train-nnet.h
2.26 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
// nnet2/train-nnet.h
// Copyright 2012 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_NNET2_TRAIN_NNET_H_
#define KALDI_NNET2_TRAIN_NNET_H_
#include "nnet2/nnet-update.h"
#include "nnet2/nnet-compute.h"
#include "itf/options-itf.h"
namespace kaldi {
namespace nnet2 {
struct NnetSimpleTrainerConfig {
int32 minibatch_size;
int32 minibatches_per_phase;
NnetSimpleTrainerConfig(): minibatch_size(500),
minibatches_per_phase(50) { }
void Register (OptionsItf *opts) {
opts->Register("minibatch-size", &minibatch_size,
"Number of samples per minibatch of training data.");
opts->Register("minibatches-per-phase", &minibatches_per_phase,
"Number of minibatches to wait before printing training-set "
"objective.");
}
};
/// Train on all the examples it can read from the reader. This does training
/// in a single thread, but it uses a separate thread to read in the examples
/// and format the input data on the CPU; this saves us time when using GPUs.
/// Returns the number of examples processed.
/// Outputs to tot_weight and tot_logprob_per_frame, if non-NULL, the total
/// weight of the examples (typically equal to the number of examples) and the
/// total logprob objective function.
int64 TrainNnetSimple(const NnetSimpleTrainerConfig &config,
Nnet *nnet,
SequentialNnetExampleReader *reader,
double *tot_weight = NULL,
double *tot_logprob = NULL);
} // namespace nnet2
} // namespace kaldi
#endif