nnet-analyze.cc
63.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
// nnet3/nnet-analyze.cc
// Copyright 2015 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "nnet3/nnet-analyze.h"
namespace kaldi {
namespace nnet3 {
void ComputationVariables::ComputeSplitPoints(
const NnetComputation &computation) {
// note, these numbers are only valid if you include the empty zero-indexed
// matrix/submatrix as a matrix.
int32 num_matrices = computation.matrices.size(),
num_submatrices = computation.submatrices.size();
row_split_points_.resize(num_matrices);
column_split_points_.resize(num_matrices);
KALDI_ASSERT(computation.submatrices[0].num_rows == 0);
for (int32 submatrix_index = 1;
submatrix_index < num_submatrices;
submatrix_index++) {
const NnetComputation::SubMatrixInfo &s =
computation.submatrices[submatrix_index];
row_split_points_[s.matrix_index].push_back(s.row_offset);
row_split_points_[s.matrix_index].push_back(s.row_offset + s.num_rows);
column_split_points_[s.matrix_index].push_back(s.col_offset);
column_split_points_[s.matrix_index].push_back(s.col_offset + s.num_cols);
}
for (int32 matrix_index = 1; matrix_index < num_matrices; matrix_index++) {
// Because it's possible for matrices not to have any submatrices (after
// pruning), we need to make sure that the beginning and end dimensions are
// in the split points.
column_split_points_[matrix_index].push_back(0);
column_split_points_[matrix_index].push_back(
computation.matrices[matrix_index].num_cols);
row_split_points_[matrix_index].push_back(0);
row_split_points_[matrix_index].push_back(
computation.matrices[matrix_index].num_rows);
SortAndUniq(&(column_split_points_[matrix_index]));
SortAndUniq(&(row_split_points_[matrix_index]));
}
// note: the last split point of each matrix doesn't get its own variable index.
matrix_to_variable_index_.resize(num_matrices + 1);
matrix_to_variable_index_[0] = 0;
matrix_to_variable_index_[1] = 0;
for (int32 matrix_index = 1; matrix_index < num_matrices; matrix_index++) {
int32 num_row_variables = row_split_points_[matrix_index].size() - 1,
num_column_variables = column_split_points_[matrix_index].size() - 1,
num_variables = num_row_variables * num_column_variables;
KALDI_ASSERT(num_variables >= 1);
matrix_to_variable_index_[matrix_index+1] =
matrix_to_variable_index_[matrix_index] + num_variables;
}
num_variables_ = matrix_to_variable_index_.back();
}
//static
int32 ComputationVariables::FindIndexOf(const std::vector<int32> &vec, int32 i) {
// std::lower_bound does a binary search -> faster than std::find.
std::vector<int32>::const_iterator iter = std::lower_bound(
vec.begin(), vec.end(), i);
KALDI_ASSERT(*iter == i);
return iter - vec.begin();
}
void ComputationVariables::ComputeVariablesForSubmatrix(
const NnetComputation &computation) {
// note, these numbers are only valid if you include the empty zero-indexed
// matrix/submatrix as a matrix.
int32 num_submatrices = computation.submatrices.size();
variables_for_submatrix_.resize(num_submatrices);
submatrix_is_whole_matrix_.resize(num_submatrices, false);
submatrix_to_matrix_.resize(num_submatrices);
submatrix_to_matrix_[0] = 0;
for (int32 submatrix_index = 1;
submatrix_index < num_submatrices;
submatrix_index++) {
const NnetComputation::SubMatrixInfo &s =
computation.submatrices[submatrix_index];
int32 matrix_index = s.matrix_index;
submatrix_to_matrix_[submatrix_index] = matrix_index;
int32 start_col = s.col_offset, end_col = start_col + s.num_cols,
start_row = s.row_offset, end_row = start_row + s.num_rows;
int32 row_start = FindIndexOf(row_split_points_[matrix_index], start_row),
row_end = FindIndexOf(row_split_points_[matrix_index], end_row),
col_start = FindIndexOf(column_split_points_[matrix_index], start_col),
col_end = FindIndexOf(column_split_points_[matrix_index], end_col),
num_column_variables = column_split_points_[matrix_index].size() - 1,
num_row_variables = row_split_points_[matrix_index].size() - 1,
matrix_start_variable = matrix_to_variable_index_[matrix_index];
KALDI_ASSERT(row_end > row_start && col_end > col_start &&
col_end <= num_column_variables);
std::vector<int32> &variables = variables_for_submatrix_[submatrix_index];
for (int32 r = row_start; r < row_end; r++)
for (int32 c = col_start; c < col_end; c++)
variables.push_back(matrix_start_variable + r*num_column_variables + c);
if (row_start == 0 && row_end == num_row_variables &&
col_start == 0 && col_end == num_column_variables)
submatrix_is_whole_matrix_[submatrix_index] = true;
}
}
void ComputationVariables::ComputeVariableToMatrix() {
variable_to_matrix_.clear();
variable_to_matrix_.resize(NumVariables());
int32 num_matrices = matrix_to_variable_index_.size() - 1;
for (int32 matrix_index = 1; matrix_index < num_matrices; matrix_index++) {
int32 start_variable = matrix_to_variable_index_[matrix_index],
end_variable = matrix_to_variable_index_[matrix_index + 1];
for (int32 i = start_variable; i < end_variable; i++)
variable_to_matrix_[i] = matrix_index;
}
}
void ComputationVariables::Init(const NnetComputation &computation) {
// don't call this twice on the same object..
KALDI_ASSERT(row_split_points_.empty());
ComputeSplitPoints(computation);
ComputeVariablesForSubmatrix(computation);
ComputeVariableToMatrix();
}
int32 ComputationVariables::GetMatrixForVariable(int32 variable) const {
KALDI_ASSERT(static_cast<size_t>(variable) < variable_to_matrix_.size());
return variable_to_matrix_[variable];
}
void ComputationVariables::AppendVariablesForSubmatrix(
int32 submatrix_index,
std::vector<int32> *variable_indexes) const {
KALDI_ASSERT(static_cast<size_t>(submatrix_index) <
variables_for_submatrix_.size());
variable_indexes->insert(variable_indexes->end(),
variables_for_submatrix_[submatrix_index].begin(),
variables_for_submatrix_[submatrix_index].end());
}
void ComputationVariables::AppendVariablesForMatrix(
int32 matrix_index,
std::vector<int32> *variable_indexes) const {
KALDI_ASSERT(static_cast<size_t>(matrix_index + 1) <
matrix_to_variable_index_.size());
int32 start = matrix_to_variable_index_[matrix_index],
end = matrix_to_variable_index_[matrix_index + 1];
variable_indexes->reserve(variable_indexes->size() + end - start);
for (int32 variable_index = start; variable_index < end; variable_index++)
variable_indexes->push_back(variable_index);
}
void ComputationVariables::RecordAccessForSubmatrix(
int32 submatrix_index,
AccessType access_type,
CommandAttributes *ca) const {
if (submatrix_index == 0)
return;
KALDI_ASSERT(static_cast<size_t>(submatrix_index) <
submatrix_to_matrix_.size());
int32 matrix_index = submatrix_to_matrix_[submatrix_index];
bool is_whole_matrix = submatrix_is_whole_matrix_[submatrix_index];
switch (access_type) {
case kReadAccess:
AppendVariablesForSubmatrix(submatrix_index,
&(ca->variables_read));
ca->matrices_read.push_back(matrix_index);
ca->submatrices_read.push_back(submatrix_index);
break;
case kWriteAccess:
AppendVariablesForSubmatrix(submatrix_index,
&(ca->variables_written));
ca->submatrices_written.push_back(submatrix_index);
ca->matrices_written.push_back(matrix_index);
// if submatrix does not span the full row range of the matrix,
// a write operation has to be considered a read/write operation
// on the underlying matrix
if (!is_whole_matrix)
ca->matrices_read.push_back(matrix_index);
break;
case kReadWriteAccess:
AppendVariablesForSubmatrix(submatrix_index,
&(ca->variables_written));
AppendVariablesForSubmatrix(submatrix_index,
&(ca->variables_read));
ca->submatrices_written.push_back(submatrix_index);
ca->submatrices_read.push_back(submatrix_index);
ca->matrices_written.push_back(matrix_index);
ca->matrices_read.push_back(matrix_index);
}
}
std::string ComputationVariables::DescribeVariable(int32 variable) const {
KALDI_ASSERT(variable >= 0 && variable < num_variables_);
int32 matrix_index = variable_to_matrix_[variable],
offset = variable - matrix_to_variable_index_[matrix_index],
num_column_variables = column_split_points_[matrix_index].size() - 1,
num_row_variables = row_split_points_[matrix_index].size() - 1,
column_variable = offset % num_column_variables,
row_variable = offset / num_column_variables;
KALDI_ASSERT(column_variable >= 0 && row_variable >= 0 &&
row_variable < num_row_variables &&
column_variable < num_column_variables);
std::ostringstream os;
os << 'm' << matrix_index;
if (num_row_variables != 1 || num_column_variables != 1) {
os << '(';
if (num_row_variables == 1) {
os << ':';
} else {
os << row_split_points_[matrix_index][row_variable] << ':'
<< row_split_points_[matrix_index][row_variable+1] - 1;
}
os << ',';
if (num_column_variables == 1) {
os << ':';
} else {
os << column_split_points_[matrix_index][column_variable] << ':'
<< column_split_points_[matrix_index][column_variable+1] - 1;
}
os << ')';
}
return os.str();
}
NnetComputation::SubMatrixInfo ComputationVariables::VariableInfo(
int32 variable) const {
KALDI_ASSERT(variable >= 0 && variable < num_variables_);
int32 matrix_index = variable_to_matrix_[variable],
offset = variable - matrix_to_variable_index_[matrix_index],
num_column_variables = column_split_points_[matrix_index].size() - 1,
column_variable = offset % num_column_variables,
row_variable = offset / num_column_variables;
int32 row_offset = row_split_points_[matrix_index][row_variable],
num_rows = row_split_points_[matrix_index][row_variable+1] - row_offset,
col_offset = column_split_points_[matrix_index][column_variable],
num_cols = column_split_points_[matrix_index][column_variable+1] -
col_offset;
return NnetComputation::SubMatrixInfo(matrix_index, row_offset, num_rows,
col_offset, num_cols);
}
/// given a vector of pairs from computation.indexes_multi_indexes
/// containing paris (submatrix-index, row-index), this function outputs
/// to "submatrix_indexes" all (unique) submatrix indexes that appear;
/// and it outputs to "contains_null_marker" true if the pair (-1, -1)
/// appears anywhere in indexes_multi, and false otherwise.
static void IndexesMultiToSubmatrixIndexes(
const std::vector<std::pair<int32, int32> > &indexes_multi,
std::vector<int32> *submatrix_indexes) {
submatrix_indexes->clear();
std::vector<std::pair<int32, int32> >::const_iterator
iter = indexes_multi.begin(), end = indexes_multi.end();
int32 cur_submatrix_index = -1; // an optimization.
for (; iter != end; ++iter) {
int32 submatrix_index = iter->first;
if (submatrix_index != -1 && submatrix_index != cur_submatrix_index) {
cur_submatrix_index = submatrix_index;
submatrix_indexes->push_back(submatrix_index);
}
}
SortAndUniq(submatrix_indexes);
}
void ComputeCommandAttributes(
const Nnet &nnet,
const NnetComputation &computation,
const ComputationVariables &vars,
std::vector<CommandAttributes> *attributes) {
int32 num_commands = computation.commands.size();
attributes->clear();
attributes->resize(num_commands);
for (int32 command_index = 0; command_index < num_commands; command_index++) {
const NnetComputation::Command &c = computation.commands[command_index];
CommandAttributes &attr = (*attributes)[command_index];
switch (c.command_type) {
case kAllocMatrix:
case kDeallocMatrix:
case kSwapMatrix:
break; // the commands above leave the matrix undefined.
case kSetConst:
vars.RecordAccessForSubmatrix(c.arg1, kWriteAccess, &attr);
break;
case kPropagate:
vars.RecordAccessForSubmatrix(c.arg3, kReadAccess, &attr);
if (nnet.GetComponent(c.arg1)->Properties() & kPropagateAdds)
vars.RecordAccessForSubmatrix(c.arg4, kReadWriteAccess, &attr);
else
vars.RecordAccessForSubmatrix(c.arg4, kWriteAccess, &attr);
break;
case kBackprop:
case kBackpropNoModelUpdate:
vars.RecordAccessForSubmatrix(c.arg3, kReadAccess, &attr);
vars.RecordAccessForSubmatrix(c.arg4, kReadAccess, &attr);
vars.RecordAccessForSubmatrix(c.arg5, kReadAccess, &attr);
if (nnet.GetComponent(c.arg1)->Properties() & kBackpropAdds)
vars.RecordAccessForSubmatrix(c.arg6, kReadWriteAccess, &attr);
else
vars.RecordAccessForSubmatrix(c.arg6, kWriteAccess, &attr);
if (c.command_type == kBackprop &&
nnet.GetComponent(c.arg1)->Properties() & kUpdatableComponent)
attr.has_side_effects = true;
break;
case kMatrixCopy:
vars.RecordAccessForSubmatrix(c.arg1, kWriteAccess, &attr);
vars.RecordAccessForSubmatrix(c.arg2, kReadAccess, &attr);
break;
case kMatrixAdd:
vars.RecordAccessForSubmatrix(c.arg1, kReadWriteAccess, &attr);
vars.RecordAccessForSubmatrix(c.arg2, kReadAccess, &attr);
break;
case kAddRows:
vars.RecordAccessForSubmatrix(c.arg1, kReadWriteAccess, &attr);
vars.RecordAccessForSubmatrix(c.arg2, kReadAccess, &attr);
break;
case kCopyRows: {
const std::vector<int32> &indexes = computation.indexes[c.arg3];
// if there are -1's in "indexes", then the result of the operation
// will depend on the initial value of the matrix, so it's
// a "rw" operation, not a "write" operation.
if (std::count(indexes.begin(), indexes.end(), -1) > 0)
vars.RecordAccessForSubmatrix(c.arg1, kReadWriteAccess, &attr);
else
vars.RecordAccessForSubmatrix(c.arg1, kWriteAccess, &attr);
vars.RecordAccessForSubmatrix(c.arg2, kReadAccess, &attr);
break;
}
case kAddRowsMulti: {
vars.RecordAccessForSubmatrix(c.arg1, kReadWriteAccess, &attr);
std::vector<int32> submatrix_indexes;
IndexesMultiToSubmatrixIndexes(computation.indexes_multi[c.arg2],
&submatrix_indexes);
for (size_t i = 0; i < submatrix_indexes.size(); i++)
vars.RecordAccessForSubmatrix(submatrix_indexes[i],
kReadAccess, &attr);
break;
}
case kCopyRowsMulti: {
std::vector<int32> submatrix_indexes;
IndexesMultiToSubmatrixIndexes(computation.indexes_multi[c.arg2],
&submatrix_indexes);
// note: the CopyRows command assigns zero in cases where
// there is no source for some row
vars.RecordAccessForSubmatrix(c.arg1, kWriteAccess, &attr);
for (size_t i = 0; i < submatrix_indexes.size(); i++)
vars.RecordAccessForSubmatrix(submatrix_indexes[i],
kReadAccess, &attr);
break;
}
case kAddToRowsMulti:
case kCopyToRowsMulti: {
vars.RecordAccessForSubmatrix(c.arg1, kReadAccess, &attr);
// if the submatrixes we're writing to (in kCopyToRowsMulti) had all
// rows covered, it would be a pure write operation.
std::vector<int32> submatrix_indexes;
IndexesMultiToSubmatrixIndexes(computation.indexes_multi[c.arg2],
&submatrix_indexes);
for (size_t i = 0; i < submatrix_indexes.size(); i++)
vars.RecordAccessForSubmatrix(submatrix_indexes[i], kReadWriteAccess,
&attr);
break;
}
case kAddRowRanges: {
vars.RecordAccessForSubmatrix(c.arg1, kReadWriteAccess, &attr);
vars.RecordAccessForSubmatrix(c.arg2, kReadAccess, &attr);
break;
}
case kCompressMatrix: {
vars.RecordAccessForSubmatrix(c.arg1, kReadWriteAccess, &attr);
break;
}
case kDecompressMatrix: {
vars.RecordAccessForSubmatrix(c.arg1, kWriteAccess, &attr);
break;
}
case kAcceptInput: {
vars.RecordAccessForSubmatrix(c.arg1, kWriteAccess, &attr);
break;
}
case kProvideOutput: {
vars.RecordAccessForSubmatrix(c.arg1, kReadAccess, &attr);
break;
}
case kNoOperation:
case kNoOperationPermanent:
case kNoOperationMarker:
case kNoOperationLabel:
case kGotoLabel:
break;
default:
KALDI_ERR << "Unknown command type.";
}
SortAndUniq(&attr.variables_read);
SortAndUniq(&attr.variables_written);
SortAndUniq(&attr.submatrices_read);
SortAndUniq(&attr.submatrices_written);
SortAndUniq(&attr.matrices_read);
SortAndUniq(&attr.matrices_written);
}
}
void ComputeVariableAccesses(
const ComputationVariables &variables,
const std::vector<CommandAttributes> &command_attributes,
std::vector<std::vector<Access> > *variable_accesses) {
int32 num_variables = variables.NumVariables(),
num_commands = command_attributes.size();
variable_accesses->clear();
variable_accesses->resize(num_variables);
for (int32 c = 0; c < num_commands; c++) {
const CommandAttributes &attr = command_attributes[c];
KALDI_ASSERT(IsSortedAndUniq(attr.variables_read));
KALDI_ASSERT(IsSortedAndUniq(attr.variables_written));
std::vector<int32> all_variables;
all_variables.reserve(attr.variables_read.size() +
attr.variables_written.size());
all_variables.insert(all_variables.end(), attr.variables_read.begin(),
attr.variables_read.end());
all_variables.insert(all_variables.end(), attr.variables_written.begin(),
attr.variables_written.end());
SortAndUniq(&all_variables);
std::vector<int32>::const_iterator iter = all_variables.begin(),
end = all_variables.end();
for (; iter != end; ++iter) {
int32 variable_index = *iter;
bool is_read = std::binary_search(attr.variables_read.begin(),
attr.variables_read.end(),
variable_index),
is_written = (!is_read ? true :
std::binary_search(attr.variables_written.begin(),
attr.variables_written.end(),
variable_index));
if (is_read && is_written) {
(*variable_accesses)[variable_index].push_back(
Access(c, kReadWriteAccess));
} else if (is_read) {
(*variable_accesses)[variable_index].push_back(
Access(c, kReadAccess));
} else {
(*variable_accesses)[variable_index].push_back(
Access(c, kWriteAccess));
}
}
}
}
void ComputeMatrixAccesses(
const Nnet &nnet,
const NnetComputation &computation,
const ComputationVariables &variables,
const std::vector<CommandAttributes> &command_attributes,
std::vector<MatrixAccesses> *matrix_accesses) {
int32 num_matrices = computation.matrices.size(),
num_commands = command_attributes.size();
matrix_accesses->clear();
matrix_accesses->resize(num_matrices);
for (int32 c = 0; c < num_commands; c++) {
const CommandAttributes &attr = command_attributes[c];
KALDI_ASSERT(IsSortedAndUniq(attr.matrices_read));
KALDI_ASSERT(IsSortedAndUniq(attr.matrices_written));
std::vector<int32> all_matrices;
all_matrices.reserve(attr.matrices_read.size() +
attr.matrices_written.size());
all_matrices.insert(all_matrices.end(), attr.matrices_read.begin(),
attr.matrices_read.end());
all_matrices.insert(all_matrices.end(), attr.matrices_written.begin(),
attr.matrices_written.end());
SortAndUniq(&all_matrices);
std::vector<int32>::const_iterator iter = all_matrices.begin(),
end = all_matrices.end();
for (; iter != end; ++iter) {
int32 matrix_index = *iter;
bool is_read = std::binary_search(attr.matrices_read.begin(),
attr.matrices_read.end(),
matrix_index),
is_written = (!is_read ? true :
std::binary_search(attr.matrices_written.begin(),
attr.matrices_written.end(),
matrix_index));
if (is_read && is_written) {
(*matrix_accesses)[matrix_index].accesses.push_back(
Access(c, kReadWriteAccess));
} else if (is_read) {
(*matrix_accesses)[matrix_index].accesses.push_back(
Access(c, kReadAccess));
} else {
(*matrix_accesses)[matrix_index].accesses.push_back(
Access(c, kWriteAccess));
}
}
// Now set up allocate_command, deallocate_command,
// is_input and is_output.
const NnetComputation::Command &command = computation.commands[c];
int32 matrix_index1, matrix_index2;
switch (command.command_type) {
case kAllocMatrix:
if (!computation.IsWholeMatrix(command.arg1))
KALDI_ERR << "Command does not operate on whole matrix";
matrix_index1 = computation.submatrices[command.arg1].matrix_index;
if ((*matrix_accesses)[matrix_index1].allocate_command != -1)
KALDI_ERR << "Matrix " << matrix_index1 << " initialized twice.";
(*matrix_accesses)[matrix_index1].allocate_command = c;
break;
case kSwapMatrix:
if (!computation.IsWholeMatrix(command.arg1))
KALDI_ERR << "Command does not operate on whole matrix";
matrix_index1 = computation.submatrices[command.arg1].matrix_index;
KALDI_ASSERT(computation.IsWholeMatrix(command.arg2));
matrix_index2 = computation.submatrices[command.arg2].matrix_index;
if ((*matrix_accesses)[matrix_index1].allocate_command != -1)
KALDI_ERR << "Matrix " << matrix_index1 << " initialized twice.";
(*matrix_accesses)[matrix_index1].allocate_command = c;
if ((*matrix_accesses)[matrix_index2].deallocate_command != -1)
KALDI_ERR << "Matrix " << matrix_index2 << " destroyed twice.";
(*matrix_accesses)[matrix_index2].deallocate_command = c;
break;
case kDeallocMatrix:
if (!computation.IsWholeMatrix(command.arg1))
KALDI_ERR << "Command does not operate on whole matrix";
matrix_index1 = computation.submatrices[command.arg1].matrix_index;
if ((*matrix_accesses)[matrix_index1].deallocate_command != -1)
KALDI_ERR << "Matrix " << matrix_index1 << " destroyed twice.";
(*matrix_accesses)[matrix_index1].deallocate_command = c;
break;
case kAcceptInput:
if (!computation.IsWholeMatrix(command.arg1))
KALDI_ERR << "Command does not operate on whole matrix";
matrix_index1 = computation.submatrices[command.arg1].matrix_index;
(*matrix_accesses)[matrix_index1].is_input = true;
// If a certain matrix is accepted as input multiple times, we
// count the first one as allocating it (the second will just
// allocate it again, which is harmless).
if ((*matrix_accesses)[matrix_index1].allocate_command == -1)
(*matrix_accesses)[matrix_index1].allocate_command = c;
break;
case kProvideOutput:
if (!computation.IsWholeMatrix(command.arg1))
KALDI_ERR << "Command does not operate on whole matrix";
matrix_index1 = computation.submatrices[command.arg1].matrix_index;
(*matrix_accesses)[matrix_index1].is_output = true;
break;
default:
;
}
}
}
ComputationChecker::ComputationChecker(
const CheckComputationOptions &config,
const Nnet &nnet,
const NnetComputation &computation):
config_(config), nnet_(nnet), computation_(computation) { }
void ComputationChecker::Check() {
CheckComputationIndexes();
a_.Init(nnet_, computation_);
CheckComputationMatrixAccesses();
CheckComputationCompression();
CheckComputationUndefined();
CheckComputationDebugInfo();
if (config_.check_rewrite)
CheckComputationRewrite();
}
/**
Checks for the situation where a read-only operation on a variable is
followed by an operation that writes to the variable. This should never
occur prior to optimization, but after certain optimization we in effect
"re-use" variables by doing things like propagate and backprop in-place, so
this check shouldn't be performed after optimization.
*/
void ComputationChecker::CheckComputationRewrite() const {
int32 num_variables = a_.variable_accesses.size();
for (int32 v = 0; v < num_variables; v++) {
const std::vector<Access> &accesses = a_.variable_accesses[v];
if (accesses.empty()) {
if (config_.check_unused_variables) {
KALDI_ERR << "Variable " << v << " = " << a_.variables.DescribeVariable(v)
<< " is never used.";
} else {
continue;
}
}
int32 num_accesses = accesses.size();
int32 first_pure_read = -1;
for (int32 access = 0; access < num_accesses; access++) {
if (accesses[access].access_type == kReadAccess) {
first_pure_read = access;
break;
}
}
if (first_pure_read != -1) {
for (int32 access = first_pure_read + 1;
access < num_accesses; access++) {
if (accesses[access].access_type != kReadAccess) {
KALDI_ERR << "Variable " << v << " = "
<< a_.variables.DescribeVariable(v)
<< " is modified after being read"
<< " (this is not expected before optimization)";
}
}
}
}
}
/**
Checks for the situation where a variable is read before being written.
*/
void ComputationChecker::CheckComputationUndefined() const {
// the variable 'min_proportion' needs to be <= the min_proportion_ value in
// class MatrixExtender, otherwise this code could spuriously reject a
// computation.
BaseFloat min_proportion = 0.8;
int32 num_variables = a_.variable_accesses.size();
for (int32 v = 0; v < num_variables; v++) {
const std::vector<Access> &accesses = a_.variable_accesses[v];
if (accesses.empty()) {
if (config_.check_unused_variables) {
NnetComputation::SubMatrixInfo info = a_.variables.VariableInfo(v);
const NnetComputation::MatrixInfo &matrix_info =
computation_.matrices[info.matrix_index];
// Before we throw an error, we want to check that it isn't a case that
// can be produced by the ExtendMatrices() optimization, that is
// actually allowed. This is a case when a variable is inside the last
// few rows of a matrix, but not all columns of those last rows.
if (info.row_offset >= min_proportion * matrix_info.num_rows &&
!(info.col_offset == 0 && info.num_cols == matrix_info.num_cols)) {
continue;
}
KALDI_ERR << "Variable " << v << " == "
<< a_.variables.DescribeVariable(v) << " is never used.";
}
} else {
// It's OK if part of a matrix is compressed, that is undefined;
// likely that part won't be referred to when we uncompress.
if (accesses[0].access_type != kWriteAccess &&
!(computation_.commands[accesses[0].command_index].command_type ==
kCompressMatrix))
KALDI_ERR << "Variable " << v << " == "
<< a_.variables.DescribeVariable(v)
<< " is read before it is written to";
}
}
}
/**
Checks that we never use variables before they are allocated or after they
are deallocated, and some other checks that can be done from the
MatrixAccesses.
*/
static bool computation_checker_warned_unused_input = false;
void ComputationChecker::CheckComputationMatrixAccesses() const {
int32 num_matrices = a_.matrix_accesses.size();
for (int32 matrix_index = 1; matrix_index < num_matrices; matrix_index++) {
const MatrixAccesses &accesses = a_.matrix_accesses[matrix_index];
if (accesses.allocate_command == -1)
KALDI_ERR << "Matrix m" << matrix_index << " is not initialized.";
if (accesses.accesses.empty()) {
KALDI_ERR << "Matrix m" << matrix_index << " is never accessed.";
} else if (accesses.accesses.front().command_index <
accesses.allocate_command) {
KALDI_ERR << "Matrix m" << matrix_index << " is accessed before "
"it is initialized";
}
if (accesses.accesses.size() == 1 && config_.check_unused_variables) {
int32 first_access_command = accesses.accesses[0].command_index;
if (computation_.commands[first_access_command].command_type == kSetConst) {
if (!config_.check_unused_variables)
KALDI_ERR << "Matrix m" << matrix_index << " is only set to a constant "
<< "value, but then never accessed.";
}
}
if (accesses.accesses.empty()) {
if (accesses.is_input) {
// we allow there to be no accesses if it is an input, e.g. if an
// output derivative is supplied for some reason but never used.
// We'll warn, though (once).
if (!computation_checker_warned_unused_input) {
KALDI_WARN << "Matrix m" << matrix_index << " is never accessed. "
"Allowing because it is an input (un-needed input or "
"derivative?) Will warn only once.";
computation_checker_warned_unused_input = true;
}
} else {
KALDI_ERR << "Matrix m" << matrix_index << " is never accessed.";
}
} else if (accesses.deallocate_command != -1 &&
accesses.accesses.back().command_index >=
accesses.deallocate_command) {
KALDI_ERR << "Matrix m" << matrix_index << " is accessed after "
"it is destroyed";
}
}
}
void ComputationChecker::CheckComputationCompression() const {
int32 num_matrices = a_.matrix_accesses.size();
// 'middle_command' will be the index of the command that separates
// the forward and backward passes.
int32 middle_command = -1;
for (size_t i = 0; i < computation_.commands.size(); i++) {
if (computation_.commands[i].command_type == kNoOperationMarker) {
middle_command = static_cast<int32>(i);
break;
}
}
for (int32 matrix_index = 1; matrix_index < num_matrices; matrix_index++) {
const MatrixAccesses &accesses = a_.matrix_accesses[matrix_index];
int32 num_accesses = accesses.accesses.size();
for (int32 a = 0; a < num_accesses; a++) {
const Access &access = accesses.accesses[a];
int32 command_index = access.command_index;
const NnetComputation::Command &command =
computation_.commands[command_index];
if (command.command_type == kDecompressMatrix) {
// check that the previous access to this matrix was a compression
// command.
KALDI_ASSERT(
a > 0 && computation_.commands[
accesses.accesses[a-1].command_index].command_type ==
kCompressMatrix);
}
if (command.command_type == kCompressMatrix) {
// check that the next access to this matrix is an uncompression
// command.
int32 next_command_index = accesses.accesses[a+1].command_index;
KALDI_ASSERT(computation_.commands[next_command_index].command_type ==
kDecompressMatrix &&
command_index < middle_command &&
next_command_index > middle_command);
if (command.alpha == 0.0) {
// alpha == 0.0 means we're only retaining the sign; we should
// only do this if this is the output of a ReLU.
// make sure there are only 2 commands after this: the uncompress
// command, and a relu backprop command. (Any deallocation
// command doesn't show up in the list of 'accesses').
KALDI_ASSERT(a > 0 && command.arg2 == kCompressedMatrixUint8 &&
num_accesses == a + 3);
// make sure the next access to that matrix, apart from the
// uncompression command, is a ReLU propagation.
int32 next_command_index = accesses.accesses[a+2].command_index;
const NnetComputation::Command &next_command =
computation_.commands[next_command_index];
KALDI_ASSERT(next_command.command_type == kBackprop &&
nnet_.GetComponent(next_command.arg1)->Type() ==
"RectifiedLinearComponent");
}
}
}
}
}
/**
This very basic check just makes sure that all indexes in the commands are
within range, that dimensions agree with the request, that row/column dimensions
agree with component dimensions.
*/
void ComputationChecker::CheckComputationIndexes() const {
int32 num_commands = computation_.commands.size(),
num_submatrices = computation_.submatrices.size();
const std::vector<NnetComputation::SubMatrixInfo> &submatrices =
computation_.submatrices;
// This maps from the memo-index > 0 to the Propagate command
// which created it. When the corresponding Backprop command
// is encountered, we delete the map element.
std::unordered_map<int32, int32> memo_to_command;
for (int32 command_index = 0; command_index < num_commands; command_index++) {
const NnetComputation::Command &c = computation_.commands[command_index];
switch (c.command_type) {
case kAllocMatrix:
case kDeallocMatrix:
if (c.arg1 < 1 || c.arg1 >= num_submatrices ||
!computation_.IsWholeMatrix(c.arg1))
KALDI_ERR << "submatrix index out of range or invalid";
break;
case kSetConst:
if (c.arg1 < 1 || c.arg1 >= num_submatrices)
KALDI_ERR << "submatrix index out of range or invalid";
break;
case kSwapMatrix:
if (c.arg1 < 1 || c.arg1 >= num_submatrices ||
!computation_.IsWholeMatrix(c.arg1) ||
c.arg2 < 1 || c.arg2 >= num_submatrices ||
!computation_.IsWholeMatrix(c.arg2))
KALDI_ERR << "submatrix index out of range or invalid";
if (computation_.submatrices[c.arg1].num_rows !=
computation_.submatrices[c.arg2].num_rows ||
computation_.submatrices[c.arg1].num_cols !=
computation_.submatrices[c.arg2].num_cols)
KALDI_ERR << "Dimension mismatch in kSwapMatrix command";
break;
case kPropagate: {
if (c.arg1 < 0 || c.arg1 >= nnet_.NumComponents())
KALDI_ERR << "Component index out of range";
const Component *component = nnet_.GetComponent(c.arg1);
int32 properties = component->Properties();
if (c.arg2 < 0 ||
c.arg2 > computation_.component_precomputed_indexes.size())
KALDI_ERR << "Precomputed-indexes index out of range";
if (c.arg2 != 0 && (properties & kSimpleComponent))
KALDI_ERR << "Precomputed-indexes index nonzero for simple component";
// note: input may be the empty matrix (in unusual circumstances, for non-simple
// components).
if (c.arg3 < 0 || c.arg3 >= num_submatrices ||
(c.arg3 == 0 && (properties & kSimpleComponent)) ||
c.arg4 < 1 || c.arg4 >= num_submatrices)
KALDI_ERR << "Sub-matrix indexes out of range.";
if (c.arg3 > 0 && submatrices[c.arg3].num_cols != component->InputDim())
KALDI_ERR << "Input-dim mismatch.";
if (submatrices[c.arg4].num_cols != component->OutputDim())
KALDI_ERR << "Input-dim mismatch.";
if ((properties & kSimpleComponent) &&
submatrices[c.arg3].num_rows !=
submatrices[c.arg4].num_rows)
KALDI_ERR << "Num-rows mismatch for simple component.";
if (!(properties & kPropagateInPlace) &&
c.arg3 == c.arg4)
KALDI_ERR << "In-place propagation not supported for this component";
if (c.arg5 > 0) {
KALDI_ASSERT(memo_to_command.count(c.arg5) == 0 &&
"Memo index re-used.");
memo_to_command[c.arg5] = command_index;
}
KALDI_ASSERT(c.arg6 == 0 || c.arg6 == 1);
break;
}
case kBackprop:
case kBackpropNoModelUpdate: {
if (c.arg1 < 0 || c.arg1 >= nnet_.NumComponents())
KALDI_ERR << "Component index in backprop invalid or out of range";
const Component *component = nnet_.GetComponent(c.arg1);
int32 properties = component->Properties();
if (c.arg2 < 0 ||
c.arg2 > computation_.component_precomputed_indexes.size())
KALDI_ERR << "Precomputed-indexes index out of range";
if (c.arg2 != 0 && (properties & kSimpleComponent))
KALDI_ERR << "Precomputed-indexes index nonzero for simple component";
// output-deriv (arg5) must be supplied; others could plausibly be zero.
if (c.arg3 < 0 || c.arg3 >= num_submatrices ||
c.arg4 < 0 || c.arg4 >= num_submatrices ||
c.arg5 < 1 || c.arg5 >= num_submatrices ||
c.arg6 < 0 || c.arg6 >= num_submatrices)
KALDI_ERR << "Submatrix index out of range for backprop.";
if ((properties & kBackpropNeedsInput) && c.arg3 == 0)
KALDI_ERR << "Backprop input needed but not supplied.";
if ((properties & kBackpropNeedsOutput) && c.arg4 == 0)
KALDI_ERR << "Backprop output needed but not supplied.";
if (c.arg6 == 0 && !(properties & kUpdatableComponent)) {
// note: we could perhaps make this just a warning,
// or optimize it away somehow.
KALDI_ERR << "Backprop is done but has no effect.";
}
if (c.arg5 == c.arg6 && !(properties & kBackpropInPlace))
KALDI_ERR << "In-place backprop used where not supported.";
if (c.arg3 != 0 &&
submatrices[c.arg3].num_cols != component->InputDim())
KALDI_ERR << "Input-dim mismatch in backprop.";
if (c.arg4 != 0 &&
submatrices[c.arg4].num_cols != component->OutputDim())
KALDI_ERR << "Output-dim mismatch in backprop.";
if (c.arg5 != 0 &&
submatrices[c.arg5].num_cols != component->OutputDim())
KALDI_ERR << "Output-dim mismatch in backprop.";
if (c.arg6 != 0 &&
submatrices[c.arg6].num_cols != component->InputDim())
KALDI_ERR << "Input-dim mismatch in backprop.";
// check num-rows consistency for input.
if (c.arg3 != 0 && c.arg6 != 0 &&
submatrices[c.arg3].num_rows != submatrices[c.arg6].num_rows)
KALDI_ERR << "Num-rows mismatch in backprop input";
// check num-rows consistency for output
if (c.arg4 != 0 &&
submatrices[c.arg4].num_rows != submatrices[c.arg5].num_rows)
KALDI_ERR << "Num-rows mismatch in backprop output";
if ((properties & kSimpleComponent) && c.arg6 != 0 &&
submatrices[c.arg5].num_rows != submatrices[c.arg6].num_rows)
KALDI_ERR << "Num-rows mismatch in backprop input vs output.";
if (c.arg7 != 0) {
KALDI_ASSERT(c.arg7 > 0);
if (memo_to_command.count(c.arg7) == 0)
KALDI_ERR << "Memo-index " << c.arg7 << " not used for propagate.";
int32 propagate_command = memo_to_command[c.arg7];
memo_to_command.erase(c.arg7);
if (c.arg1 != computation_.commands[propagate_command].arg1)
KALDI_ERR << "Mismatch in component-node for memo index";
if (!(properties & kUsesMemo))
KALDI_ERR << "Component not expected to use a memo.";
}
break;
}
case kMatrixCopy:
case kMatrixAdd:
if (c.arg1 < 1 || c.arg1 >= num_submatrices ||
c.arg2 < 1 || c.arg2 >= num_submatrices)
KALDI_ERR << "Submatrix indexes out of range in matrix copy/add";
if (submatrices[c.arg1].num_rows != submatrices[c.arg2].num_rows ||
submatrices[c.arg1].num_cols != submatrices[c.arg2].num_cols)
KALDI_ERR << "Submatrix indexes out of range in matrix copy/add";
if (c.arg1 == c.arg2) {
// we allow copying to itself if alpha != 1.0; this is how we
// implement scaling.
if (!(c.command_type == kMatrixCopy && c.alpha != 1.0)) {
KALDI_ERR << "Adding/copying to self";
}
}
break;
case kAddRows:
case kCopyRows: {
if (c.arg1 < 1 || c.arg1 >= num_submatrices ||
c.arg2 < 1 || c.arg2 >= num_submatrices ||
static_cast<size_t>(c.arg3) >= computation_.indexes.size())
KALDI_ERR << "Index out of range in add-rows/copy-rows command.";
const std::vector<int32> &indexes = computation_.indexes[c.arg3];
if (indexes.size() != static_cast<size_t>(submatrices[c.arg1].num_rows))
KALDI_ERR << "Indexes size mismatch in add-rows/copy-rows";
if (submatrices[c.arg1].num_cols != submatrices[c.arg2].num_cols)
KALDI_ERR << "Dimension mismatch in add-rows/copy-rows";
if (*std::max_element(indexes.begin(), indexes.end()) >=
submatrices[c.arg2].num_rows)
KALDI_ERR << "Row-index out of range in add-rows/copy-rows";
if (c.arg1 == c.arg2)
KALDI_ERR << "Copying to self in add-rows/copy-rows command.";
break;
}
case kAddRowsMulti:
case kCopyRowsMulti:
case kAddToRowsMulti:
case kCopyToRowsMulti: {
if (c.arg1 < 1 || c.arg1 >= num_submatrices ||
static_cast<size_t>(c.arg2) >= computation_.indexes_multi.size())
KALDI_ERR << "Index out of range in *-multi command";
const std::vector<std::pair<int32, int32> > pairs =
computation_.indexes_multi[c.arg2];
int32 num_rows = submatrices[c.arg1].num_rows,
num_cols = submatrices[c.arg1].num_cols;
if (pairs.size() != static_cast<size_t>(num_rows))
KALDI_ERR << "Indexes dimension mismatch in *-multi command";
std::vector<std::pair<int32, int32> >::const_iterator
iter = pairs.begin(), end = pairs.end();
for (; iter != end; ++iter) {
int32 submatrix_index = iter->first, row_index = iter->second;
if (submatrix_index == -1) {
if (row_index != -1)
KALDI_ERR << "Expected -1 row index if submatrix index is -1";
} else {
if (submatrix_index < 1 || submatrix_index >= num_submatrices)
KALDI_ERR << "Submatrix index out of range in indexes_multi";
if (row_index < 0 ||
row_index >= submatrices[submatrix_index].num_rows)
KALDI_ERR << "Row index out of range in indexes_multi";
if (submatrix_index == c.arg1)
KALDI_ERR << "Copying from self in *-multi command.";
if (submatrices[submatrix_index].num_cols != num_cols)
KALDI_ERR << "Mismatching dimension in *-multi command";
}
}
if (c.command_type == kAddToRowsMulti ||
c.command_type == kCopyToRowsMulti) {
// check for duplicates; these are not allowed in kAddToRowsMulti
// or kCopyToRowsMulti because they would necessitate extra work
// in CUDA kernels.
std::vector<std::pair<int32, int32> > pairs_copy(pairs);
std::sort(pairs_copy.begin(), pairs_copy.end());
std::vector<std::pair<int32, int32> >::const_iterator
iter = pairs_copy.begin(), end = pairs_copy.end(),
next_iter;
for (; iter != end; ++iter) {
next_iter = iter;
++next_iter;
if (next_iter != end && *iter == *next_iter &&
iter->first != -1) {
KALDI_ERR << "Duplicate element "
<< iter->first << ',' << iter->second << " found in "
<< "indexes for {add,copy}-to-rows-multi command.";
}
}
}
break;
}
case kAddRowRanges: {
if (c.arg1 < 1 || c.arg1 >= num_submatrices ||
c.arg2 < 1 || c.arg2 >= num_submatrices ||
static_cast<size_t>(c.arg3) >= computation_.indexes_ranges.size())
KALDI_ERR << "Index out of range in add-row-ranges command";
const std::vector<std::pair<int32, int32> > pairs =
computation_.indexes_ranges[c.arg3];
if (static_cast<size_t>(submatrices[c.arg1].num_rows) != pairs.size())
KALDI_ERR << "Num-rows mismatch in add-row-ranges command";
if (submatrices[c.arg1].num_cols != submatrices[c.arg2].num_cols)
KALDI_ERR << "Dimension mismatch in add-row-ranges command";
int32 src_num_rows = submatrices[c.arg2].num_rows;
std::vector<std::pair<int32, int32> >::const_iterator
iter = pairs.begin(), end = pairs.end();
for (; iter != end; ++iter) {
if (!((iter->first == -1 && iter->second == -1) ||
(iter->second > iter->first &&
iter->first >= 0 && iter->second <= src_num_rows)))
KALDI_ERR << "Row range " << iter->first << ',' << iter->second
<< " is invalid in add-row-ranges command.";
}
break;
}
case kCompressMatrix: {
if (c.arg1 < 1 || c.arg1 >= num_submatrices ||
!computation_.IsWholeMatrix(c.arg1))
KALDI_ERR << "submatrix index out of range or invalid";
if (c.arg2 < static_cast<int32>(kCompressedMatrixInt8) ||
c.arg2 > static_cast<int32>(kCompressedMatrixUint16))
KALDI_ERR << "Invalid compressed-matrix type.";
if (c.arg3 != 0 && c.arg3 != 1)
KALDI_ERR << "Invalid 'truncate' option for compressing matrix.";
if (c.alpha < 0.0 || c.alpha > 1000.0 ||
(c.alpha == 0.0 && c.arg2 != kCompressedMatrixUint8))
KALDI_ERR << "Invalid alpha in kCompressMatrix command.";
break;
}
case kDecompressMatrix: {
if (c.arg1 < 1 || c.arg1 >= num_submatrices ||
!computation_.IsWholeMatrix(c.arg1))
KALDI_ERR << "submatrix index out of range or invalid";
break;
}
case kAcceptInput: case kProvideOutput: {
if (c.arg1 < 1 || c.arg1 >= num_submatrices ||
!computation_.IsWholeMatrix(c.arg1))
KALDI_ERR << "submatrix index out of range or invalid";
// note: we may later change the following condition to allow component
// nodes. we allow it on output node because of derivatives.
if (!nnet_.IsInputNode(c.arg2) && !nnet_.IsOutputNode(c.arg2))
KALDI_ERR << "Invalid network node";
break;
}
case kNoOperation:
case kNoOperationPermanent:
case kNoOperationMarker:
case kNoOperationLabel:
break;
case kGotoLabel: {
int32 label_index = c.arg1;
if (label_index < 0 || label_index >= command_index ||
computation_.commands[label_index].command_type != kNoOperationLabel)
KALDI_ERR << "kGotoLabel command has invalid destination index.";
if (command_index + 1 != num_commands) {
KALDI_ERR << "kGotoLabel is not the last command in the computation";
}
break;
}
default:
KALDI_ERR << "Unknown command type.";
}
}
if (!memo_to_command.empty()) {
KALDI_ERR << "Memo was used in command "
<< memo_to_command.begin()->second
<< " but never consumed.";
}
}
void ComputationChecker::CheckComputationDebugInfo() const {
if (computation_.matrix_debug_info.empty()) return;
if (computation_.matrix_debug_info.size() !=
computation_.matrices.size())
KALDI_ERR << "Debug info has wrong size";
for (size_t i = 1; i < computation_.matrix_debug_info.size(); i++) {
if (computation_.matrix_debug_info[i].cindexes.size() !=
static_cast<size_t>(computation_.matrices[i].num_rows))
KALDI_ERR << "Debug info for matrix m" << i
<< " has wrong num-rows.";
std::vector<Cindex>::const_iterator
iter = computation_.matrix_debug_info[i].cindexes.begin(),
end = computation_.matrix_debug_info[i].cindexes.end();
for (; iter != end; ++iter) {
if (iter->second.n < 0) {
KALDI_ERR << "Negative n index in debug info";
}
}
}
}
// note: 'computation' is not a reference, it's copied so that we
// can modify it internally.
static void CheckComputationOnline(const Nnet &nnet,
NnetComputation computation,
bool check_rewrite) {
int32 num_commands = computation.commands.size();
KALDI_ASSERT(computation.commands[num_commands-1].command_type == kGotoLabel);
for (int32 c = num_commands - 2;
c >= 0 && computation.commands[c].command_type == kSwapMatrix;
c--) {
// this command can be interpreted as "initialize matrix referred to by
// c.arg2 with the matrix referred to by c.arg2".
// Because this would be interpreted by the analysis code as initializing a
// matrix that has already been initialized, we turn this into a command
// that just deallocates the matrix in c.arg2. [note: all these indexes
// are actually submatrix indexes].
computation.commands[c].command_type = kDeallocMatrix;
std::swap(computation.commands[c].arg1, computation.commands[c].arg2);
}
CheckComputationOptions opts;
opts.check_rewrite = check_rewrite;
opts.check_unused_variables = false;
// We can always do this check with online computations, since they do not
// have the RemoveUnnecessaryAllocation() optimization applied.
ComputationChecker checker(opts, nnet, computation);
checker.Check();
}
void CheckComputation(const Nnet &nnet,
const NnetComputation &computation,
bool check_rewrite) {
try {
if (!computation.commands.empty() &&
computation.commands.back().command_type == kGotoLabel) {
// Online computations need to be treated specially.
CheckComputationOnline(nnet, computation, check_rewrite);
} else {
CheckComputationOptions opts;
opts.check_rewrite = check_rewrite;
ComputationChecker checker(opts, nnet, computation);
checker.Check();
}
} catch (...) {
computation.Print(std::cerr, nnet);
KALDI_ERR << "Computation check failed for computation printed above "
"(actual error message is above computation)";
}
}
void ComputeMatrixToSubmatrix(
const NnetComputation &computation,
std::vector<std::vector<int32> > *mat_to_submat) {
int32 num_matrices = computation.matrices.size(),
num_submatrices = computation.submatrices.size();
mat_to_submat->clear();
mat_to_submat->resize(num_matrices);
for (int32 submatrix_index = 1;
submatrix_index < num_submatrices;
submatrix_index++) {
int32 matrix_index = computation.submatrices[submatrix_index].matrix_index;
KALDI_ASSERT(matrix_index > 0 && matrix_index < num_matrices);
(*mat_to_submat)[matrix_index].push_back(submatrix_index);
}
}
int32 ComputationAnalysis::FirstNontrivialAccess(int32 s) const {
KALDI_ASSERT(static_cast<size_t>(s) < computation_.submatrices.size() && s>0);
int32 ans = computation_.commands.size();
std::vector<int32> variable_indexes;
analyzer_.variables.AppendVariablesForSubmatrix(s, &variable_indexes);
std::vector<int32>::const_iterator iter = variable_indexes.begin(),
end = variable_indexes.end();
for (; iter != end; ++iter) {
int32 v = *iter;
const std::vector<Access> &accesses = analyzer_.variable_accesses[v];
std::vector<Access>::const_iterator access_iter = accesses.begin(),
access_end = accesses.end();
for (; access_iter != access_end; ++access_iter) {
int32 command_index = access_iter->command_index;
const NnetComputation::Command &command = computation_.commands[
command_index];
if (!(command.command_type == kSetConst &&
command.alpha == 0.0)) { // if it's not a zeroing command..
ans = std::min(ans, command_index);
break; // break from access_iter loop (an optimization)
}
}
}
return ans;
}
int32 ComputationAnalysis::FirstAccess(int32 s) const {
KALDI_ASSERT(static_cast<size_t>(s) < computation_.submatrices.size() && s>0);
int32 ans = computation_.commands.size();
std::vector<int32> variable_indexes;
analyzer_.variables.AppendVariablesForSubmatrix(s, &variable_indexes);
std::vector<int32>::const_iterator iter = variable_indexes.begin(),
end = variable_indexes.end();
for (; iter != end; ++iter) {
int32 v = *iter;
const std::vector<Access> &accesses = analyzer_.variable_accesses[v];
if (!accesses.empty())
ans = std::min(ans, accesses[0].command_index);
}
return ans;
}
int32 ComputationAnalysis::FirstNontrivialMatrixAccess(int32 m) const {
KALDI_ASSERT(static_cast<size_t>(m) < computation_.matrices.size() && m > 0);
int32 ans = computation_.commands.size();
const std::vector<Access> &accesses =
analyzer_.matrix_accesses[m].accesses;
std::vector<Access>::const_iterator access_iter = accesses.begin(),
access_end = accesses.end();
for (; access_iter != access_end; ++access_iter) {
int32 command_index = access_iter->command_index;
const NnetComputation::Command command =
computation_.commands[command_index];
if (!(command.command_type == kSetConst &&
command.alpha == 0.0)) { // except for zeroing commands..
ans = std::min(ans, command_index);
break; // break from access_iter loop (an optimization; note, the
// list 'accesses' is sorted.)
}
}
return ans;
}
int32 ComputationAnalysis::LastMatrixAccess(int32 m) const {
KALDI_ASSERT(static_cast<size_t>(m) < computation_.matrices.size() && m > 0);
int32 ans = -1;
const std::vector<Access> &accesses =
analyzer_.matrix_accesses[m].accesses;
std::vector<Access>::const_reverse_iterator access_iter = accesses.rbegin(),
access_end = accesses.rend();
for (; access_iter != access_end; ++access_iter) {
int32 command_index = access_iter->command_index;
ans = std::max(ans, command_index);
break; // break from access_iter loop (an optimization)
}
return ans;
}
int32 ComputationAnalysis::LastAccess(int32 s) const {
KALDI_ASSERT(static_cast<size_t>(s) < computation_.submatrices.size() && s>0);
int32 ans = -1;
std::vector<int32> variable_indexes;
analyzer_.variables.AppendVariablesForSubmatrix(s, &variable_indexes);
std::vector<int32>::const_iterator iter = variable_indexes.begin(),
end = variable_indexes.end();
for (; iter != end; ++iter) {
int32 v = *iter;
const std::vector<Access> &accesses = analyzer_.variable_accesses[v];
// Go through the variable accesses in reverse order (of command index)
std::vector<Access>::const_reverse_iterator access_iter = accesses.rbegin(),
access_end = accesses.rend();
for (; access_iter != access_end; ++access_iter) {
int32 command_index = access_iter->command_index;
CommandType command_type =
computation_.commands[command_index].command_type;
// deallocation command should not be listed here.
KALDI_ASSERT(command_type != kDeallocMatrix);
ans = std::max(ans, command_index);
break; // break from access_iter loop (an optimization)
}
}
return ans;
}
int32 ComputationAnalysis::LastWriteAccess(int32 s) const {
KALDI_ASSERT(static_cast<size_t>(s) < computation_.submatrices.size() && s>0);
int32 matrix_index = computation_.submatrices[s].matrix_index;
if (analyzer_.matrix_accesses[matrix_index].is_output)
return computation_.commands.size();
int32 ans = -1;
std::vector<int32> variable_indexes;
analyzer_.variables.AppendVariablesForSubmatrix(s, &variable_indexes);
std::vector<int32>::const_iterator iter = variable_indexes.begin(),
end = variable_indexes.end();
for (; iter != end; ++iter) {
int32 v = *iter;
const std::vector<Access> &accesses = analyzer_.variable_accesses[v];
// Go through the variable accesses in reverse order (of command index)
std::vector<Access>::const_reverse_iterator access_iter = accesses.rbegin(),
access_end = accesses.rend();
for (; access_iter != access_end; ++access_iter) {
int32 command_index = access_iter->command_index;
CommandType command_type =
computation_.commands[command_index].command_type;
// deallocation command should not be listed here.
KALDI_ASSERT(command_type != kDeallocMatrix);
if (access_iter->access_type != kReadAccess) {
// If this operation is of type kWriteAccess or kReadWriteAccess
ans = std::max(ans, command_index);
break; // break from access_iter loop (an optimization)
}
}
}
return ans;
}
int32 ComputationAnalysis::DataInvalidatedCommand(int32 c, int32 s) const {
KALDI_ASSERT(static_cast<size_t>(c) < computation_.commands.size());
KALDI_ASSERT(static_cast<size_t>(s) < computation_.submatrices.size() && s>0);
int32 matrix_index = computation_.submatrices[s].matrix_index;
int32 ans = analyzer_.matrix_accesses[matrix_index].deallocate_command;
if (ans == -1)
ans = static_cast<int32>(computation_.commands.size());
std::vector<int32> variable_indexes;
analyzer_.variables.AppendVariablesForSubmatrix(s, &variable_indexes);
std::vector<int32>::const_iterator iter = variable_indexes.begin(),
end = variable_indexes.end();
for (; iter != end; ++iter) {
int32 v = *iter;
const std::vector<Access> &accesses = analyzer_.variable_accesses[v];
std::vector<Access>::const_iterator access_iter = accesses.begin(),
access_end = accesses.end();
for (; access_iter != access_end; ++access_iter) {
int32 command_index = access_iter->command_index;
if (command_index > c &&
access_iter->access_type != kReadAccess) {
ans = std::min(ans, command_index);
}
}
}
return ans;
}
void PrintMatrixAccesses(std::ostream &os,
const std::vector<MatrixAccesses> &matrix_accesses) {
int32 num_matrices = matrix_accesses.size();
for (int32 m = 1; m < num_matrices; m++) {
const MatrixAccesses &a = matrix_accesses[m];
os << "m" << m << ": init-command=" << a.allocate_command
<< ", destroy-command=" << a.deallocate_command
<< ", accesses=";
std::vector<Access>::const_iterator iter = a.accesses.begin(),
end = a.accesses.end();
for (; iter != end; ++iter)
os << 'c' << iter->command_index << "("
<< (iter->access_type == kReadAccess ? "r" :
(iter->access_type == kWriteAccess ? "w" : "rw")) << ") ";
os << "\n";
}
}
void PrintCommandAttributes(std::ostream &os,
const std::vector<CommandAttributes> &attributes) {
int32 num_commands = attributes.size();
for (int32 c = 0; c < num_commands; c++) {
const CommandAttributes &this_attr = attributes[c];
os << "c" << c << ": ";
if (!this_attr.variables_read.empty()) {
os << "r(";
std::vector<int32>::const_iterator iter = this_attr.variables_read.begin(),
end = this_attr.variables_read.end();
for (; iter != end; ++iter) {
os << "v" << *iter;
if (iter+1 != end) os << ",";
}
os << ") ";
}
if (!this_attr.variables_written.empty()) {
os << "w(";
std::vector<int32>::const_iterator
iter = this_attr.variables_written.begin(),
end = this_attr.variables_written.end();
for (; iter != end; ++iter) {
os << "v" << *iter;
if (iter+1 != end) os << ",";
}
os << ") ";
}
if (!this_attr.matrices_read.empty()) {
os << "r(";
std::vector<int32>::const_iterator iter = this_attr.matrices_read.begin(),
end = this_attr.matrices_read.end();
for (; iter != end; ++iter) {
os << "m" << *iter;
if (iter+1 != end) os << ",";
}
os << ") ";
}
if (!this_attr.matrices_written.empty()) {
os << "w(";
std::vector<int32>::const_iterator
iter = this_attr.matrices_written.begin(),
end = this_attr.matrices_written.end();
for (; iter != end; ++iter) {
os << "m" << *iter;
if (iter+1 != end) os << ",";
}
os << ")";
}
os << "\n";
}
}
void Analyzer::Init(const Nnet &nnet, const NnetComputation &computation) {
variables.Init(computation);
ComputeCommandAttributes(nnet, computation, variables, &command_attributes);
ComputeVariableAccesses(variables, command_attributes, &variable_accesses);
ComputeMatrixAccesses(nnet, computation, variables, command_attributes,
&matrix_accesses);
}
void GetCommandsOfType(const NnetComputation &computation,
CommandType t,
std::vector<int32> *command_indexes) {
int32 num_commands = computation.commands.size();
command_indexes->clear();
for (int32 c = 0; c < num_commands; c++)
if (computation.commands[c].command_type == t)
command_indexes->push_back(c);
}
int64 GetMaxMemoryUse(const NnetComputation &computation) {
int64 cur_memory_use = 0,
max_memory_use = 0;
int32 num_commands = computation.commands.size(),
num_submatrices = computation.submatrices.size();
// the vector 'num_compressed_bytes' is used to remember the number of bytes
// in the compressed matrices for each submatrix (this will only be used for
// those that correspond to a 'whole matrix). It's needed because the
// decompression command doesn't tell us what compression type was used for
// that matrix.
std::vector<int32> num_compressed_bytes(num_submatrices, -100000000);
for (int32 command_index = 0; command_index < num_commands; ++command_index) {
const NnetComputation::Command &c = computation.commands[command_index];
int64 this_num_bytes = -100000000,
this_compressed_num_bytes = -10000000;
if (c.arg1 >= 0 && c.arg1 < num_submatrices) {
// if arg1 could plausibly be a sub-matrix index...
const NnetComputation::SubMatrixInfo &submat_info =
computation.submatrices[c.arg1];
this_num_bytes = static_cast<int64>(sizeof(BaseFloat)) *
submat_info.num_rows * submat_info.num_cols;
if (c.command_type == kCompressMatrix) {
this_compressed_num_bytes =
((c.arg2 == static_cast<int32>(kCompressedMatrixInt8) ||
c.arg2 == static_cast<int32>(kCompressedMatrixUint8)) ?
1 : 2) * static_cast<int64>(submat_info.num_rows) *
submat_info.num_cols;
num_compressed_bytes[c.arg1] = this_compressed_num_bytes;
} else if (c.command_type == kDecompressMatrix) {
this_compressed_num_bytes = num_compressed_bytes[c.arg1];
}
}
switch (c.command_type) {
case kAllocMatrix:
case kAcceptInput:
cur_memory_use += this_num_bytes;
break;
case kDeallocMatrix:
cur_memory_use -= this_num_bytes;
break;
case kCompressMatrix:
cur_memory_use += this_compressed_num_bytes - this_num_bytes;
break;
case kDecompressMatrix:
cur_memory_use += this_num_bytes - this_compressed_num_bytes;
break;
default:
break;
}
KALDI_ASSERT(cur_memory_use >= 0);
if (cur_memory_use > max_memory_use)
max_memory_use = cur_memory_use;
}
return max_memory_use;
}
} // namespace nnet3
} // namespace kaldi