decodable-simple-looped.cc
9.86 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
// nnet3/decodable-simple-looped.cc
// Copyright 2016 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "nnet3/decodable-simple-looped.h"
#include "nnet3/nnet-utils.h"
#include "nnet3/nnet-compile-looped.h"
namespace kaldi {
namespace nnet3 {
DecodableNnetSimpleLoopedInfo::DecodableNnetSimpleLoopedInfo(
const NnetSimpleLoopedComputationOptions &opts,
Nnet *nnet):
opts(opts), nnet(*nnet) {
Init(opts, nnet);
}
DecodableNnetSimpleLoopedInfo::DecodableNnetSimpleLoopedInfo(
const NnetSimpleLoopedComputationOptions &opts,
const Vector<BaseFloat> &priors,
Nnet *nnet):
opts(opts), nnet(*nnet), log_priors(priors) {
if (log_priors.Dim() != 0)
log_priors.ApplyLog();
Init(opts, nnet);
}
DecodableNnetSimpleLoopedInfo::DecodableNnetSimpleLoopedInfo(
const NnetSimpleLoopedComputationOptions &opts,
AmNnetSimple *am_nnet):
opts(opts), nnet(am_nnet->GetNnet()), log_priors(am_nnet->Priors()) {
if (log_priors.Dim() != 0)
log_priors.ApplyLog();
Init(opts, &(am_nnet->GetNnet()));
}
void DecodableNnetSimpleLoopedInfo::Init(
const NnetSimpleLoopedComputationOptions &opts,
Nnet *nnet) {
opts.Check();
KALDI_ASSERT(IsSimpleNnet(*nnet));
has_ivectors = (nnet->InputDim("ivector") > 0);
int32 left_context, right_context;
int32 extra_right_context = 0;
ComputeSimpleNnetContext(*nnet, &left_context, &right_context);
frames_left_context = left_context + opts.extra_left_context_initial;
frames_right_context = right_context + extra_right_context;
frames_per_chunk = GetChunkSize(*nnet, opts.frame_subsampling_factor,
opts.frames_per_chunk);
output_dim = nnet->OutputDim("output");
KALDI_ASSERT(output_dim > 0);
// note, ivector_period is hardcoded to the same as frames_per_chunk_.
int32 ivector_period = frames_per_chunk;
if (has_ivectors)
ModifyNnetIvectorPeriod(ivector_period, nnet);
int32 num_sequences = 1; // we're processing one utterance at a time.
CreateLoopedComputationRequest(*nnet, frames_per_chunk,
opts.frame_subsampling_factor,
ivector_period,
frames_left_context,
frames_right_context,
num_sequences,
&request1, &request2, &request3);
CompileLooped(*nnet, opts.optimize_config, request1, request2, request3,
&computation);
computation.ComputeCudaIndexes();
KALDI_VLOG(3) << "Computation is:\n"
<< NnetComputationPrintInserter{computation, *nnet};
}
DecodableNnetSimpleLooped::DecodableNnetSimpleLooped(
const DecodableNnetSimpleLoopedInfo &info,
const MatrixBase<BaseFloat> &feats,
const VectorBase<BaseFloat> *ivector,
const MatrixBase<BaseFloat> *online_ivectors,
int32 online_ivector_period):
info_(info),
computer_(info_.opts.compute_config, info_.computation,
info_.nnet, NULL), // NULL is 'nnet_to_update'
feats_(feats),
ivector_(ivector), online_ivector_feats_(online_ivectors),
online_ivector_period_(online_ivector_period),
num_chunks_computed_(0),
current_log_post_subsampled_offset_(-1) {
num_subsampled_frames_ =
(feats_.NumRows() + info_.opts.frame_subsampling_factor - 1) /
info_.opts.frame_subsampling_factor;
KALDI_ASSERT(!(ivector != NULL && online_ivectors != NULL));
KALDI_ASSERT(!(online_ivectors != NULL && online_ivector_period <= 0 &&
"You need to set the --online-ivector-period option!"));
}
void DecodableNnetSimpleLooped::GetOutputForFrame(
int32 subsampled_frame, VectorBase<BaseFloat> *output) {
KALDI_ASSERT(subsampled_frame >= current_log_post_subsampled_offset_ &&
"Frames must be accessed in order.");
while (subsampled_frame >= current_log_post_subsampled_offset_ +
current_log_post_.NumRows())
AdvanceChunk();
output->CopyFromVec(current_log_post_.Row(
subsampled_frame - current_log_post_subsampled_offset_));
}
int32 DecodableNnetSimpleLooped::GetIvectorDim() const {
if (ivector_ != NULL)
return ivector_->Dim();
else if (online_ivector_feats_ != NULL)
return online_ivector_feats_->NumCols();
else
return 0;
}
void DecodableNnetSimpleLooped::AdvanceChunk() {
int32 begin_input_frame, end_input_frame;
if (num_chunks_computed_ == 0) {
begin_input_frame = -info_.frames_left_context;
// note: end is last plus one.
end_input_frame = info_.frames_per_chunk + info_.frames_right_context;
} else {
begin_input_frame = num_chunks_computed_ * info_.frames_per_chunk +
info_.frames_right_context;
end_input_frame = begin_input_frame + info_.frames_per_chunk;
}
CuMatrix<BaseFloat> feats_chunk(end_input_frame - begin_input_frame,
feats_.NumCols(), kUndefined);
int32 num_features = feats_.NumRows();
if (begin_input_frame >= 0 && end_input_frame <= num_features) {
SubMatrix<BaseFloat> this_feats(feats_,
begin_input_frame,
end_input_frame - begin_input_frame,
0, feats_.NumCols());
feats_chunk.CopyFromMat(this_feats);
} else {
Matrix<BaseFloat> this_feats(end_input_frame - begin_input_frame,
feats_.NumCols());
for (int32 r = begin_input_frame; r < end_input_frame; r++) {
int32 input_frame = r;
if (input_frame < 0) input_frame = 0;
if (input_frame >= num_features) input_frame = num_features - 1;
this_feats.Row(r - begin_input_frame).CopyFromVec(
feats_.Row(input_frame));
}
feats_chunk.CopyFromMat(this_feats);
}
computer_.AcceptInput("input", &feats_chunk);
if (info_.has_ivectors) {
KALDI_ASSERT(info_.request1.inputs.size() == 2);
// all but the 1st chunk should have 1 iVector, but no need
// to assume this.
int32 num_ivectors = (num_chunks_computed_ == 0 ?
info_.request1.inputs[1].indexes.size() :
info_.request2.inputs[1].indexes.size());
KALDI_ASSERT(num_ivectors > 0);
Vector<BaseFloat> ivector;
// we just get the iVector from the last input frame we needed...
// we don't bother trying to be 'accurate' in getting the iVectors
// for their 'correct' frames, because in general using the
// iVector from as large 't' as possible will be better.
GetCurrentIvector(end_input_frame, &ivector);
Matrix<BaseFloat> ivectors(num_ivectors,
ivector.Dim());
ivectors.CopyRowsFromVec(ivector);
CuMatrix<BaseFloat> cu_ivectors(ivectors);
computer_.AcceptInput("ivector", &cu_ivectors);
}
computer_.Run();
{
// Note: it's possible in theory that if you had weird recurrence that went
// directly from the output, the call to GetOutputDestructive() would cause
// a crash on the next chunk. If that happens, GetOutput() should be used
// instead of GetOutputDestructive(). But we don't anticipate this will
// happen in practice.
CuMatrix<BaseFloat> output;
computer_.GetOutputDestructive("output", &output);
if (info_.log_priors.Dim() != 0) {
// subtract log-prior (divide by prior)
output.AddVecToRows(-1.0, info_.log_priors);
}
// apply the acoustic scale
output.Scale(info_.opts.acoustic_scale);
current_log_post_.Resize(0, 0);
current_log_post_.Swap(&output);
}
KALDI_ASSERT(current_log_post_.NumRows() == info_.frames_per_chunk /
info_.opts.frame_subsampling_factor &&
current_log_post_.NumCols() == info_.output_dim);
num_chunks_computed_++;
current_log_post_subsampled_offset_ =
(num_chunks_computed_ - 1) *
(info_.frames_per_chunk / info_.opts.frame_subsampling_factor);
}
void DecodableNnetSimpleLooped::GetCurrentIvector(int32 input_frame,
Vector<BaseFloat> *ivector) {
if (!info_.has_ivectors)
return;
if (ivector_ != NULL) {
*ivector = *ivector_;
return;
} else if (online_ivector_feats_ == NULL) {
KALDI_ERR << "Neural net expects iVectors but none provided.";
}
KALDI_ASSERT(online_ivector_period_ > 0);
int32 ivector_frame = input_frame / online_ivector_period_;
KALDI_ASSERT(ivector_frame >= 0);
if (ivector_frame >= online_ivector_feats_->NumRows())
ivector_frame = online_ivector_feats_->NumRows() - 1;
KALDI_ASSERT(ivector_frame >= 0 && "ivector matrix cannot be empty.");
*ivector = online_ivector_feats_->Row(ivector_frame);
}
DecodableAmNnetSimpleLooped::DecodableAmNnetSimpleLooped(
const DecodableNnetSimpleLoopedInfo &info,
const TransitionModel &trans_model,
const MatrixBase<BaseFloat> &feats,
const VectorBase<BaseFloat> *ivector,
const MatrixBase<BaseFloat> *online_ivectors,
int32 online_ivector_period):
decodable_nnet_(info, feats, ivector, online_ivectors, online_ivector_period),
trans_model_(trans_model) { }
BaseFloat DecodableAmNnetSimpleLooped::LogLikelihood(int32 frame,
int32 transition_id) {
int32 pdf_id = trans_model_.TransitionIdToPdfFast(transition_id);
return decodable_nnet_.GetOutput(frame, pdf_id);
}
} // namespace nnet3
} // namespace kaldi