decodable-online-looped.h
8.32 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
// nnet3/decodable-online-looped.h
// Copyright 2014-2017 Johns Hopkins Universithy (author: Daniel Povey)
// 2016 Api.ai (Author: Ilya Platonov)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_NNET3_DECODABLE_ONLINE_LOOPED_H_
#define KALDI_NNET3_DECODABLE_ONLINE_LOOPED_H_
#include "itf/online-feature-itf.h"
#include "itf/decodable-itf.h"
#include "nnet3/am-nnet-simple.h"
#include "nnet3/nnet-compute.h"
#include "nnet3/nnet-optimize.h"
#include "nnet3/decodable-simple-looped.h"
#include "hmm/transition-model.h"
namespace kaldi {
namespace nnet3 {
// The Decodable objects that we define in this header do the neural net
// computation in a way that's compatible with online feature extraction. It
// differs from the one declared in online-nnet3-decodable-simple.h because it
// uses the 'looped' network evaluation, which is more efficient because it
// re-uses hidden activations (and therefore doesn't have to pad chunks of data
// with extra left-context); it is applicable to TDNNs and to forwards-recurrent
// topologies like LSTMs, but not tobackwards-recurrent topologies such as
// BLSTMs.
// The options are passed in the same way as in decodable-simple-looped.h,
// we use the same options and info class.
// This object is used as a base class for DecodableNnetLoopedOnline
// and DecodableAmNnetLoopedOnline.
// It takes care of the neural net computation and computations related to how
// many frames are ready (etc.), but it does not override the LogLikelihood() or
// NumIndices() functions so it is not usable as an object of type
// DecodableInterface.
class DecodableNnetLoopedOnlineBase: public DecodableInterface {
public:
// Constructor. 'input_feature' is for the feature that will be given
// as 'input' to the neural network; 'ivector_feature' is for the iVector
// feature, or NULL if iVectors are not being used.
DecodableNnetLoopedOnlineBase(const DecodableNnetSimpleLoopedInfo &info,
OnlineFeatureInterface *input_features,
OnlineFeatureInterface *ivector_features);
// note: the LogLikelihood function is not overridden; the child
// class needs to do this.
//virtual BaseFloat LogLikelihood(int32 subsampled_frame, int32 index);
// note: the frame argument is on the output of the network, i.e. after any
// subsampling, so we call it 'subsampled_frame'.
virtual bool IsLastFrame(int32 subsampled_frame) const;
virtual int32 NumFramesReady() const;
// Note: this function, present in the base-class, is overridden by the child class.
// virtual int32 NumIndices() const;
// this is not part of the standard Decodable interface but I think is needed for
// something.
int32 FrameSubsamplingFactor() const {
return info_.opts.frame_subsampling_factor;
}
/// Sets the frame offset value. Frame offset is initialized to 0 when the
/// decodable object is constructed and stays as 0 unless this method is
/// called. This method is useful when we want to reset the decoder state,
/// i.e. call decoder.InitDecoding(), but we want to keep using the same
/// decodable object, e.g. in case of an endpoint. The frame offset affects
/// the behavior of IsLastFrame(), NumFramesReady() and LogLikelihood()
/// methods.
void SetFrameOffset(int32 frame_offset);
/// Returns the frame offset value.
int32 GetFrameOffset() const { return frame_offset_; }
protected:
/// If the neural-network outputs for this frame are not cached, this function
/// computes them (and possibly also some later frames). Note:
/// the frame-index is called 'subsampled_frame' because if frame-subsampling-factor
/// is not 1, it's an index that is "after subsampling", i.e. it changes more
/// slowly than the input-feature index.
inline void EnsureFrameIsComputed(int32 subsampled_frame) {
KALDI_ASSERT(subsampled_frame >= current_log_post_subsampled_offset_ &&
"Frames must be accessed in order.");
while (subsampled_frame >= current_log_post_subsampled_offset_ +
current_log_post_.NumRows())
AdvanceChunk();
}
// The current log-posteriors that we got from the last time we
// ran the computation.
Matrix<BaseFloat> current_log_post_;
// The number of chunks we have computed so far.
int32 num_chunks_computed_;
// The time-offset of the current log-posteriors, equals
// (num_chunks_computed_ - 1) *
// (info_.frames_per_chunk_ / info_.opts_.frame_subsampling_factor).
int32 current_log_post_subsampled_offset_;
const DecodableNnetSimpleLoopedInfo &info_;
// IsLastFrame(), NumFramesReady() and LogLikelihood() methods take into
// account this offset value. We initialize frame_offset_ as 0 and it stays as
// 0 unless SetFrameOffset() method is called.
int32 frame_offset_;
private:
// This function does the computation for the next chunk. It will change
// current_log_post_ and current_log_post_subsampled_offset_, and
// increment num_chunks_computed_.
void AdvanceChunk();
OnlineFeatureInterface *input_features_;
OnlineFeatureInterface *ivector_features_;
NnetComputer computer_;
KALDI_DISALLOW_COPY_AND_ASSIGN(DecodableNnetLoopedOnlineBase);
};
// This decodable object takes indexes of the form (pdf_id + 1),
// or whatever the output-dimension of the neural network represents,
// plus one.
// It fully implements DecodableInterface.
// Note: whether or not division by the prior takes place depends on
// whether you supplied class AmNnetSimple (or just Nnet), to the constructor
// of the DecodableNnetSimpleLoopedInfo that you initailized this
// with.
class DecodableNnetLoopedOnline: public DecodableNnetLoopedOnlineBase {
public:
DecodableNnetLoopedOnline(
const DecodableNnetSimpleLoopedInfo &info,
OnlineFeatureInterface *input_features,
OnlineFeatureInterface *ivector_features):
DecodableNnetLoopedOnlineBase(info, input_features, ivector_features) { }
// returns the output-dim of the neural net.
virtual int32 NumIndices() const { return info_.output_dim; }
// 'subsampled_frame' is a frame, but if frame-subsampling-factor != 1, it's a
// reduced-rate output frame (e.g. a 't' index divided by 3). 'index'
// represents the pdf-id (or other output of the network) PLUS ONE.
virtual BaseFloat LogLikelihood(int32 subsampled_frame, int32 index);
private:
KALDI_DISALLOW_COPY_AND_ASSIGN(DecodableNnetLoopedOnline);
};
// This is for traditional decoding where the graph has transition-ids
// on the arcs, and you need the TransitionModel to map those to
// pdf-ids.
// Note: whether or not division by the prior takes place depends on
// whether you supplied class AmNnetSimple (or just Nnet), to the constructor
// of the DecodableNnetSimpleLoopedInfo that you initailized this
// with.
class DecodableAmNnetLoopedOnline: public DecodableNnetLoopedOnlineBase {
public:
DecodableAmNnetLoopedOnline(
const TransitionModel &trans_model,
const DecodableNnetSimpleLoopedInfo &info,
OnlineFeatureInterface *input_features,
OnlineFeatureInterface *ivector_features):
DecodableNnetLoopedOnlineBase(info, input_features, ivector_features),
trans_model_(trans_model) { }
// returns the output-dim of the neural net.
virtual int32 NumIndices() const { return trans_model_.NumTransitionIds(); }
// 'subsampled_frame' is a frame, but if frame-subsampling-factor != 1, it's a
// reduced-rate output frame (e.g. a 't' index divided by 3).
virtual BaseFloat LogLikelihood(int32 subsampled_frame,
int32 transition_id);
private:
const TransitionModel &trans_model_;
KALDI_DISALLOW_COPY_AND_ASSIGN(DecodableAmNnetLoopedOnline);
};
} // namespace nnet3
} // namespace kaldi
#endif // KALDI_NNET3_DECODABLE_ONLINE_LOOPED_H_