nnet-update-parallel.h
3.23 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
// nnet2/nnet-update-parallel.h
// Copyright 2012 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_NNET2_NNET_UPDATE_PARALLEL_H_
#define KALDI_NNET2_NNET_UPDATE_PARALLEL_H_
#include "nnet2/nnet-nnet.h"
#include "util/table-types.h"
#include "util/kaldi-semaphore.h"
#include "util/kaldi-thread.h"
#include "itf/options-itf.h"
#include "nnet2/nnet-update.h"
namespace kaldi {
namespace nnet2 {
/// This function is similar to "DoBackprop" in nnet-update.h
/// This function computes the objective function and either updates the model
/// or computes parameter gradients. It returns the cross-entropy objective
/// function summed over all samples, weighted, and the total weight of
/// the samples (typically the same as the #frames) into total_weight.
/// It is mostly a wrapper for
/// a class NnetUpdater that's defined in nnet-update.cc, but we
/// don't want to expose that complexity at this level.
/// Note: this function
/// If &nnet == nnet_to_update, it assumes we're doing SGD and does
/// something like Hogwild; otherwise it assumes we're computing a
/// gradient and it sums up the gradients.
/// The return value is the total log-prob summed over the #frames. It also
/// outputs the #frames into "num_frames".
double DoBackpropParallel(const Nnet &nnet,
int32 minibatch_size,
SequentialNnetExampleReader *example_reader,
double *tot_weight,
Nnet *nnet_to_update);
/// This version of DoBackpropParallel takes a vector of examples, and will
/// typically be used to compute the exact gradient.
double DoBackpropParallel(const Nnet &nnet,
int32 minibatch_size,
int32 num_threads,
const std::vector<NnetExample> &examples,
double *num_frames,
Nnet *nnet_to_update);
/// This is basically to clarify the fact that DoBackpropParallel will
/// also work with nnet_to_update == NULL, and will compute the objf.
/// Both versions of the function will support it, but this
/// version (that takes a vector) is currently the only one we need
/// to do this with.
inline double ComputeNnetObjfParallel(
const Nnet &nnet,
int32 minibatch_size,
int32 num_threads,
const std::vector<NnetExample> &examples,
double *num_frames) {
return DoBackpropParallel(nnet, minibatch_size, num_threads,
examples, num_frames, NULL);
}
} // namespace nnet2
} // namespace kaldi
#endif // KALDI_NNET2_NNET_UPDATE_PARALLEL_H_