discriminative-training.cc 23.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
// nnet3/discriminative-training.cc

// Copyright      2012-2015    Johns Hopkins University (author: Daniel Povey)
// Copyright      2014-2015    Vimal Manohar

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include "nnet3/discriminative-training.h"
#include "lat/lattice-functions.h"
#include "cudamatrix/cu-matrix.h"

namespace kaldi {
namespace discriminative {

DiscriminativeObjectiveInfo::DiscriminativeObjectiveInfo() {
  std::memset(this, 0, sizeof(*this));
}

DiscriminativeObjectiveInfo::DiscriminativeObjectiveInfo(int32 num_pdfs) :
  accumulate_gradients(false),
  accumulate_output(false),
  num_pdfs(num_pdfs) {
  gradients.Resize(num_pdfs);
  output.Resize(num_pdfs);
  Reset();
}

// Constructor from config structure
DiscriminativeObjectiveInfo::DiscriminativeObjectiveInfo(
    const DiscriminativeOptions &opts) :
  accumulate_gradients(opts.accumulate_gradients),
  accumulate_output(opts.accumulate_output),
  num_pdfs(opts.num_pdfs) {
  gradients.Resize(opts.num_pdfs);
  output.Resize(opts.num_pdfs);
  Reset();
}

// Reset statistics
void DiscriminativeObjectiveInfo::Reset() {
  gradients.SetZero();
  output.SetZero();

  tot_t = 0.0;
  tot_t_weighted = 0.0;
  tot_objf = 0.0;
  tot_num_count = 0.0;
  tot_den_count = 0.0;
  tot_num_objf = 0.0;
  tot_l2_term = 0.0;
}

void DiscriminativeObjectiveInfo::Configure(const DiscriminativeOptions &opts) {
  accumulate_gradients = opts.accumulate_gradients;
  accumulate_output = opts.accumulate_output;
  num_pdfs = opts.num_pdfs;
  gradients.Resize(opts.num_pdfs);
  output.Resize(opts.num_pdfs);
}

// This class is responsible for the forward-backward of the
// 'supervision' lattices and computation of the objective function
// and gradients.
//
// note: the supervision.weight is ignored by this class, you have to apply
// it externally.
class DiscriminativeComputation {
  typedef Lattice::Arc Arc;
  typedef Arc::StateId StateId;

 public:
  // Initialize the objcect.  Note: we expect the 'nnet_output' to have the
  // same number of rows as supervision.num_frames * supervision.num_sequences,
  // and the same number of columns as tmodel.NumPdfs(); but the
  // ordering of the rows of 'nnet_output' is not the same as the ordering of
  // frames in paths in the 'supervision' object (which has all frames of the
  // 1st sequence first, then the 2nd sequence, and so on).  Instead, the
  // frames in 'nnet_output' are ordered as: first the first frame of each
  // sequence, then the second frame of each sequence, and so on.
  // This is done to be similar to the setup in 'chain' training
  // even though this does not offer any computational advantages here
  // as in the 'chain' case.
  DiscriminativeComputation(const DiscriminativeOptions &opts,
      const TransitionModel &tmodel,
      const CuVectorBase<BaseFloat> &log_priors,
      const DiscriminativeSupervision &supervision,
      const CuMatrixBase<BaseFloat> &nnet_output,
      DiscriminativeObjectiveInfo *stats,
      CuMatrixBase<BaseFloat> *nnet_output_deriv,
      CuMatrixBase<BaseFloat> *xent_output_deriv);

  // Does the forward-backward computation and add the derivative of the
  // w.r.t. the nnet output (log-prob) times supervision_.weight times
  // deriv_weight to 'nnet_output_deriv'.
  void Compute();

 private:
  const DiscriminativeOptions &opts_;
  const TransitionModel &tmodel_;

  // Vector of log-priors of pdfs.
  // This can be a size zero vector e.g. for 'chain' model
  const CuVectorBase<BaseFloat> &log_priors_;

  const DiscriminativeSupervision &supervision_;

  // The neural net output.
  const CuMatrixBase<BaseFloat> &nnet_output_;

  // Training stats including accumulated objective function, gradient
  // and total weight. Optionally the nnet_output and gradients per pdf can be
  // accumulated for debugging purposes.
  DiscriminativeObjectiveInfo *stats_;

  // If non-NULL, derivative w.r.t. to nnet_output is written here.
  CuMatrixBase<BaseFloat> *nnet_output_deriv_;

  // If non-NULL, then the xent objective derivative
  // (which equals a posterior from the numerator forward-backward, scaled by
  // the supervision weight) is written to here.
  // This will be used in the cross-entropy regularization code.
  CuMatrixBase<BaseFloat> *xent_output_deriv_;

  // Denominator lattice.
  Lattice den_lat_;

  // List of silence phones. Useful to treat silence phones
  // differently in computing SMBR / MPFE objectives.
  std::vector<int32> silence_phones_;

  // The function that actually computes the objective and gradients
  double ComputeObjfAndDeriv(Posterior *post, Posterior *xent_post);

  // This function looks up the nnet output the pdf-ids in the
  // denominator lattice and the alignment in the case of "mmi" objective
  // using the CuMatrix::Lookup() and stores them in "answers"
  void LookupNnetOutput(std::vector<Int32Pair> *requested_indexes,
                        std::vector<BaseFloat> *answers) const ;

  // Converts the answers looked up by LookupNnetOutput function into
  // log-likelihoods scaled by acoustic scale.
  void ConvertAnswersToLogLike(
      const std::vector<Int32Pair>& requested_indexes,
      std::vector<BaseFloat> *answers) const;

  // Does acoustic rescoring of lattice to put the negative (scaled) acoustic
  // log-likelihoods in the arcs of the lattice. Returns the number of
  // indexes of log-likelihoods read from the "answers" vector.
  static size_t LatticeAcousticRescore(const std::vector<BaseFloat> &answers,
                                size_t index,
                                Lattice *lat);

  // Process the derivative stored as posteriors into CuMatrix.
  // Optionally accumulate numerator and denominator posteriors.
  void ProcessPosteriors(const Posterior &post,
                         CuMatrixBase<BaseFloat> *output_deriv_temp,
                         double *tot_num_post = NULL,
                         double *tot_den_post = NULL) const;

  static inline Int32Pair MakePair(int32 first, int32 second) {
    Int32Pair ans;
    ans.first = first;
    ans.second = second;
    return ans;
  }
};

DiscriminativeComputation::DiscriminativeComputation(
                            const DiscriminativeOptions &opts,
                            const TransitionModel &tmodel,
                            const CuVectorBase<BaseFloat> &log_priors,
                            const DiscriminativeSupervision &supervision,
                            const CuMatrixBase<BaseFloat> &nnet_output,
                            DiscriminativeObjectiveInfo *stats,
                            CuMatrixBase<BaseFloat> *nnet_output_deriv,
                            CuMatrixBase<BaseFloat> *xent_output_deriv)
  : opts_(opts), tmodel_(tmodel), log_priors_(log_priors),
  supervision_(supervision), nnet_output_(nnet_output),
  stats_(stats),
  nnet_output_deriv_(nnet_output_deriv),
  xent_output_deriv_(xent_output_deriv) {

  den_lat_ = supervision.den_lat;
  TopSort(&den_lat_);

  if (!SplitStringToIntegers(opts_.silence_phones_str, ":", false,
                             &silence_phones_)) {
    KALDI_ERR << "Bad value for --silence-phones option: "
              << opts_.silence_phones_str;
  }
}

void DiscriminativeComputation::LookupNnetOutput(
    std::vector<Int32Pair> *requested_indexes,
    std::vector<BaseFloat> *answers) const {
  BaseFloat wiggle_room = 1.3; // value not critical.. it's just 'reserve'

  int32 num_frames = supervision_.frames_per_sequence * supervision_.num_sequences;
  int32 num_pdfs = tmodel_.NumPdfs();

  int32 num_reserve = wiggle_room * den_lat_.NumStates();

  if (opts_.criterion == "mmi") {
    // For looking up the posteriors corresponding to the pdfs in the alignment
    num_reserve += num_frames;
  }

  requested_indexes->reserve(num_reserve);

  // Denominator probabilities to look up from denominator lattice
  std::vector<int32> state_times;
  int32 T = LatticeStateTimes(den_lat_, &state_times);
  KALDI_ASSERT(T == num_frames);

  StateId num_states = den_lat_.NumStates();
  for (StateId s = 0; s < num_states; s++) {
    int32 t = state_times[s];
    int32 seq = t / supervision_.frames_per_sequence,
          idx = t % supervision_.frames_per_sequence;

    for (fst::ArcIterator<Lattice> aiter(den_lat_, s); !aiter.Done(); aiter.Next()) {
      const Arc &arc = aiter.Value();
      if (arc.ilabel != 0) { // input-side has transition-ids, output-side empty
        int32 tid = arc.ilabel, pdf_id = tmodel_.TransitionIdToPdf(tid);
        // The ordering of the indexes is similar to that in chain models
        requested_indexes->push_back(MakePair(idx * supervision_.num_sequences + seq, pdf_id));
      }
    }
  }

  if (opts_.criterion == "mmi") {
    // Numerator probabilities to look up from alignment
    for (int32 t = 0; t < num_frames; t++) {
      int32 seq = t / supervision_.frames_per_sequence,
            idx = t % supervision_.frames_per_sequence;
      int32 tid = supervision_.num_ali[t],
                  pdf_id = tmodel_.TransitionIdToPdf(tid);
      KALDI_ASSERT(pdf_id >= 0 && pdf_id < num_pdfs);
      requested_indexes->push_back(MakePair(idx * supervision_.num_sequences + seq, pdf_id));
    }
  }

  CuArray<Int32Pair> cu_requested_indexes(*requested_indexes);
  answers->resize(requested_indexes->size());
  nnet_output_.Lookup(cu_requested_indexes, &((*answers)[0]));
  // requested_indexes now contain (t, j) pair and answers contains the
  // neural network output, which is log p(j|x(t)) for CE models
}

void DiscriminativeComputation::ConvertAnswersToLogLike(
    const std::vector<Int32Pair>& requested_indexes,
    std::vector<BaseFloat> *answers) const {
  int32 num_floored = 0;

  BaseFloat floor_val = -20 * kaldi::Log(10.0); // floor for posteriors.
  size_t index;

  Vector<BaseFloat> log_priors(log_priors_);

  // Replace "answers" with the vector of scaled log-probs.  If this step takes
  // too much time, we can look at other ways to do it, using the CUDA card.
  for (index = 0; index < answers->size(); index++) {
    BaseFloat log_post = (*answers)[index];
    if (log_post < floor_val) {
      // TODO: this might not be required for 'chain' models
      log_post = floor_val;
      num_floored++;
    }

    if (log_priors_.Dim() > 0) {
      int32 pdf_id = requested_indexes[index].second;
      KALDI_ASSERT(log_post <= 0 && log_priors(pdf_id) <= 0);
      BaseFloat pseudo_loglike = (log_post - log_priors(pdf_id))
                                  * opts_.acoustic_scale;
      KALDI_ASSERT(!KALDI_ISINF(pseudo_loglike) && !KALDI_ISNAN(pseudo_loglike));
      (*answers)[index] = pseudo_loglike;
    } else {
      (*answers)[index] = log_post * opts_.acoustic_scale;
    }
  }

  if (num_floored > 0) {
    KALDI_WARN << "Floored " << num_floored << " probabilities from nnet.";
  }
}

size_t DiscriminativeComputation::LatticeAcousticRescore(
    const std::vector<BaseFloat> &answers,
    size_t index, Lattice *lat) {
  int32 num_states = lat->NumStates();

  for (StateId s = 0; s < num_states; s++) {
    for (fst::MutableArcIterator<Lattice> aiter(lat, s);
         !aiter.Done(); aiter.Next()) {
      Arc arc = aiter.Value();
      if (arc.ilabel != 0) { // input-side has transition-ids, output-side empty
        arc.weight.SetValue2(-answers[index]);
        index++;
        aiter.SetValue(arc);
      }
    }
    LatticeWeight final = lat->Final(s);
    if (final != LatticeWeight::Zero()) {
      final.SetValue2(0.0); // make sure no acoustic term in final-prob.
      lat->SetFinal(s, final);
    }
  }

  // Number of indexes of log-likes used to rescore lattice
  return index;
}

void DiscriminativeComputation::ProcessPosteriors(
                                const Posterior &post,
                                CuMatrixBase<BaseFloat> *output_deriv_temp,
                                double *tot_num_post,
                                double *tot_den_post) const {
  std::vector<Int32Pair> deriv_indexes;
  std::vector<BaseFloat> deriv_data;
  for (size_t t = 0; t < post.size(); t++) {
    for (size_t j = 0; j < post[t].size(); j++) {
      int32 seq = t / supervision_.frames_per_sequence,
            idx = t % supervision_.frames_per_sequence;
      int32 pdf_id = post[t][j].first;

      // Same ordering as for 'chain' models
      deriv_indexes.push_back(MakePair(idx * supervision_.num_sequences + seq, pdf_id));

      BaseFloat weight = post[t][j].second;
      if (tot_num_post && weight > 0.0) *tot_num_post += weight;
      if (tot_den_post && weight < 0.0) *tot_den_post -= weight;
      deriv_data.push_back(weight);
    }
  }
  CuArray<Int32Pair> cu_deriv_indexes(deriv_indexes);
  output_deriv_temp->AddElements(supervision_.weight, cu_deriv_indexes,
                                 deriv_data.data());
}

void DiscriminativeComputation::Compute() {
  if (opts_.criterion == "mmi" && opts_.boost != 0.0) {
    BaseFloat max_silence_error = 0.0;
    LatticeBoost(tmodel_, supervision_.num_ali, silence_phones_,
                 opts_.boost, max_silence_error, &den_lat_);
  }

  int32 num_frames = supervision_.frames_per_sequence * supervision_.num_sequences;

  int32 num_pdfs = nnet_output_.NumCols();
  KALDI_ASSERT(log_priors_.Dim() == 0 || num_pdfs == log_priors_.Dim());

  // We need to look up the nnet output for some pdf-ids.
  // Rather than looking them all up using operator (), which is
  // very slow because each lookup involves a separate CUDA call with
  // communication over PciExpress, we look them up all at once using
  // CuMatrix::Lookup().
  std::vector<BaseFloat> answers;
  std::vector<Int32Pair> requested_indexes;

  LookupNnetOutput(&requested_indexes, &answers);

  ConvertAnswersToLogLike(requested_indexes, &answers);

  size_t index = 0;

  // Now put the negative (scaled) acoustic log-likelihoods in the lattice.
  index = LatticeAcousticRescore(answers, index, &den_lat_);
  // index is now the number of indexes of log-likes used to rescore lattice.
  // This is required to further lookup answers for computing "mmi"
  // numerator score.

  // Get statistics for this minibatch
  DiscriminativeObjectiveInfo this_stats;
  if (stats_) {
    this_stats = *stats_;
    this_stats.Reset();
  }

  // Look up numerator probabilities corresponding to alignment
  if (opts_.criterion == "mmi") {
    double tot_num_like = 0.0;
    KALDI_ASSERT(index + supervision_.num_ali.size() == answers.size());
    for (size_t this_index = 0; this_index < supervision_.num_ali.size(); this_index++) {
      tot_num_like += answers[index + this_index];
    }
    this_stats.tot_num_objf += supervision_.weight * tot_num_like;
    index += supervision_.num_ali.size();
  }

  KALDI_ASSERT(index == answers.size());

  if (nnet_output_deriv_) {
    nnet_output_deriv_->SetZero();
    KALDI_ASSERT(nnet_output_deriv_->NumRows() == nnet_output_.NumRows() &&
        nnet_output_deriv_->NumCols() == nnet_output_.NumCols());
  }

  if (xent_output_deriv_) {
    xent_output_deriv_->SetZero();
    KALDI_ASSERT(xent_output_deriv_->NumRows() == nnet_output_.NumRows() &&
        xent_output_deriv_->NumCols() == nnet_output_.NumCols());
  }

  Posterior post;
  Posterior xent_post;
  double objf = ComputeObjfAndDeriv(&post,
                (xent_output_deriv_ ? &xent_post : NULL));

  this_stats.tot_objf += supervision_.weight * objf;

  KALDI_ASSERT(nnet_output_.NumRows() == post.size());

  CuMatrix<BaseFloat> output_deriv;

  CuMatrixBase<BaseFloat> *output_deriv_temp;

  if (nnet_output_deriv_)
    output_deriv_temp = nnet_output_deriv_;
  else {
    // This is for accumulating the statistics
    output_deriv.Resize(nnet_output_.NumRows(), nnet_output_.NumCols());
    output_deriv_temp = &output_deriv;
  }

  double tot_num_post = 0.0, tot_den_post = 0.0;
  {
    ProcessPosteriors(post, output_deriv_temp,
                             &tot_num_post, &tot_den_post);
  }

  if (xent_output_deriv_) {
    ProcessPosteriors(xent_post, xent_output_deriv_, NULL, NULL);
  }

  this_stats.tot_den_count += tot_den_post;
  this_stats.tot_num_count += tot_num_post;

  if (this_stats.AccumulateGradients())
    (this_stats.gradients).AddRowSumMat(1.0, CuMatrix<double>(*output_deriv_temp));

  if (this_stats.AccumulateOutput()) {
    CuMatrix<double> temp(nnet_output_);
    temp.ApplyExp();
    (this_stats.output).AddRowSumMat(1.0, temp);
  }

  this_stats.tot_t = num_frames;
  this_stats.tot_t_weighted = num_frames * supervision_.weight;

  if (!(this_stats.TotalObjf(opts_.criterion) ==
        this_stats.TotalObjf(opts_.criterion))) {
    // inf or NaN detected
    if (nnet_output_deriv_)
      nnet_output_deriv_->SetZero();
    BaseFloat default_objf = -10;
    KALDI_WARN << "Objective function is "
               << this_stats.TotalObjf(opts_.criterion)
               << ", setting to " << default_objf << " per frame.";
    this_stats.tot_objf = default_objf * this_stats.tot_t_weighted;
  }

  if (GetVerboseLevel() >= 2) {
    if (GetVerboseLevel() >= 3) {
      this_stats.PrintAll(opts_.criterion);
    } else
      this_stats.Print(opts_.criterion);
  }

  // This code helps us see how big the derivatives are, on average,
  // for different frames of the sequences.  As expected, they are
  // smaller towards the edges of the sequences (due to the penalization
  // of 'incorrect' pdf-ids.
  if (nnet_output_deriv_ && GetVerboseLevel() >= 1) {
    int32 tot_frames = nnet_output_deriv_->NumRows(),
 frames_per_sequence = supervision_.frames_per_sequence,
       num_sequences = supervision_.num_sequences;
    CuVector<BaseFloat> row_products(tot_frames);
    row_products.AddDiagMat2(1.0, *nnet_output_deriv_, kNoTrans, 0.0);
    Vector<BaseFloat> row_products_cpu(row_products);
    Vector<BaseFloat> row_products_per_frame(frames_per_sequence);
    for (int32 i = 0; i < tot_frames; i++)
      row_products_per_frame(i / num_sequences) += row_products_cpu(i);
    KALDI_LOG << "Derivs per frame are " << row_products_per_frame;
  }

  if (opts_.l2_regularize != 0.0) {
    // compute the l2 penalty term and its derivative
    BaseFloat scale = supervision_.weight * opts_.l2_regularize;
    this_stats.tot_l2_term += -0.5 * scale * TraceMatMat(nnet_output_, nnet_output_, kTrans);
    if (nnet_output_deriv_)
      nnet_output_deriv_->AddMat(-1.0 * scale, nnet_output_);
  }

  if (stats_)
    stats_->Add(this_stats);

}

double DiscriminativeComputation::ComputeObjfAndDeriv(Posterior *post,
                                                      Posterior *xent_post) {

  if (xent_post) {
    Posterior tid_post;
    // Compute posterior from the numerator alignment
    AlignmentToPosterior(supervision_.num_ali, &tid_post);
    ConvertPosteriorToPdfs(tmodel_, tid_post, xent_post);
  }

  if (opts_.criterion == "mpfe" || opts_.criterion == "smbr") {
    Posterior tid_post;
    double ans = LatticeForwardBackwardMpeVariants(tmodel_, silence_phones_,
        den_lat_,
        supervision_.num_ali, opts_.criterion,
        opts_.one_silence_class,
        &tid_post);
    ConvertPosteriorToPdfs(tmodel_, tid_post, post);
    return ans;
  } else if (opts_.criterion == "mmi") {
    bool convert_to_pdfs = true, cancel = true;
    // we'll return the denominator-lattice forward backward likelihood,
    // which is one term in the objective function.
    return (LatticeForwardBackwardMmi(tmodel_, den_lat_, supervision_.num_ali,
                                      opts_.drop_frames, convert_to_pdfs,
                                      cancel, post));
  } else {
    KALDI_ERR << "Unknown criterion " << opts_.criterion;
  }

  return 0;
}


void ComputeDiscriminativeObjfAndDeriv(const DiscriminativeOptions &opts,
                                       const TransitionModel &tmodel,
                                       const CuVectorBase<BaseFloat> &log_priors,
                                       const DiscriminativeSupervision &supervision,
                                       const CuMatrixBase<BaseFloat> &nnet_output,
                                       DiscriminativeObjectiveInfo *stats,
                                       CuMatrixBase<BaseFloat> *nnet_output_deriv,
                                       CuMatrixBase<BaseFloat> *xent_output_deriv) {
  DiscriminativeComputation computation(opts, tmodel, log_priors, supervision,
                                        nnet_output, stats,
                                        nnet_output_deriv, xent_output_deriv);
  computation.Compute();
}

void DiscriminativeObjectiveInfo::Add(const DiscriminativeObjectiveInfo &other) {
  tot_t += other.tot_t;
  tot_t_weighted += other.tot_t_weighted;
  tot_objf += other.tot_objf;             // Actually tot_den_objf for mmi
  tot_num_count += other.tot_num_count;
  tot_den_count += other.tot_den_count;
  tot_num_objf += other.tot_num_objf;     // Only for mmi
  tot_l2_term += other.tot_l2_term;

  if (AccumulateGradients()) {
    gradients.AddVec(1.0, other.gradients);
  }
  if (AccumulateOutput()) {
    output.AddVec(1.0, other.output);
  }
}

void DiscriminativeObjectiveInfo::Print(const std::string &criterion,
                                        bool print_avg_gradients,
                                        bool print_avg_output) const {
  if (criterion == "mmi") {
    double num_objf = tot_num_objf / tot_t_weighted,
           den_objf = tot_objf / tot_t_weighted;
    double objf = num_objf - den_objf;

    double avg_post_per_frame = tot_num_count / tot_t_weighted;

    KALDI_LOG << "Number of frames is " << tot_t
              << " (weighted: " << tot_t_weighted
              << "), average (num or den) posterior per frame is "
              << avg_post_per_frame;
    KALDI_LOG << "MMI objective function is " << num_objf << " - "
              << den_objf << " = " << objf << " per frame, over "
              << tot_t_weighted << " frames.";
  } else if (criterion == "mpfe") {
    double avg_gradients = (tot_num_count + tot_den_count) / tot_t_weighted;
    double objf = tot_objf / tot_t_weighted;
    KALDI_LOG << "Average num+den count of MPFE stats is " << avg_gradients
              << " per frame, over "
              << tot_t_weighted << " frames";
    KALDI_LOG << "MPFE objective function is " << objf
              << " per frame, over " << tot_t_weighted << " frames.";
  } else if (criterion == "smbr") {
    double avg_gradients = (tot_num_count + tot_den_count) / tot_t_weighted;
    double objf = tot_objf / tot_t_weighted;
    KALDI_LOG << "Average num+den count of SMBR stats is " << avg_gradients
              << " per frame, over "
              << tot_t_weighted << " frames";
    KALDI_LOG << "SMBR objective function is " << objf
              << " per frame, over " << tot_t_weighted << " frames.";
  }

  if (AccumulateGradients()) {
    Vector<double> temp(gradients);
    temp.Scale(1.0/tot_t_weighted);
    if (print_avg_gradients) {
      KALDI_LOG << "Vector of average gradients wrt output activations is: \n" << temp;
    } else {
      KALDI_VLOG(4) << "Vector of average gradients wrt output activations is: \n" << temp;
    }
  }
  if (AccumulateOutput()) {
    Vector<double> temp(output);
    temp.Scale(1.0/tot_t_weighted);
    if (print_avg_output) {
      KALDI_LOG << "Average DNN output is: \n" << temp;
    } else {
      KALDI_VLOG(4) << "Average DNN output is: \n" << temp;
    }
  }
}

void DiscriminativeObjectiveInfo::PrintAvgGradientForPdf(int32 pdf_id) const {
  if (pdf_id < gradients.Dim() && pdf_id >= 0) {
    KALDI_LOG << "Average gradient wrt output activations of pdf " << pdf_id
              << " is " << gradients(pdf_id) / tot_t_weighted
              << " per frame, over "
              << tot_t_weighted << " frames";
  }
}



}  // namespace discriminative
}  // namespace kaldi