nnet-nnet.cc
28 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
// nnet2/nnet-nnet.cc
// Copyright 2011-2012 Karel Vesely
// 2012-2014 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <set>
#include <string>
#include "nnet2/nnet-nnet.h"
#include "util/stl-utils.h"
namespace kaldi {
namespace nnet2 {
int32 Nnet::OutputDim() const {
KALDI_ASSERT(!components_.empty());
return components_.back()->OutputDim();
}
int32 Nnet::InputDim() const {
KALDI_ASSERT(!components_.empty());
return components_.front()->InputDim();
}
int32 Nnet::LeftContext() const {
KALDI_ASSERT(!components_.empty());
int32 ans = 0;
for (size_t i = 0; i < components_.size(); i++) {
ans += components_[i]->Context().front();
}
return -1*ans;
// nnet-components return left context as a non-positive integer
// however the nnet-update, nnet-compute expect a
// non-negative left context. In addition, the NnetExample also stores data
// left context as positive integer. To be compatible with these other classes
// Nnet::LeftContext() returns a non-negative left context.
}
int32 Nnet::RightContext() const {
KALDI_ASSERT(!components_.empty());
int32 ans = 0;
for (size_t i = 0; i < components_.size(); i++) {
ans += components_[i]->Context().back();
}
return ans;
}
void Nnet::ComputeChunkInfo(int32 input_chunk_size,
int32 num_chunks,
std::vector<ChunkInfo> *chunk_info_out) const {
// First compute the output-chunk indices for the last component in the
// network. we assume that the numbering of the input starts from zero.
int32 output_chunk_size = input_chunk_size - LeftContext() - RightContext();
KALDI_ASSERT(output_chunk_size > 0);
std::vector<int32> current_output_inds;
for (int32 i = 0; i < output_chunk_size; i++)
current_output_inds.push_back(i + LeftContext());
(*chunk_info_out).resize(NumComponents() + 1);
// indexes for last component is empty, since the last component's chunk is
// always contiguous
// component's output is always contiguous
(*chunk_info_out)[NumComponents()] = ChunkInfo(
GetComponent(NumComponents() - 1).OutputDim(),
num_chunks, current_output_inds.front(),
current_output_inds.back());
std::vector<int32> current_input_inds;
for (int32 i = NumComponents() - 1; i >= 0; i--) {
std::vector<int32> current_context = GetComponent(i).Context();
std::set<int32> current_input_ind_set;
for (size_t j = 0; j < current_context.size(); j++)
for (size_t k = 0; k < current_output_inds.size(); k++)
current_input_ind_set.insert(current_context[j] +
current_output_inds[k]);
current_output_inds.resize(current_input_ind_set.size());
std::copy(current_input_ind_set.begin(),
current_input_ind_set.end(),
current_output_inds.begin());
// checking if the vector has contiguous data
// assign indexes only if the data is not contiguous
if (current_output_inds.size() !=
current_output_inds.back() - current_output_inds.front() + 1) {
(*chunk_info_out)[i] = ChunkInfo(GetComponent(i).InputDim(),
num_chunks,
current_output_inds);
} else {
(*chunk_info_out)[i] = ChunkInfo(GetComponent(i).InputDim(),
num_chunks,
current_output_inds.front(),
current_output_inds.back());
}
}
// TODO: Make a set of components which can deal with data rearrangement.
// Define this set in an appropriate place so that
// users adding new components can simply update the list.
const char *dinit[] = {"SpliceComponent", "SpliceMaxComponent"};
std::vector< std::string > data_rearrange_components(dinit, dinit + 2);
// Ensuring that all components until the first component capable of data
// rearrangement (e.g. SpliceComponent|SpliceMaxComponent) operate on
// contiguous chunks at the input
for (size_t i = 0 ; i < NumComponents() ; i++) {
(*chunk_info_out)[i].MakeOffsetsContiguous();
// Check if the current component is present in the set of components
// capable of data rearrangement.
if (std::find(data_rearrange_components.begin(),
data_rearrange_components.end(),
components_[i]->Type())
!= data_rearrange_components.end())
break;
}
// sanity testing for chunk_info_out vector
for (size_t i = 0; i < chunk_info_out->size(); i++) {
(*chunk_info_out)[i].Check();
// (*chunk_info_out)[i].ToString();
}
}
const Component& Nnet::GetComponent(int32 component) const {
KALDI_ASSERT(static_cast<size_t>(component) < components_.size());
return *(components_[component]);
}
Component& Nnet::GetComponent(int32 component) {
KALDI_ASSERT(static_cast<size_t>(component) < components_.size());
return *(components_[component]);
}
void Nnet::SetZero(bool treat_as_gradient) {
for (size_t i = 0; i < components_.size(); i++) {
UpdatableComponent *uc = dynamic_cast<UpdatableComponent*>(components_[i]);
if (uc != NULL) uc->SetZero(treat_as_gradient);
NonlinearComponent *nc = dynamic_cast<NonlinearComponent*>(components_[i]);
if (nc != NULL) nc->Scale(0.0);
}
}
void Nnet::Write(std::ostream &os, bool binary) const {
Check();
WriteToken(os, binary, "<Nnet>");
int32 num_components = components_.size();
WriteToken(os, binary, "<NumComponents>");
WriteBasicType(os, binary, num_components);
WriteToken(os, binary, "<Components>");
for (int32 c = 0; c < num_components; c++) {
components_[c]->Write(os, binary);
if (!binary) os << std::endl;
}
WriteToken(os, binary, "</Components>");
WriteToken(os, binary, "</Nnet>");
}
void Nnet::Read(std::istream &is, bool binary) {
Destroy();
ExpectToken(is, binary, "<Nnet>");
int32 num_components;
ExpectToken(is, binary, "<NumComponents>");
ReadBasicType(is, binary, &num_components);
ExpectToken(is, binary, "<Components>");
components_.resize(num_components);
for (int32 c = 0; c < num_components; c++)
components_[c] = Component::ReadNew(is, binary);
ExpectToken(is, binary, "</Components>");
ExpectToken(is, binary, "</Nnet>");
SetIndexes();
Check();
}
void Nnet::ZeroStats() {
for (size_t i = 0; i < components_.size(); i++) {
NonlinearComponent *nonlinear_component =
dynamic_cast<NonlinearComponent*>(components_[i]);
if (nonlinear_component != NULL)
nonlinear_component->Scale(0.0); // Zero the stats this way.
}
}
void Nnet::Destroy() {
while (!components_.empty()) {
delete components_.back();
components_.pop_back();
}
}
void Nnet::ComponentDotProducts(
const Nnet &other,
VectorBase<BaseFloat> *dot_prod) const {
KALDI_ASSERT(dot_prod->Dim() == NumUpdatableComponents());
int32 index = 0;
for (size_t i = 0; i < components_.size(); i++) {
UpdatableComponent *uc1 = dynamic_cast<UpdatableComponent*>(components_[i]);
const UpdatableComponent *uc2 = dynamic_cast<const UpdatableComponent*>(
&(other.GetComponent(i)));
KALDI_ASSERT((uc1 != NULL) == (uc2 != NULL));
if (uc1 != NULL) {
(*dot_prod)(index) = uc1->DotProduct(*uc2);
index++;
}
}
KALDI_ASSERT(index == NumUpdatableComponents());
}
Nnet::Nnet(const Nnet &other): components_(other.components_.size()) {
for (size_t i = 0; i < other.components_.size(); i++)
components_[i] = other.components_[i]->Copy();
SetIndexes();
Check();
}
Nnet::Nnet(const Nnet &other1, const Nnet &other2) {
int32 dim1 = other1.OutputDim(), dim2 = other2.InputDim();
if (dim1 != dim2)
KALDI_ERR << "Concatenating neural nets: dimension mismatch "
<< dim1 << " vs. " << dim2;
for (size_t i = 0; i < other1.components_.size(); i++)
components_.push_back(other1.components_[i]->Copy());
for (size_t i = 0; i < other2.components_.size(); i++)
components_.push_back(other2.components_[i]->Copy());
SetIndexes();
Check();
}
Nnet &Nnet::operator = (const Nnet &other) {
Destroy();
components_.resize(other.components_.size());
for (size_t i = 0; i < other.components_.size(); i++)
components_[i] = other.components_[i]->Copy();
SetIndexes();
Check();
return *this;
}
std::string Nnet::Info() const {
std::ostringstream ostr;
ostr << "num-components " << NumComponents() << std::endl;
ostr << "num-updatable-components " << NumUpdatableComponents() << std::endl;
ostr << "left-context " << LeftContext() << std::endl;
ostr << "right-context " << RightContext() << std::endl;
ostr << "input-dim " << InputDim() << std::endl;
ostr << "output-dim " << OutputDim() << std::endl;
ostr << "parameter-dim " << GetParameterDim() << std::endl;
for (int32 i = 0; i < NumComponents(); i++)
ostr << "component " << i << " : " << components_[i]->Info() << std::endl;
return ostr.str();
}
void Nnet::Check() const {
for (size_t i = 0; i + 1 < components_.size(); i++) {
KALDI_ASSERT(components_[i] != NULL);
int32 output_dim = components_[i]->OutputDim(),
next_input_dim = components_[i+1]->InputDim();
KALDI_ASSERT(output_dim == next_input_dim);
KALDI_ASSERT(components_[i]->Index() == static_cast<int32>(i));
}
}
void Nnet::Init(std::istream &is) {
Destroy();
std::string line;
/* example config file as follows. The things in brackets specify the context
splicing for each layer, and after that is the info about the actual layer.
Imagine the input dim is 13, and the speaker dim is 40, so (13 x 9) + 40 = 527.
The config file might be as follows; the lines beginning with # are comments.
# layer-type layer-options
AffineLayer 0.01 0.001 527 1000 0.04356
*/
components_.clear();
while (getline(is, line)) {
std::istringstream line_is(line);
line_is >> std::ws; // Eat up whitespace.
if (line_is.peek() == '#' || line_is.eof()) continue; // Comment or empty.
Component *c = Component::NewFromString(line);
KALDI_ASSERT(c != NULL);
components_.push_back(c);
}
SetIndexes();
Check();
}
void Nnet::Init(std::vector<Component*> *components) {
Destroy();
components_.swap(*components);
SetIndexes();
Check();
}
void Nnet::ScaleLearningRates(BaseFloat factor) {
std::ostringstream ostr;
for (int32 c = 0; c < NumComponents(); c++) {
UpdatableComponent *uc = dynamic_cast<UpdatableComponent*>(components_[c]);
if (uc != NULL) { // Updatable component...
uc->SetLearningRate(uc->LearningRate() * factor);
ostr << uc->LearningRate() << " ";
}
}
KALDI_LOG << "Scaled learning rates by " << factor
<< ", new learning rates are "
<< ostr.str();
}
void Nnet::ScaleLearningRates(std::map<std::string, BaseFloat> scale_factors) {
std::ostringstream ostr;
for (int32 c = 0; c < NumComponents(); c++) {
UpdatableComponent *uc = dynamic_cast<UpdatableComponent*>(components_[c]);
if (uc != NULL) { // Updatable component...
// check if scaling factor was specified for a component of this type
std::map<std::string, BaseFloat>::const_iterator lr_iterator =
scale_factors.find(uc->Type());
if (lr_iterator != scale_factors.end()) {
uc->SetLearningRate(uc->LearningRate() * lr_iterator->second);
ostr << uc->LearningRate() << " ";
}
}
}
KALDI_LOG << "Scaled learning rates by component-type specific factor, "
<< "new learning rates are "
<< ostr.str();
}
void Nnet::SetLearningRates(BaseFloat learning_rate) {
for (int32 c = 0; c < NumComponents(); c++) {
UpdatableComponent *uc = dynamic_cast<UpdatableComponent*>(components_[c]);
if (uc != NULL) { // Updatable component...
uc->SetLearningRate(learning_rate);
}
}
KALDI_LOG << "Set learning rates to " << learning_rate;
}
void Nnet::ResizeOutputLayer(int32 new_num_pdfs) {
KALDI_ASSERT(new_num_pdfs > 0);
KALDI_ASSERT(NumComponents() > 2);
int32 nc = NumComponents();
SumGroupComponent *sgc =
dynamic_cast<SumGroupComponent*>(components_[nc - 1]);
if (sgc != NULL) {
// Remove it. We'll resize things later.
delete sgc;
components_.erase(components_.begin() + nc - 1,
components_.begin() + nc);
nc--;
}
SoftmaxComponent *sc;
if ((sc = dynamic_cast<SoftmaxComponent*>(components_[nc - 1])) == NULL)
KALDI_ERR << "Expected last component to be SoftmaxComponent.";
// check if nc-1 has a FixedScaleComponent
bool has_fixed_scale_component = false;
int32 fixed_scale_component_index = -1;
int32 final_affine_component_index = nc - 2;
int32 softmax_component_index = nc - 1;
FixedScaleComponent *fsc =
dynamic_cast<FixedScaleComponent*>(
components_[final_affine_component_index]);
if (fsc != NULL) {
has_fixed_scale_component = true;
fixed_scale_component_index = nc - 2;
final_affine_component_index = nc - 3;
}
// note: it could be child class of AffineComponent.
AffineComponent *ac = dynamic_cast<AffineComponent*>(
components_[final_affine_component_index]);
if (ac == NULL)
KALDI_ERR << "Network doesn't have expected structure (didn't find final "
<< "AffineComponent).";
if (has_fixed_scale_component) {
// collapse the fixed_scale_component with the affine_component before it
AffineComponent *ac_new =
dynamic_cast<AffineComponent*>(ac->CollapseWithNext(*fsc));
KALDI_ASSERT(ac_new != NULL);
delete fsc;
delete ac;
components_.erase(components_.begin() + fixed_scale_component_index,
components_.begin() + (fixed_scale_component_index + 1));
components_[final_affine_component_index] = ac_new;
ac = ac_new;
softmax_component_index = softmax_component_index - 1;
}
ac->Resize(ac->InputDim(), new_num_pdfs);
// Remove the softmax component, and replace it with a new one
delete components_[softmax_component_index];
components_[softmax_component_index] = new SoftmaxComponent(new_num_pdfs);
this->SetIndexes(); // used for debugging
this->Check();
}
int32 Nnet::NumUpdatableComponents() const {
int32 ans = 0;
for (int32 i = 0; i < NumComponents(); i++)
if (dynamic_cast<const UpdatableComponent*>(&(GetComponent(i))) != NULL)
ans++;
return ans;
}
void Nnet::ScaleComponents(const VectorBase<BaseFloat> &scale_params) {
KALDI_ASSERT(scale_params.Dim() == this->NumUpdatableComponents());
int32 i = 0;
for (int32 j = 0; j < NumComponents(); j++) {
UpdatableComponent *uc =
dynamic_cast<UpdatableComponent*>(&(GetComponent(j)));
if (uc!= NULL) {
uc->Scale(scale_params(i));
i++;
}
}
KALDI_ASSERT(i == scale_params.Dim());
}
// Scales all UpdatableComponents and all NonlinearComponents.
void Nnet::Scale(BaseFloat scale) {
for (int32 i = 0; i < NumComponents(); i++) {
UpdatableComponent *uc =
dynamic_cast<UpdatableComponent*>(&(GetComponent(i)));
if (uc != NULL) uc->Scale(scale);
NonlinearComponent *nc =
dynamic_cast<NonlinearComponent*>(&(GetComponent(i)));
if (nc != NULL) nc->Scale(scale);
}
}
void Nnet::CopyStatsFrom(const Nnet &other) {
KALDI_ASSERT(NumComponents() == other.NumComponents());
for (int32 i = 0; i < NumComponents(); i++) {
NonlinearComponent *nc =
dynamic_cast<NonlinearComponent*>(&(GetComponent(i)));
const NonlinearComponent *nc_other =
dynamic_cast<const NonlinearComponent*>(&(other.GetComponent(i)));
if (nc != NULL) {
nc->Scale(0.0);
nc->Add(1.0, *nc_other);
}
}
}
void Nnet::SetLearningRates(const VectorBase<BaseFloat> &learning_rates) {
KALDI_ASSERT(learning_rates.Dim() == this->NumUpdatableComponents());
KALDI_ASSERT(learning_rates.Min() >= 0.0); // we allow zero learning rate.
int32 i = 0;
for (int32 j = 0; j < NumComponents(); j++) {
UpdatableComponent *uc =
dynamic_cast<UpdatableComponent*>(&(GetComponent(j)));
if (uc!= NULL) {
uc->SetLearningRate(learning_rates(i));
i++;
}
}
KALDI_ASSERT(i == learning_rates.Dim());
}
void Nnet::GetLearningRates(VectorBase<BaseFloat> *learning_rates) const {
KALDI_ASSERT(learning_rates->Dim() == this->NumUpdatableComponents());
int32 i = 0;
for (int32 j = 0; j < NumComponents(); j++) {
const UpdatableComponent *uc =
dynamic_cast<const UpdatableComponent*>(&(GetComponent(j)));
if (uc!= NULL) {
(*learning_rates)(i) = uc->LearningRate();
i++;
}
}
KALDI_ASSERT(i == learning_rates->Dim());
}
void Nnet::Resize(int32 new_size) {
KALDI_ASSERT(new_size <= static_cast<int32>(components_.size()));
for (size_t i = new_size; i < components_.size(); i++)
delete components_[i];
components_.resize(new_size);
}
void Nnet::RemoveDropout() {
std::vector<Component*> components;
int32 removed = 0;
for (size_t i = 0; i < components_.size(); i++) {
if (dynamic_cast<DropoutComponent*>(components_[i]) != NULL ||
dynamic_cast<AdditiveNoiseComponent*>(components_[i]) != NULL) {
delete components_[i];
removed++;
} else {
components.push_back(components_[i]);
}
}
components_ = components;
if (removed > 0)
KALDI_LOG << "Removed " << removed << " dropout components.";
SetIndexes();
Check();
}
void Nnet::SetDropoutScale(BaseFloat scale) {
size_t n_set = 0;
for (size_t i = 0; i < components_.size(); i++) {
DropoutComponent *dc =
dynamic_cast<DropoutComponent*>(components_[i]);
if (dc != NULL) {
dc->SetDropoutScale(scale);
n_set++;
}
}
KALDI_LOG << "Set dropout scale to " << scale
<< " for " << n_set << " components.";
}
void Nnet::RemovePreconditioning() {
for (size_t i = 0; i < components_.size(); i++) {
if (dynamic_cast<AffineComponentPreconditioned*>(components_[i]) != NULL) {
AffineComponent *ac = new AffineComponent(
*(dynamic_cast<AffineComponent*>(components_[i])));
delete components_[i];
components_[i] = ac;
} else if (dynamic_cast<AffineComponentPreconditionedOnline*>(
components_[i]) != NULL) {
AffineComponent *ac = new AffineComponent(
*(dynamic_cast<AffineComponent*>(components_[i])));
delete components_[i];
components_[i] = ac;
}
}
SetIndexes();
Check();
}
void Nnet::SwitchToOnlinePreconditioning(int32 rank_in, int32 rank_out,
int32 update_period,
BaseFloat num_samples_history,
BaseFloat alpha) {
int32 switched = 0;
for (size_t i = 0; i < components_.size(); i++) {
if (dynamic_cast<AffineComponent*>(components_[i]) != NULL) {
AffineComponentPreconditionedOnline *ac =
new AffineComponentPreconditionedOnline(
*(dynamic_cast<AffineComponent*>(components_[i])),
rank_in, rank_out, update_period, num_samples_history, alpha);
delete components_[i];
components_[i] = ac;
switched++;
}
}
KALDI_LOG << "Switched " << switched << " components to use online "
<< "preconditioning, with (input, output) rank = "
<< rank_in << ", " << rank_out << " and num_samples_history = "
<< num_samples_history;
SetIndexes();
Check();
}
void Nnet::AddNnet(const VectorBase<BaseFloat> &scale_params,
const Nnet &other) {
KALDI_ASSERT(scale_params.Dim() == this->NumUpdatableComponents());
int32 i = 0;
for (int32 j = 0; j < NumComponents(); j++) {
UpdatableComponent *uc =
dynamic_cast<UpdatableComponent*>(&(GetComponent(j)));
const UpdatableComponent *uc_other =
dynamic_cast<const UpdatableComponent*>(&(other.GetComponent(j)));
if (uc != NULL) {
KALDI_ASSERT(uc_other != NULL);
BaseFloat alpha = scale_params(i);
uc->Add(alpha, *uc_other);
i++;
}
}
KALDI_ASSERT(i == scale_params.Dim());
}
void Nnet::AddNnet(BaseFloat alpha,
const Nnet &other) {
for (int32 i = 0; i < NumComponents(); i++) {
UpdatableComponent *uc =
dynamic_cast<UpdatableComponent*>(&(GetComponent(i)));
const UpdatableComponent *uc_other =
dynamic_cast<const UpdatableComponent*>(&(other.GetComponent(i)));
if (uc != NULL) {
KALDI_ASSERT(uc_other != NULL);
uc->Add(alpha, *uc_other);
}
NonlinearComponent *nc =
dynamic_cast<NonlinearComponent*>(&(GetComponent(i)));
const NonlinearComponent *nc_other =
dynamic_cast<const NonlinearComponent*>(&(other.GetComponent(i)));
if (nc != NULL) {
KALDI_ASSERT(nc_other != NULL);
nc->Add(alpha, *nc_other);
}
}
}
void Nnet::AddNnet(BaseFloat alpha,
Nnet *other,
BaseFloat beta) {
for (int32 i = 0; i < NumComponents(); i++) {
UpdatableComponent *uc =
dynamic_cast<UpdatableComponent*>(&(GetComponent(i)));
UpdatableComponent *uc_other =
dynamic_cast<UpdatableComponent*>(&(other->GetComponent(i)));
if (uc != NULL) {
KALDI_ASSERT(uc_other != NULL);
uc->Add(alpha, *uc_other);
uc_other->Scale(beta);
}
NonlinearComponent *nc =
dynamic_cast<NonlinearComponent*>(&(GetComponent(i)));
NonlinearComponent *nc_other =
dynamic_cast<NonlinearComponent*>(&(other->GetComponent(i)));
if (nc != NULL) {
KALDI_ASSERT(nc_other != NULL);
nc->Add(alpha, *nc_other);
nc_other->Scale(beta);
}
}
}
void Nnet::Append(Component *new_component) {
components_.push_back(new_component);
SetIndexes();
Check();
}
void Nnet::SetComponent(int32 c, Component *component) {
KALDI_ASSERT(static_cast<size_t>(c) < components_.size());
delete components_[c];
components_[c] = component;
SetIndexes();
Check(); // Check that all the dimensions still match up.
}
int32 Nnet::GetParameterDim() const {
int32 ans = 0;
for (int32 c = 0; c < NumComponents(); c++) {
const UpdatableComponent *uc = dynamic_cast<const UpdatableComponent*>(
&(GetComponent(c)));
if (uc != NULL)
ans += uc->GetParameterDim();
}
return ans;
}
void Nnet::Vectorize(VectorBase<BaseFloat> *params) const {
int32 offset = 0;
for (int32 c = 0; c < NumComponents(); c++) {
const UpdatableComponent *uc = dynamic_cast<const UpdatableComponent*>(
&(GetComponent(c)));
if (uc != NULL) {
int32 size = uc->GetParameterDim();
SubVector<BaseFloat> temp(*params, offset, size);
uc->Vectorize(&temp);
offset += size;
}
}
KALDI_ASSERT(offset == GetParameterDim());
}
void Nnet::ResetGenerators() {
// resets random-number generators for all random
// components.
for (int32 c = 0; c < NumComponents(); c++) {
RandomComponent *rc = dynamic_cast<RandomComponent*>(
&(GetComponent(c)));
if (rc != NULL)
rc->ResetGenerator();
}
}
void Nnet::UnVectorize(const VectorBase<BaseFloat> ¶ms) {
int32 offset = 0;
for (int32 c = 0; c < NumComponents(); c++) {
UpdatableComponent *uc = dynamic_cast<UpdatableComponent*>(
&(GetComponent(c)));
if (uc != NULL) {
int32 size = uc->GetParameterDim();
uc->UnVectorize(params.Range(offset, size));
offset += size;
}
}
KALDI_ASSERT(offset == GetParameterDim());
}
void Nnet::LimitRankOfLastLayer(int32 dim) {
for (int32 i = components_.size() - 1; i >= 0; i--) {
AffineComponent *a = NULL, *b = NULL,
*c = dynamic_cast<AffineComponent*>(components_[i]);
if (c != NULL) {
c->LimitRank(dim, &a, &b);
delete c;
components_[i] = a;
components_.insert(components_.begin() + i + 1, b);
this->SetIndexes();
this->Check();
return;
}
}
KALDI_ERR << "No affine component found in neural net.";
}
void Nnet::SetIndexes() {
for (size_t i = 0; i < components_.size(); i++)
components_[i]->SetIndex(i);
}
void Nnet::Collapse(bool match_updatableness) {
int32 num_collapsed = 0;
bool changed = true;
while (changed) {
changed = false;
for (size_t i = 0; i + 1 < components_.size(); i++) {
AffineComponent *a1 = dynamic_cast<AffineComponent*>(components_[i]),
*a2 = dynamic_cast<AffineComponent*>(components_[i + 1]);
FixedAffineComponent
*f1 = dynamic_cast<FixedAffineComponent*>(components_[i]),
*f2 = dynamic_cast<FixedAffineComponent*>(components_[i + 1]);
Component *c = NULL;
if (a1 != NULL && a2 != NULL) {
c = a1->CollapseWithNext(*a2);
} else if (a1 != NULL && f2 != NULL && !match_updatableness) {
c = a1->CollapseWithNext(*f2);
} else if (f1 != NULL && a2 != NULL && !match_updatableness) {
c = a2->CollapseWithPrevious(*f1);
}
if (c != NULL) {
delete components_[i];
delete components_[i + 1];
components_[i] = c;
// This was causing valgrind errors, so doing it differently. Either
// a standard-library bug or I misunderstood something.
// components_.erase(components_.begin() + i + i,
// components_.begin() + i + 2);
for (size_t j = i + 1; j + 1 < components_.size(); j++)
components_[j] = components_[j + 1];
components_.pop_back();
changed = true;
num_collapsed++;
}
}
}
this->SetIndexes();
this->Check();
KALDI_LOG << "Collapsed " << num_collapsed << " components."
<< (num_collapsed == 0 && match_updatableness == true ?
" Try --match-updatableness=false." : "");
}
Nnet *GenRandomNnet(int32 input_dim,
int32 output_dim) {
std::vector<Component*> components;
int32 cur_dim = input_dim;
// have up to 10 layers before the final one.
for (size_t i = 0; i < 10; i++) {
if (rand() % 2 == 0) {
// add an affine component.
int32 next_dim = 50 + rand() % 100;
BaseFloat learning_rate = 0.0001, param_stddev = 0.001,
bias_stddev = 0.1;
AffineComponent *component = new AffineComponent();
component->Init(learning_rate, cur_dim, next_dim,
param_stddev, bias_stddev);
components.push_back(component);
cur_dim = next_dim;
} else if (rand() % 2 == 0) {
components.push_back(new SigmoidComponent(cur_dim));
} else if (rand() % 2 == 0 && cur_dim < 200) {
SpliceComponent *component = new SpliceComponent();
std::vector<int32> context;
while (true) {
context.clear();
for (int32 i = -3; i <= 3; i++) {
if (rand() % 3 == 0)
context.push_back(i);
}
if (!context.empty() && context.front() <= 0 &&
context.back() >= 0)
break;
}
component->Init(cur_dim, context);
components.push_back(component);
cur_dim = cur_dim * context.size();
} else {
break;
}
}
{
AffineComponent *component = new AffineComponent();
BaseFloat learning_rate = 0.0001, param_stddev = 0.001,
bias_stddev = 0.1;
component->Init(learning_rate, cur_dim, output_dim,
param_stddev, bias_stddev);
components.push_back(component);
cur_dim = output_dim;
}
components.push_back(new SoftmaxComponent(cur_dim));
Nnet *ans = new Nnet();
ans->Init(&components);
return ans;
}
int32 Nnet::FirstUpdatableComponent() const {
for (int32 i = 0; i < NumComponents(); i++) {
if (dynamic_cast<UpdatableComponent*>(components_[i]) != NULL)
return i;
}
return NumComponents();
}
int32 Nnet::LastUpdatableComponent() const {
for (int32 i = NumComponents() - 1; i >= 0; i--)
if (dynamic_cast<UpdatableComponent*>(components_[i]) != NULL)
return i;
return -1;
}
} // namespace nnet2
} // namespace kaldi