(false),
                 can_excise_frame(false),
                 start_state(std::numeric_limits<int32>::max()), end_state(0) { }
  };
  
  
  // The following variables are set in the initializer:
  const SplitDiscriminativeExampleConfig &config_;
  const TransitionModel &tmodel_;
  const DiscriminativeNnetExample &eg_;
  std::vector<DiscriminativeNnetExample> *egs_out_;
  
  Lattice lat_; // lattice generated from eg_.den_lat, with epsilons removed etc.


  // The other variables are computed by Split() or functions called from it.

  std::vector<FrameInfo> frame_info_;
  
  // state_times_ says, for each state in lat_, what its start time is.
  std::vector<int32> state_times_;

};

// Make sure that for any given pdf-id and any given frame, the den-lat has
// only one transition-id mapping to that pdf-id, on the same frame.
// It helps us to more completely minimize the lattice.  Note: we
// can't do this if the criterion is MPFE, because in that case the
// objective function will be affected by the phone-identities being
// different even if the pdf-ids are the same.
void DiscriminativeExampleSplitter::CollapseTransitionIds() {
  std::vector<int32> times;
  TopSort(&lat_); // Topologically sort the lattice (required by
                  // LatticeStateTimes)
  int32 num_frames = LatticeStateTimes(lat_, &times);  
  StateId num_states = lat_.NumStates();

  std::vector<std::map<int32, int32> > pdf_to_tid(num_frames);
  for (StateId s = 0; s < num_states; s++) {
    int32 t = times[s];
    for (fst::MutableArcIterator<Lattice> aiter(&lat_, s);
         !aiter.Done(); aiter.Next()) {
      KALDI_ASSERT(t >= 0 && t < num_frames);
      Arc arc = aiter.Value();
      KALDI_ASSERT(arc.ilabel != 0 && arc.ilabel == arc.olabel);
      int32 pdf = tmodel_.TransitionIdToPdf(arc.ilabel);
      if (pdf_to_tid[t].count(pdf) != 0) {
        arc.ilabel = arc.olabel = pdf_to_tid[t][pdf];
        aiter.SetValue(arc);
      } else {
        pdf_to_tid[t][pdf] = arc.ilabel;
      }
    }
  }    
}


void DiscriminativeExampleSplitter::PrepareLattice(bool first_time) {
  ::fst::ConvertLattice(eg_.den_lat, &lat_);

  Project(&lat_, fst::PROJECT_INPUT); // Get rid of the word labels and put the
                                      // transition-ids on both sides.
  
  RmEpsilon(&lat_); // Remove epsilons.. this simplifies
                    // certain things.

  if (first_time) {
    if (config_.collapse_transition_ids && config_.criterion != "mpfe")
      CollapseTransitionIds();
  
    if (config_.determinize) {
      if (!config_.minimize) {
        Lattice det_lat;
        Determinize(lat_, &det_lat);
        lat_ = det_lat;
      } else {
        Lattice tmp_lat;
        Reverse(lat_, &tmp_lat);
        Determinize(tmp_lat, &lat_);
        Reverse(lat_, &tmp_lat);
        Determinize(tmp_lat, &lat_);
        RmEpsilon(&lat_);
        // Previously we determinized, then did
        // Minimize(&lat_);
        // but this was too slow.
      }
    }
  }
  TopSort(&lat_); // Topologically sort the lattice.
}

// this function computes various arrays that say something about
// this frame of the lattice.
bool DiscriminativeExampleSplitter::ComputeFrameInfo() {
  
  int32 num_frames = NumFrames();

  frame_info_.clear();
  frame_info_.resize(num_frames + 1);
  
  LatticeStateTimes(lat_, &state_times_);

  std::vector<std::set<int32> > pdfs_per_frame(num_frames),
      tids_per_frame(num_frames);
  
  int32 num_states = lat_.NumStates();
  
  for (int32 state = 0; state < num_states; state++) {
    int32 t = state_times_[state];
    KALDI_ASSERT(t >= 0 && t <= num_frames);
    frame_info_[t].den_state_count++;
    for (fst::ArcIterator<Lattice> aiter(lat_, state); !aiter.Done();
         aiter.Next()) {
      const LatticeArc &arc = aiter.Value();
      KALDI_ASSERT(arc.ilabel != 0 && arc.ilabel == arc.olabel); 
      int32 transition_id = arc.ilabel,
          pdf_id = tmodel_.TransitionIdToPdf(transition_id);
      tids_per_frame[t].insert(transition_id);
      pdfs_per_frame[t].insert(pdf_id);
    }
    if (t < num_frames)
      frame_info_[t+1].start_state = std::min(state,
                                              frame_info_[t+1].start_state);
    frame_info_[t].end_state = std::max(state,
                                        frame_info_[t].end_state);
  }

  for (int32 i = 1; i <= NumFrames(); i++)
    frame_info_[i].end_state = std::max(frame_info_[i-1].end_state,
                                        frame_info_[i].end_state);
  for (int32 i = NumFrames() - 1; i >= 0; i--)
    frame_info_[i].start_state = std::min(frame_info_[i+1].start_state,
                                          frame_info_[i].start_state);
  
  for (int32 t = 0; t < num_frames; t++) {
    FrameInfo &frame_info = frame_info_[t];
    int32 transition_id = eg_.num_ali[t],
        pdf_id = tmodel_.TransitionIdToPdf(transition_id);
    frame_info.num_den_overlap = (pdfs_per_frame[t].count(pdf_id) != 0);
    frame_info.multiple_transition_ids = (tids_per_frame[t].size() > 1);
    KALDI_ASSERT(!pdfs_per_frame[t].empty());
    frame_info.den_pdf_count = pdfs_per_frame[t].size();

    if (config_.criterion == "mpfe" || config_.criterion == "smbr") {
      frame_info.nonzero_derivative = (frame_info.den_pdf_count > 1);
    } else {
      KALDI_ASSERT(config_.criterion == "mmi");
      if (config_.drop_frames) {
        // With frame dropping, we'll get nonzero derivative only
        // if num and den overlap, *and* den has >1 active pdf.
        frame_info.nonzero_derivative = frame_info.num_den_overlap  &&
            frame_info.den_state_count > 1;
      } else {
        // Without frame dropping, we'll get nonzero derivative if num and den
        // do not overlap , or den has >1 active pdf.
        frame_info.nonzero_derivative = !frame_info.num_den_overlap ||
            frame_info.den_state_count > 1;
      }
    }
    // If a frame is part of a segment, but it's not going to contribute
    // to the derivative and the den lattice has only one pdf active
    // at that time, then this frame can be excised from the lattice
    // because it will not affect the posteriors around it.
    if (config_.criterion == "mpfe") {
      frame_info.can_excise_frame =
          !frame_info.nonzero_derivative && \
          !frame_info.multiple_transition_ids;
      // in the mpfe case, if there are multiple transition-ids on a
      // frame there may be multiple phones on a frame, which could
      // contribute to the objective function even if they share pdf-ids.
      // (this was an issue that came up during testing).
    } else {      
      frame_info.can_excise_frame =
          !frame_info.nonzero_derivative && frame_info.den_pdf_count == 1;
    }
  }
  return true;
}


/* Excising a frame means removing a frame from the lattice and removing the
   corresponding feature.  We can only do this if it would not affect the
   derivatives because the current frame has zero derivative and also all the
   den-lat pdfs are the same on this frame (so removing the frame doesn't affect
   the lattice posteriors).  But we can't remove a frame if doing so would
   affect the acoustic context.  Generally speaking we must keep all frames
   that are within LeftContext() to the left and RightContext() to the right
   of a frame that we can't excise, *but* it's OK at the edges of a segment
   even if they are that close to other frames, because we anyway keep a few
   frames of context at the edges, and we can just make sure to keep the
   *right* few frames of context.
   */
void DiscriminativeExampleSplitter::DoExcise(SplitExampleStats *stats) {
  int32 left_context = eg_.left_context,
      right_context = RightContext(),
      num_frames = NumFrames();
  // Compute, for each frame, whether we can excise it.
  // 
  std::vector<bool> can_excise(num_frames, false);
  
  bool need_some_frame = false;
  for (int32 t = 0; t < num_frames; t++) {
    can_excise[t] = frame_info_[t].can_excise_frame;
    if (!can_excise[t])
      need_some_frame = true;
  }
  if (!need_some_frame) { // We don't need any frame within this file, so simply
                          // delete the segment.
    KALDI_WARN << "Example completely removed when excising."; // unexpected,
    // as the segment should have been deleted when splitting.
    egs_out_->clear();
    return;
  }
  egs_out_->resize(1);
  DiscriminativeNnetExample &eg_out = (*egs_out_)[0];

  // start_t and end_t will be the central part of the segment, excluding any
  // frames at the edges that we can excise.
  int32 start_t, end_t;
  for (start_t = 0; can_excise[start_t]; start_t++);
  for (end_t = num_frames; can_excise[end_t-1]; end_t--);

  // for frames from start_t to end_t-1, do not excise them if
  // they are within the context-window of a frame that we need to keep.
  // Note: we do t2 = t - right_context to t + left_context, because we're
  // concerned whether frame t2 has frame t in its window... it might
  // seem a bit backwards.
  std::vector<bool> will_excise(can_excise);
  for (int32 t = start_t; t < end_t; t++) {
    for (int32 t2 = t - right_context; t2 <= t + left_context; t2++)
      if (t2 >= start_t && t2 < end_t && !can_excise[t2])
        will_excise[t] = false; // can't excise this frame, it's needed for
                                // context.
  }

  // Remove all un-needed frames from the lattice by replacing the
  // symbols with epsilon and then removing the epsilons.
  // Note, this operation is destructive (it changes lat_).
  int32 num_states = lat_.NumStates();
  for (int32 state = 0; state < num_states; state++) {
    int32 t = state_times_[state];
    for (::fst::MutableArcIterator<Lattice> aiter(&lat_, state); !aiter.Done();
         aiter.Next()) {
      Arc arc = aiter.Value();
      if (will_excise[t]) {
        arc.ilabel = arc.olabel = 0;
        aiter.SetValue(arc);
      }
    }
  }
  RmEpsilon(&lat_);
  RemoveAllOutputSymbols(&lat_);
  ConvertLattice(lat_, &eg_out.den_lat);

  eg_out.num_ali.clear();
  int32 num_frames_kept = 0;
  for (int32 t = 0; t < num_frames; t++) {
    if (!will_excise[t]) {
      eg_out.num_ali.push_back(eg_.num_ali[t]);
      num_frames_kept++;
    }
  }

  stats->num_frames_kept_after_excise += num_frames_kept;
  stats->longest_segment_after_excise = std::max(stats->longest_segment_after_excise,
                                                 num_frames_kept);
  
  int32 num_frames_kept_plus = num_frames_kept + left_context + right_context;
  eg_out.input_frames.Resize(num_frames_kept_plus,
                             eg_.input_frames.NumCols());

  // the left-context of the output will be shifted to the right by
  // start_t.
  for (int32 i = 0; i < left_context; i++) {
    SubVector<BaseFloat> dst(eg_out.input_frames, i);
    SubVector<BaseFloat> src(eg_.input_frames, start_t + i);
    dst.CopyFromVec(src);
  }
  // the right-context will also be shifted, we take the frames
  // to the right of end_t.
  for (int32 i = 0; i < right_context; i++) {
    SubVector<BaseFloat> dst(eg_out.input_frames,
                             num_frames_kept + left_context + i);
    SubVector<BaseFloat> src(eg_.input_frames,
                             end_t + left_context + i);
    dst.CopyFromVec(src);
  }
  // now copy the central frames (those that were not excised).
  int32 dst_t = 0;
  for (int32 t = start_t; t < end_t; t++) {
    if (!will_excise[t]) {
      SubVector<BaseFloat> dst(eg_out.input_frames,
                               left_context + dst_t);
      SubVector<BaseFloat> src(eg_.input_frames,
                               left_context + t);
      dst.CopyFromVec(src);
      dst_t++;
    }
  }
  KALDI_ASSERT(dst_t == num_frames_kept);


  eg_out.weight = eg_.weight;
  eg_out.left_context = eg_.left_context;
  eg_out.spk_info = eg_.spk_info;

  eg_out.Check();
}


void DiscriminativeExampleSplitter::DoSplit(SplitExampleStats *stats) {
  std::vector<int32> split_points;
  int32 num_frames = NumFrames();
  {
    // Make the "split points" 0 and num_frames, and
    // any frame that has just one state on it and the previous
    // frame had >1 state.  This gives us one split for each
    // "pinch point" in the lattice.  Later we may move each split
    // to a more optimal location.
    split_points.push_back(0);
    for (int32 t = 1; t < num_frames; t++) {
      if (frame_info_[t].den_state_count == 1 &&
          frame_info_[t-1].den_state_count > 1)
        split_points.push_back(t);
    }
    split_points.push_back(num_frames);
  }

  std::vector<bool> is_kept(split_points.size() - 1);
  { // A "split" is a pair of successive split points.  Work out for each split
    // whether we must keep it (we must if it contains at least one frame for
    // which "nonzero_derivative" == true.)
    for (size_t s = 0; s < is_kept.size(); s++) {
      int32 start = split_points[s], end = split_points[s+1];
      bool keep_this_split = false;
      for (int32 t = start; t < end; t++)
        if (frame_info_[t].nonzero_derivative)
          keep_this_split = true;
      is_kept[s] = keep_this_split;
    }
  }

  egs_out_->clear();
  egs_out_->reserve(is_kept.size());

  stats->num_lattices++;
  stats->longest_lattice = std::max(stats->longest_lattice, num_frames);
  stats->num_segments += is_kept.size();
  stats->num_frames_orig += num_frames;
  for (int32 t = 0; t < num_frames; t++)
    if (frame_info_[t].nonzero_derivative)
      stats->num_frames_must_keep++;
  
  for (size_t s = 0; s < is_kept.size(); s++) {
    if (is_kept[s]) {
      stats->num_kept_segments++;
      OutputOneSplit(split_points[s], split_points[s+1]);
      int32 segment_len = split_points[s+1] - split_points[s];
      stats->num_frames_kept_after_split += segment_len;
      stats->longest_segment_after_split =
          std::max(stats->longest_segment_after_split, segment_len);
    }
  }
}



void SplitExampleStats::Print() {
  KALDI_LOG << "Split " << num_lattices << " lattices.  Stats:";
  double kept_segs_per_lat = num_kept_segments * 1.0 / num_lattices,
      segs_per_lat = num_segments * 1.0 / num_lattices;
      
  KALDI_LOG << "Made on average " << segs_per_lat << " segments per lattice, "
            << "of which " << kept_segs_per_lat << " were kept.";

  double percent_needed = num_frames_must_keep * 100.0 / num_frames_orig,
    percent_after_split = num_frames_kept_after_split * 100.0 / num_frames_orig,
   percent_after_excise = num_frames_kept_after_excise * 100.0 / num_frames_orig;
      
  KALDI_LOG << "Needed to keep " << percent_needed << "% of frames, after split "
            << "kept " << percent_after_split << "%, after excising frames kept "
            << percent_after_excise << "%.";

  KALDI_LOG << "Longest lattice had " << longest_lattice
            << " frames, longest segment after splitting had "
            << longest_segment_after_split
            << " frames, longest segment after excising had "
            << longest_segment_after_excise;
}

void DiscriminativeExampleSplitter::OutputOneSplit(int32 seg_begin,
                                                   int32 seg_end) {
  KALDI_ASSERT(seg_begin >= 0 && seg_end > seg_begin && seg_end <= NumFrames());
  egs_out_->resize(egs_out_->size() + 1);
  int32 left_context = eg_.left_context, right_context = RightContext(),
      tot_context = left_context + right_context;
  DiscriminativeNnetExample &eg_out = egs_out_->back();
  eg_out.weight = eg_.weight;

  eg_out.num_ali.insert(eg_out.num_ali.end(),
                        eg_.num_ali.begin() + seg_begin,
                        eg_.num_ali.begin() + seg_end);

  CreateOutputLattice(seg_begin, seg_end, &(eg_out.den_lat));
  
  eg_out.input_frames = eg_.input_frames.Range(seg_begin, seg_end - seg_begin +
                                               tot_context,
                                               0, eg_.input_frames.NumCols());

  eg_out.left_context = eg_.left_context;

  eg_out.spk_info = eg_.spk_info;
  
  eg_out.Check();  
}

// static
void DiscriminativeExampleSplitter::RemoveAllOutputSymbols(Lattice *lat) {
  for (StateId s = 0; s < lat->NumStates(); s++) {
    for (::fst::MutableArcIterator<Lattice> aiter(lat, s); !aiter.Done();
         aiter.Next()) {
      Arc arc = aiter.Value();
      arc.olabel = 0;
      aiter.SetValue(arc);
    }
  }  
}

DiscriminativeExampleSplitter::StateId
DiscriminativeExampleSplitter::GetOutputStateId(
    StateId s, unordered_map<StateId, StateId> *state_map, Lattice *lat_out) {
  if (state_map->count(s) == 0) {
    return ((*state_map)[s] = lat_out->AddState());
  } else {
    return (*state_map)[s];
  }
}

void DiscriminativeExampleSplitter::CreateOutputLattice(
    int32 seg_begin, int32 seg_end,
    CompactLattice *clat_out) {
  Lattice lat_out;

  // Below, state_map will map from states in the original lattice
  // lat_ to ones in the new lattice lat_out.
  unordered_map<StateId, StateId> state_map;

  // The range of the loop over s could be made over the
  // entire lattice, but we limit it for efficiency.
  
  for (StateId s = frame_info_[seg_begin].start_state;
       s <= frame_info_[seg_end].end_state; s++) {
    int32 t = state_times_[s];

    if (t < seg_begin || t > seg_end) // state out of range.
      continue;

    int32 this_state = GetOutputStateId(s, &state_map, &lat_out);

    if (t == seg_begin) // note: we only split on frames with just one
      lat_out.SetStart(this_state); // state, so we reach this only once.
    
    if (t == seg_end) { // Make it final and don't process its arcs out.
      if (seg_end == NumFrames()) {
        lat_out.SetFinal(this_state, lat_.Final(s));
      } else {
        lat_out.SetFinal(this_state, LatticeWeight::One());
      }
      continue; // don't process arcs out of this state.
    }
    
    for (fst::ArcIterator<Lattice> aiter(lat_, s); !aiter.Done(); aiter.Next()) {
      const Arc &arc = aiter.Value();
      StateId next_state = GetOutputStateId(arc.nextstate,
                                            &state_map, &lat_out);
      KALDI_ASSERT(arc.ilabel != 0 && arc.ilabel == arc.olabel); // We expect no epsilons.
      lat_out.AddArc(this_state, Arc(arc.ilabel, arc.olabel, arc.weight,
                                      next_state));
    }
  }
  Connect(&lat_out); // this is not really necessary, it's only to make sure
                     // the assert below fails when it should. TODO: remove it.
  KALDI_ASSERT(lat_out.NumStates() > 0);
  RemoveAllOutputSymbols(&lat_out);
  ConvertLattice(lat_out, clat_out);
}

/*
void DiscriminativeExampleSplitter::SelfTest() {
  bool splits_ok = true; // True iff we split only
                         // on frames where there was
                         // one arc crossing.

  // we can't do any of this excising frames if we want to
  // preserve equivalence.
  std::fill(can_excise_.begin(), can_excise_.end(), false);
  
  std::vector<Lattice*> split_lats;

  int32 cur_t = NumFrames();
  while (cur_t != 0) {
    Backtrace this_backtrace = backtrace_[cur_t];
    int32 prev_t = this_backtrace.prev_frame;

    int32 seg_begin = prev_t, seg_end = cur_t;
    Lattice *new_lat = new Lattice();
    CreateOutputLattice(seg_begin, seg_end, new_lat);
    split_lats.push_back(new_lat);

    if (split_penalty_[cur_t] != 0)
      splits_ok = false; // we split where there was a penalty so we don't
                         //  expect equivalence.
    cur_t = prev_t;
  }
  KALDI_ASSERT(!split_lats.empty());
  std::reverse(split_lats.begin(), split_lats.end());
  for (size_t i = 1; i < split_lats.size(); i++) {
    // append split_lats[i] to split_lats[0], putting the
    // result in split_lats[0].
    Concat(split_lats[0], *(split_lats[i]));
  }
  Connect(split_lats[0]);
  KALDI_ASSERT(split_lats[0]->NumStates() > 0);
  

  if (!splits_ok) {
    KALDI_LOG << "Not self-testing because we split where there were "
              << "multiple paths.";
    
  } else {
    if (!(RandEquivalent(*(split_lats[0]), lat_, 5, 0.01,
         Rand(), 100))) {
      KALDI_WARN << "Lattices were not equivalent (self-test failed).";
      KALDI_LOG << "Original lattice was: ";
      WriteLattice(std::cerr, false, lat_);
      KALDI_LOG << "New lattice is:";
      WriteLattice(std::cerr, false, *(split_lats[0]));
      {
        Lattice best_path_orig;
        ShortestPath(lat_, &best_path_orig);
        KALDI_LOG << "Original best path was:";
        WriteLattice(std::cerr, false, best_path_orig);
      }
      {
        Lattice best_path_new;
        ShortestPath(*(split_lats[0]), &best_path_new);
        KALDI_LOG << "New best path was:";
        WriteLattice(std::cerr, false, best_path_new);
      }
    }
  }
  for (size_t i = 0; i < split_lats.size(); i++)
    delete split_lats[i];
}
*/



void SplitDiscriminativeExample(
    const SplitDiscriminativeExampleConfig &config,
    const TransitionModel &tmodel,
    const DiscriminativeNnetExample &eg,
    std::vector<DiscriminativeNnetExample> *egs_out,
    SplitExampleStats *stats_out) {
  DiscriminativeExampleSplitter splitter(config, tmodel, eg, egs_out);
  splitter.Split(stats_out);
}


void ExciseDiscriminativeExample(
    const SplitDiscriminativeExampleConfig &config,
    const TransitionModel &tmodel,
    const DiscriminativeNnetExample &eg,
    std::vector<DiscriminativeNnetExample> *egs_out,    
    SplitExampleStats *stats_out) {
  DiscriminativeExampleSplitter splitter(config, tmodel, eg, egs_out);
  splitter.Excise(stats_out);
}


void UpdateHash(
    const TransitionModel &tmodel,
    const DiscriminativeNnetExample &eg,
    std::string criterion,
    bool drop_frames,
    bool one_silence_class,
    Matrix<double> *hash,
    double *num_weight,
    double *den_weight,
    double *tot_t) {
  int32 feat_dim = eg.input_frames.NumCols(),
      left_context = eg.left_context,
      num_frames = eg.num_ali.size(),
      right_context = eg.input_frames.NumRows() - num_frames - left_context,
      context_width = left_context + 1 + right_context;
  *tot_t += num_frames;
  KALDI_ASSERT(right_context >= 0);
  KALDI_ASSERT(hash != NULL);
  if (hash->NumRows() == 0) {
    hash->Resize(tmodel.NumPdfs(), feat_dim);
  } else {
    KALDI_ASSERT(hash->NumRows() == tmodel.NumPdfs() &&
                 hash->NumCols() == feat_dim);
  }

  Posterior post;
  std::vector<int32> silence_phones; // we don't let the user specify this
                                     // because it's not necessary for testing
                                     // purposes -> leave it empty
  ExampleToPdfPost(tmodel, silence_phones, criterion, drop_frames,
                   one_silence_class, eg, &post);

  Vector<BaseFloat> avg_feat(feat_dim);
  
  for (int32 t = 0; t < num_frames; t++) {
    SubMatrix<BaseFloat> context_window(eg.input_frames,
                                        t, context_width,
                                        0, feat_dim);
    // set avg_feat to average over the context-window for this frame.
    avg_feat.AddRowSumMat(1.0 / context_width, context_window, 0.0);
    Vector<double> avg_feat_dbl(avg_feat);
    for (size_t i = 0; i < post[t].size(); i++) {
      int32 pdf_id = post[t][i].first;
      BaseFloat weight = post[t][i].second;
      hash->Row(pdf_id).AddVec(weight, avg_feat_dbl);
      if (weight > 0.0) *num_weight += weight;
      else *den_weight += -weight;
    }
  }
}


void ExampleToPdfPost(
    const TransitionModel &tmodel,
    const std::vector<int32> &silence_phones,    
    std::string criterion,
    bool drop_frames,
    bool one_silence_class,
    const DiscriminativeNnetExample &eg,
    Posterior *post) {
  KALDI_ASSERT(criterion == "mpfe" || criterion == "smbr" || criterion == "mmi");
  
  Lattice lat;
  ConvertLattice(eg.den_lat, &lat);
  TopSort(&lat);
  if (criterion == "mpfe" || criterion == "smbr") {
    Posterior tid_post;
    LatticeForwardBackwardMpeVariants(tmodel, silence_phones, lat, eg.num_ali,
                                      criterion, one_silence_class, &tid_post);
    
    ConvertPosteriorToPdfs(tmodel, tid_post, post);
  } else {
    bool convert_to_pdf_ids = true, cancel = true;
    LatticeForwardBackwardMmi(tmodel, lat, eg.num_ali,
                              drop_frames, convert_to_pdf_ids, cancel,
                              post);
  }
  ScalePosterior(eg.weight, post);
}


void SolvePackingProblem(BaseFloat max_cost,
                         const std::vector<BaseFloat> &costs,
                         std::vector<std::vector<size_t> > *groups) {
  groups->clear();
  std::vector<BaseFloat> group_costs;
  for (size_t i = 0; i < costs.size(); i++) {
    bool found_group = false;
    BaseFloat this_cost = costs[i];
    for (size_t j = 0; j < groups->size(); j++) {
      if (group_costs[j] + this_cost <= max_cost) {
        (*groups)[j].push_back(i);
        group_costs[j] += this_cost;
        found_group = true;
        break;
      }
    }
    if (!found_group) { // Put this object in a newly created group.
      groups->resize(groups->size() + 1);
      groups->back().push_back(i);
      group_costs.push_back(this_cost);
    }
  }
}

void AppendDiscriminativeExamples(
    const std::vector<const DiscriminativeNnetExample*> &input,
    DiscriminativeNnetExample *output) {
  KALDI_ASSERT(!input.empty());
  const DiscriminativeNnetExample &eg0 = *(input[0]);
  
  int32 dim = eg0.input_frames.NumCols() + eg0.spk_info.Dim(),
      left_context = eg0.left_context,
      num_frames = eg0.num_ali.size(),
      right_context = eg0.input_frames.NumRows() - num_frames - left_context;

  int32 tot_frames = eg0.input_frames.NumRows();  // total frames (appended,
                                                  // with context)
  for (size_t i = 1; i < input.size(); i++)
    tot_frames += input[i]->input_frames.NumRows();

  int32 arbitrary_tid = 1;  // arbitrary transition-id that we use to pad the
                            // num_ali and den_lat members between segments
                            // (since they're both the same, and the den-lat in
                            // those parts is linear, they contribute no
                            // derivative to the training).
  
  output->den_lat = eg0.den_lat;
  output->num_ali = eg0.num_ali;
  output->input_frames.Resize(tot_frames, dim, kUndefined);
  output->input_frames.Range(0, eg0.input_frames.NumRows(),
                             0, eg0.input_frames.NumCols()).CopyFromMat(eg0.input_frames);
  if (eg0.spk_info.Dim() != 0) {
    output->input_frames.Range(0, eg0.input_frames.NumRows(),
                               eg0.input_frames.NumCols(), eg0.spk_info.Dim()).
        CopyRowsFromVec(eg0.spk_info);
  }
  
  output->num_ali.reserve(tot_frames - left_context - right_context);
  output->weight = eg0.weight;
  output->left_context = eg0.left_context;
  output->spk_info.Resize(0);

  CompactLattice inter_segment_clat;
  int32 initial = inter_segment_clat.AddState(); // state 0.
  inter_segment_clat.SetStart(initial);
  
  std::vector<int32> inter_segment_ali(left_context + right_context);
  std::fill(inter_segment_ali.begin(), inter_segment_ali.end(), arbitrary_tid);

  CompactLatticeWeight final_weight = CompactLatticeWeight::One();
  final_weight.SetString(inter_segment_ali);
  inter_segment_clat.SetFinal(initial, final_weight);
  
  int32 feat_offset = eg0.input_frames.NumRows();
  
  for (size_t i = 1; i < input.size(); i++) {
    const DiscriminativeNnetExample &eg_i = *(input[i]);
        
    output->input_frames.Range(feat_offset, eg_i.input_frames.NumRows(),
                               0, eg_i.input_frames.NumCols()).CopyFromMat(
                                   eg_i.input_frames);
    if (eg_i.spk_info.Dim() != 0) {
      output->input_frames.Range(feat_offset, eg_i.input_frames.NumRows(),
                                 eg_i.input_frames.NumCols(),
                                 eg_i.spk_info.Dim()).CopyRowsFromVec(
                                     eg_i.spk_info);
      KALDI_ASSERT(eg_i.input_frames.NumCols() +
                   eg_i.spk_info.Dim() == dim);
    }
    
    output->num_ali.insert(output->num_ali.end(),
                           inter_segment_ali.begin(), inter_segment_ali.end());
    output->num_ali.insert(output->num_ali.end(),
                           eg_i.num_ali.begin(), eg_i.num_ali.end());
    Concat(&(output->den_lat), inter_segment_clat);
    Concat(&(output->den_lat), eg_i.den_lat);
    KALDI_ASSERT(output->weight == eg_i.weight);
    KALDI_ASSERT(output->left_context == eg_i.left_context);
    feat_offset += eg_i.input_frames.NumRows();
  }
  KALDI_ASSERT(feat_offset == tot_frames);
}
  
void CombineDiscriminativeExamples(
    int32 max_length,
    const std::vector<DiscriminativeNnetExample> &input,
    std::vector<DiscriminativeNnetExample> *output) {
  
  std::vector<BaseFloat> costs(input.size());
  for (size_t i = 0; i < input.size(); i++)
    costs[i] = static_cast<BaseFloat>(input[i].input_frames.NumRows());
  std::vector<std::vector<size_t> > groups;
  SolvePackingProblem(max_length,
                      costs,
                      &groups);
  output->clear();
  output->resize(groups.size());
  for (size_t i = 0; i < groups.size(); i++) {
    std::vector<const DiscriminativeNnetExample*> group_egs;
    for (size_t j = 0; j < groups[i].size(); j++) {
      size_t index = groups[i][j];
      group_egs.push_back(&(input[index]));
    }
    AppendDiscriminativeExamples(group_egs, &((*output)[i]));
  }
}



} // namespace nnet2
} // namespace kaldi