attention-test.cc
9.25 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
// nnet3/attention-test.cc
// Copyright 2017 Hossein Hadian
// 2017 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "nnet3/attention.h"
#include "util/common-utils.h"
namespace kaldi {
namespace nnet3 {
namespace attention {
// (*C)(i, j) = alpha * VecVec(A.Row(i), B.Row(i + j * row_shift))
void GetAttentionDotProductsSimple(BaseFloat alpha,
const CuMatrixBase<BaseFloat> &A,
const CuMatrixBase<BaseFloat> &B,
CuMatrixBase<BaseFloat> *C) {
KALDI_ASSERT(A.NumCols() == B.NumCols() &&
A.NumRows() == C->NumRows());
int32 input_num_cols = A.NumCols(),
num_extra_rows = B.NumRows() - A.NumRows(),
context_dim = C->NumCols();
KALDI_ASSERT(num_extra_rows > 0 && num_extra_rows % (context_dim - 1) == 0);
int32 row_shift = num_extra_rows / (context_dim - 1);
for (int32 i = 0; i < C->NumRows(); i++) {
for (int32 j = 0; j < C->NumCols(); j++) {
(*C)(i, j) = 0.0;
for (int32 k = 0; k < input_num_cols; k++) {
(*C)(i, j) += alpha * A(i, k) * B(i + (j * row_shift), k);
}
}
}
}
// A->Row(i) += \sum_k alpha * C(i, k) * B.Row(i + k * row_shift).
void ApplyScalesToOutputSimple(BaseFloat alpha,
const CuMatrixBase<BaseFloat> &B,
const CuMatrixBase<BaseFloat> &C,
CuMatrixBase<BaseFloat> *A) {
KALDI_ASSERT(A->NumCols() == B.NumCols() &&
A->NumRows() == C.NumRows());
int32 num_extra_rows = B.NumRows() - A->NumRows(),
context_dim = C.NumCols();
KALDI_ASSERT(num_extra_rows > 0 && num_extra_rows % (context_dim - 1) == 0);
int32 row_shift = num_extra_rows / (context_dim - 1);
for (int32 i = 0; i < A->NumRows(); i++) {
for (int32 j = 0; j < A->NumCols(); j++) {
for (int32 k = 0; k < context_dim; k++) {
(*A)(i, j) += alpha * C(i, k) * B(i + (k * row_shift), j);
}
}
}
}
// B->Row(i + j * row_shift) += alpha * C(i, j) * A.Row(i).
void ApplyScalesToInputSimple(BaseFloat alpha,
const CuMatrixBase<BaseFloat> &A,
const CuMatrixBase<BaseFloat> &C,
CuMatrixBase<BaseFloat> *B) {
KALDI_ASSERT(A.NumCols() == B->NumCols() &&
A.NumRows() == C.NumRows());
int32 num_extra_rows = B->NumRows() - A.NumRows(),
context_dim = C.NumCols();
KALDI_ASSERT(num_extra_rows > 0 && num_extra_rows % (context_dim - 1) == 0);
int32 row_shift = num_extra_rows / (context_dim - 1);
for (int32 i = 0; i < A.NumRows(); i++) {
for (int32 j = 0; j < A.NumCols(); j++) {
for (int32 k = 0; k < context_dim; k++) {
(*B)(i + (k * row_shift), j) += alpha * C(i, k) * A(i, j);
}
}
}
}
void UnitTestAttentionDotProductAndAddScales() {
int32 output_num_rows = RandInt(1, 50), input_num_cols = RandInt(1, 10),
row_shift = RandInt(1, 5), context_dim = RandInt(2, 5),
num_extra_rows = (context_dim - 1) * row_shift,
input_num_rows = output_num_rows + num_extra_rows;
BaseFloat alpha = 0.25 * RandInt(1, 5);
CuMatrix<BaseFloat> A(output_num_rows, input_num_cols),
B(input_num_rows, input_num_cols),
C(output_num_rows, context_dim);
B.SetRandn();
C.SetRandn();
A.Set(0.0);
CuMatrix<BaseFloat> A2(A);
ApplyScalesToOutput(alpha, B, C, &A);
ApplyScalesToOutputSimple(alpha, B, C, &A2);
AssertEqual(A, A2);
CuMatrix<BaseFloat> C2(C);
GetAttentionDotProductsSimple(alpha, A, B, &C);
GetAttentionDotProducts(alpha, A, B, &C2);
AssertEqual(C, C2);
CuMatrix<BaseFloat> B2(B);
ApplyScalesToInput(alpha, A, C, &B);
ApplyScalesToInputSimple(alpha, A, C, &B2);
AssertEqual(B, B2);
}
void TestAttentionForwardBackward() {
BaseFloat key_scale = 0.5 * RandInt(1, 3);
BaseFloat epsilon = 1.0e-03;
int32 test_dim = 3;
bool output_context = (RandInt(0, 1) == 0);
int32 output_num_rows = RandInt(1, 50),
value_dim = RandInt(10, 30), key_dim = RandInt(10, 30),
row_shift = RandInt(1, 5), context_dim = RandInt(2, 5),
num_extra_rows = (context_dim - 1) * row_shift,
input_num_rows = output_num_rows + num_extra_rows,
query_dim = key_dim + context_dim;
CuMatrix<BaseFloat> keys(input_num_rows, key_dim),
queries(output_num_rows, query_dim),
values(input_num_rows, value_dim),
C(output_num_rows, context_dim),
output(output_num_rows, value_dim + (output_context ? context_dim : 0));
keys.SetRandn();
queries.SetRandn();
values.SetRandn();
AttentionForward(key_scale, keys, queries, values, &C, &output);
CuMatrix<BaseFloat> keys_deriv(input_num_rows, key_dim),
queries_deriv(output_num_rows, query_dim),
values_deriv(input_num_rows, value_dim),
output_deriv(output_num_rows, output.NumCols());
output_deriv.SetRandn();
AttentionBackward(key_scale, keys, queries, values, C,
output_deriv, &keys_deriv, &queries_deriv,
&values_deriv);
BaseFloat objf_baseline = TraceMatMat(output_deriv, output, kTrans);
{ // perturb the values and see if the objf changes as predicted.
Vector<BaseFloat> predicted_vec(test_dim), observed_vec(test_dim);
for (int32 i = 0; i < test_dim; i++) {
CuMatrix<BaseFloat> values2(input_num_rows, value_dim);
values2.SetRandn();
values2.Scale(epsilon);
BaseFloat predicted_delta_objf = TraceMatMat(values_deriv, values2, kTrans);
values2.AddMat(1.0, values);
output.SetZero();
AttentionForward(key_scale, keys, queries, values2, &C, &output);
BaseFloat objf2 = TraceMatMat(output_deriv, output, kTrans),
observed_delta_objf = objf2 - objf_baseline;
KALDI_LOG << "Changing values: predicted objf change is "
<< predicted_delta_objf << ", observed objf change is "
<< observed_delta_objf;
predicted_vec(i) = predicted_delta_objf;
observed_vec(i) = observed_delta_objf;
}
KALDI_ASSERT(predicted_vec.ApproxEqual(observed_vec, 0.1));
}
{ // perturb the keys and see if the objf changes as predicted.
Vector<BaseFloat> predicted_vec(test_dim), observed_vec(test_dim);
for (int32 i = 0; i < test_dim; i++) {
CuMatrix<BaseFloat> keys2(input_num_rows, key_dim);
keys2.SetRandn();
keys2.Scale(epsilon);
BaseFloat predicted_delta_objf = TraceMatMat(keys_deriv, keys2, kTrans);
keys2.AddMat(1.0, keys);
output.SetZero();
AttentionForward(key_scale, keys2, queries, values, &C, &output);
BaseFloat objf2 = TraceMatMat(output_deriv, output, kTrans),
observed_delta_objf = objf2 - objf_baseline;
KALDI_LOG << "Changing keys: predicted objf change is "
<< predicted_delta_objf << ", observed objf change is "
<< observed_delta_objf;
predicted_vec(i) = predicted_delta_objf;
observed_vec(i) = observed_delta_objf;
}
KALDI_ASSERT(predicted_vec.ApproxEqual(observed_vec, 0.1));
}
{ // perturb the queries and see if the objf changes as predicted.
Vector<BaseFloat> predicted_vec(test_dim), observed_vec(test_dim);
for (int32 i = 0; i < test_dim; i++) {
CuMatrix<BaseFloat> queries2(output_num_rows, query_dim);
queries2.SetRandn();
queries2.Scale(epsilon);
BaseFloat predicted_delta_objf = TraceMatMat(queries_deriv, queries2, kTrans);
queries2.AddMat(1.0, queries);
output.SetZero();
AttentionForward(key_scale, keys, queries2, values, &C, &output);
BaseFloat objf2 = TraceMatMat(output_deriv, output, kTrans),
observed_delta_objf = objf2 - objf_baseline;
KALDI_LOG << "Changing queries: predicted objf change is "
<< predicted_delta_objf << ", observed objf change is "
<< observed_delta_objf;
predicted_vec(i) = predicted_delta_objf;
observed_vec(i) = observed_delta_objf;
}
KALDI_ASSERT(predicted_vec.ApproxEqual(observed_vec, 0.1));
}
}
void UnitTestAttention() {
UnitTestAttentionDotProductAndAddScales();
TestAttentionForwardBackward();
}
} // namespace attention
} // namespace nnet3
} // namespace kaldi
int main() {
using namespace kaldi;
using namespace kaldi::nnet3;
using namespace kaldi::nnet3::attention;
for (int32 loop = 0; loop < 2; loop++) {
#if HAVE_CUDA == 1
CuDevice::Instantiate().SetDebugStrideMode(true);
if (loop == 0)
CuDevice::Instantiate().SelectGpuId("no"); // -1 means no GPU
else
CuDevice::Instantiate().SelectGpuId("optional"); // -2 .. automatic selection
#endif
for (int32 i = 0; i < 5; i++) {
UnitTestAttention();
}
}
}