nnet-batch-compute.cc
57.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
// nnet3/nnet-batch-compute.cc
// Copyright 2012-2018 Johns Hopkins University (author: Daniel Povey)
// 2018 Hang Lyu
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <iomanip>
#include "nnet3/nnet-batch-compute.h"
#include "nnet3/nnet-utils.h"
#include "decoder/decodable-matrix.h"
namespace kaldi {
namespace nnet3 {
NnetBatchComputer::NnetBatchComputer(
const NnetBatchComputerOptions &opts,
const Nnet &nnet,
const VectorBase<BaseFloat> &priors):
opts_(opts),
nnet_(nnet),
compiler_(nnet_, opts.optimize_config),
log_priors_(priors),
num_full_minibatches_(0) {
log_priors_.ApplyLog();
CheckAndFixConfigs();
ComputeSimpleNnetContext(nnet, &nnet_left_context_,
&nnet_right_context_);
input_dim_ = nnet.InputDim("input");
ivector_dim_ = std::max<int32>(0, nnet.InputDim("ivector"));
output_dim_ = nnet.OutputDim("output");
KALDI_ASSERT(input_dim_ > 0 && output_dim_ > 0);
}
void NnetBatchComputer::PrintMinibatchStats() {
int32 max_stats_to_print = 10;
int64 tot_tasks = 0, tot_minibatches = 0;
double tot_time = 0.0;
std::ostringstream os;
struct MinibatchStats {
int32 num_frames_out;
int32 num_frames_in;
int32 minibatch_size;
int32 num_done;
int32 percent_full;
BaseFloat seconds_taken;
bool operator < (const MinibatchStats &other) const {
return seconds_taken > other.seconds_taken; // sort from most to least time.
}
};
std::vector<MinibatchStats> all_stats;
os << "Minibatch stats: seconds-taken,frames-in:frames-out*minibatch-size=num-done(percent-full%) ";
for (MapType::const_iterator iter = tasks_.begin();
iter != tasks_.end(); ++iter) {
for (std::map<int32, MinibatchSizeInfo>::const_iterator
miter = iter->second.minibatch_info.begin();
miter != iter->second.minibatch_info.end(); ++miter) {
const ComputationGroupKey &key = iter->first;
const MinibatchSizeInfo &minfo = miter->second;
MinibatchStats stats;
stats.num_frames_in = key.num_input_frames;
stats.num_frames_out = key.num_output_frames;
stats.minibatch_size = miter->first;
stats.num_done = minfo.num_done;
stats.seconds_taken = minfo.seconds_taken;
tot_tasks += minfo.tot_num_tasks;
tot_minibatches += minfo.num_done;
tot_time += minfo.seconds_taken;
stats.percent_full = int32(minfo.tot_num_tasks * 100.0 /
(stats.minibatch_size * stats.num_done));
all_stats.push_back(stats);
}
}
std::sort(all_stats.begin(), all_stats.end());
os << std::fixed << std::setprecision(2);
int32 num_stats = all_stats.size();
for (int32 i = 0; i < std::min<int32>(num_stats, max_stats_to_print); i++) {
MinibatchStats &stats = all_stats[i];
os << stats.seconds_taken << ',' << stats.num_frames_in << ':'
<< stats.num_frames_out << '*' << stats.minibatch_size
<< '=' << stats.num_done << '(' << stats.percent_full << "%) ";
}
if (num_stats > max_stats_to_print)
os << "...";
KALDI_LOG << os.str();
KALDI_LOG << "Did " << tot_tasks << " tasks in " << tot_minibatches
<< " minibatches, taking " << tot_time << " seconds.";
}
NnetBatchComputer::~NnetBatchComputer() {
PrintMinibatchStats();
// the destructor shouldn't be called while the mutex is locked; if it is, it
// likely means the program has already crashed, or it's a programming error.
if (!mutex_.try_lock())
KALDI_ERR << "Destructor called while object locked.";
int32 num_pending_tasks = 0;
for (auto iter = tasks_.begin(); iter != tasks_.end(); ++iter)
num_pending_tasks += iter->second.tasks.size();
if (num_pending_tasks > 0)
KALDI_ERR << "Tasks are pending but object is being destroyed";
for (auto iter = no_more_than_n_minibatches_full_.begin();
iter != no_more_than_n_minibatches_full_.end(); ++iter) {
std::condition_variable *cond = iter->second;
// the next call will notify any threads that were waiting on this condition
// variable-- there shouldn't be any, though, as it would be a programming
// error, but better to wake them up so we can see any messages they print.
cond->notify_all();
delete cond;
}
KALDI_ASSERT(num_full_minibatches_ == 0); // failure would be a coding error.
}
NnetBatchComputer::MinibatchSizeInfo*
NnetBatchComputer::GetHighestPriorityComputation(
bool allow_partial_minibatch,
int32 *minibatch_size_out,
std::vector<NnetInferenceTask*> *tasks) {
tasks->clear();
std::unique_lock<std::mutex> lock(mutex_);
MapType::iterator iter = tasks_.begin(), end = tasks_.end(),
best_iter = tasks_.end();
double highest_priority = -std::numeric_limits<double>::infinity();
for (; iter != end; ++iter) {
ComputationGroupInfo &info = iter->second;
double this_priority = GetPriority(allow_partial_minibatch, info);
if (this_priority > highest_priority) {
highest_priority = this_priority;
best_iter = iter;
}
}
if (best_iter == tasks_.end()) {
// either allow_partial_minibatch == false and there were no full
// minibatches, or there were no pending tasks at all.
return NULL;
}
ComputationGroupInfo &info = best_iter->second;
int32 actual_minibatch_size = GetActualMinibatchSize(info);
*minibatch_size_out = actual_minibatch_size;
MinibatchSizeInfo *minfo = &(info.minibatch_info[actual_minibatch_size]);
if (minfo->computation == NULL)
minfo->computation = GetComputation(info, actual_minibatch_size);
GetHighestPriorityTasks(actual_minibatch_size, &info, tasks);
return minfo;
}
void NnetBatchComputer::GetHighestPriorityTasks(
int32 num_tasks_needed,
ComputationGroupInfo *info,
std::vector<NnetInferenceTask*> *tasks) {
int32 num_tasks_present = info->tasks.size(),
minibatch_size = GetMinibatchSize(*info);
KALDI_ASSERT(tasks->empty());
if (num_tasks_needed >= num_tasks_present) {
tasks->swap(info->tasks);
} else {
int32 num_tasks_not_needed = num_tasks_present - num_tasks_needed;
// We don't sort the tasks with a comparator that dereferences the pointers,
// because the priorities can change asynchronously, and we're concerned that
// something weird might happen in the sorting if the things it's comparing
// are changing.
std::vector<std::pair<double, NnetInferenceTask*> > pairs(num_tasks_present);
for (int32 i = 0; i < num_tasks_present; i++) {
pairs[i].first = info->tasks[i]->priority;
pairs[i].second = info->tasks[i];
}
std::nth_element(pairs.begin(), pairs.begin() + num_tasks_not_needed,
pairs.end());
// The lowest-priority 'num_tasks_not_needed' stay in the 'info' struct.
info->tasks.clear();
for (int32 i = 0; i < num_tasks_not_needed; i++)
info->tasks.push_back(pairs[i].second);
// The highest-priority 'num_tasks_needed' tasks go to the output 'tasks'
// array.
for (int32 i = num_tasks_not_needed; i < num_tasks_present; i++)
tasks->push_back(pairs[i].second);
// The following assertion checks that the is_edge and is_irregular values
// are the same for the entire minibatch, which they should always be.
KALDI_ASSERT(GetMinibatchSize(*info) == minibatch_size);
}
{
// This block updates num_full_minibatches_ and notifies threads waiting on
// any related condition variable.
int32 new_num_tasks_present = info->tasks.size(),
full_minibatch_reduction =
(num_tasks_present / minibatch_size) -
(new_num_tasks_present / minibatch_size);
for (int32 i = 0; i < full_minibatch_reduction; i++) {
num_full_minibatches_--;
KALDI_ASSERT(num_full_minibatches_ >= 0);
std::unordered_map<int32, std::condition_variable*>::const_iterator
iter = no_more_than_n_minibatches_full_.find(num_full_minibatches_);
if (iter != no_more_than_n_minibatches_full_.end()) {
std::condition_variable *cond = iter->second;
cond->notify_all();
}
}
}
}
int32 NnetBatchComputer::GetMinibatchSize(
const ComputationGroupInfo &info) const {
if (info.tasks.empty()) {
return opts_.minibatch_size; // actually it shouldn't matter what we return
// in this case.
}
const NnetInferenceTask &task = *(info.tasks[0]);
if (task.is_irregular)
return 1;
else if (task.is_edge)
return opts_.edge_minibatch_size;
else
return opts_.minibatch_size;
}
int32 NnetBatchComputer::GetActualMinibatchSize(
const ComputationGroupInfo &info) const {
KALDI_ASSERT(!info.tasks.empty());
int32 num_tasks = info.tasks.size(),
this_minibatch_size = GetMinibatchSize(info);
KALDI_ASSERT(num_tasks > 0);
while (num_tasks <
int32(opts_.partial_minibatch_factor * this_minibatch_size))
this_minibatch_size *= opts_.partial_minibatch_factor;
return int32(this_minibatch_size);
}
std::shared_ptr<const NnetComputation> NnetBatchComputer::GetComputation(
const ComputationGroupInfo &info,
int32 minibatch_size) {
KALDI_ASSERT(!info.tasks.empty());
// note: all the tasks will have the same structure, in the respects that
// would affect the computation.
NnetInferenceTask *example_task = info.tasks[0];
ComputationRequest request;
GetComputationRequest(*example_task, minibatch_size, &request);
return compiler_.Compile(request);
}
double NnetBatchComputer::GetPriority(bool allow_partial_minibatch,
const ComputationGroupInfo &info) const {
if (info.tasks.empty())
return -std::numeric_limits<double>::infinity();
int32 this_minibatch_size = GetMinibatchSize(info);
int32 num_tasks = info.tasks.size();
if (!allow_partial_minibatch && num_tasks < this_minibatch_size)
return -std::numeric_limits<double>::infinity();
// penalty_for_not_full will be negative if the minibatch is not full, up to a
// maximum of 10. the 10 is a heuristic; it could be changed.
// Note: the penalty is effectively infinity if allow_partial_minibatch == false;
// see the 'return' above.
double proportion_full = std::min<int32>(num_tasks, this_minibatch_size) /
double(this_minibatch_size),
penalty_for_not_full = 10.0 * (proportion_full - 1.0),
task_priority_sum = 0.0;
if (num_tasks > this_minibatch_size) {
// Get the average of the priorities of the highest-priority tasks (no more
// than 'minibatch_size' of them.
std::vector<double> priorities;
priorities.resize(num_tasks);
for (int32 i = 0; i < num_tasks; i++)
priorities[i] = info.tasks[i]->priority;
// sort from greatest to least.
std::nth_element(priorities.begin(),
priorities.begin() + this_minibatch_size,
priorities.end(),
std::greater<double>());
for (int32 i = 0; i < this_minibatch_size; i++)
task_priority_sum += priorities[i];
return penalty_for_not_full + task_priority_sum / this_minibatch_size;
} else {
for (int32 i = 0; i < num_tasks; i++)
task_priority_sum += info.tasks[i]->priority;
return penalty_for_not_full + task_priority_sum / num_tasks;
}
}
// static
void NnetBatchComputer::GetComputationRequest(
const NnetInferenceTask &task,
int32 minibatch_size,
ComputationRequest *request) {
request->need_model_derivative = false;
request->store_component_stats = false;
request->inputs.reserve(2);
int32 num_input_frames = task.input.NumRows(),
first_input_t = task.first_input_t,
num_output_frames = task.num_output_frames,
output_t_stride = task.output_t_stride;
bool has_ivector = (task.ivector.Dim() != 0);
std::vector<Index> input_indexes, ivector_indexes, output_indexes;
input_indexes.reserve(minibatch_size * num_input_frames);
output_indexes.reserve(minibatch_size * num_output_frames);
if (has_ivector)
ivector_indexes.reserve(minibatch_size);
for (int32 n = 0; n < minibatch_size; n++) {
for (int32 t = first_input_t; t < first_input_t + num_input_frames; t++)
input_indexes.push_back(Index(n, t, 0));
if (has_ivector)
ivector_indexes.push_back(Index(n, 0, 0));
for (int32 t = 0; t < num_output_frames; t++)
output_indexes.push_back(Index(n, t * output_t_stride, 0));
}
request->inputs.push_back(IoSpecification("input", input_indexes));
if (has_ivector)
request->inputs.push_back(IoSpecification("ivector", ivector_indexes));
request->outputs.push_back(IoSpecification("output", output_indexes));
}
void NnetBatchComputer::CheckAndFixConfigs() {
static bool warned_frames_per_chunk = false;
int32 nnet_modulus = nnet_.Modulus();
if (opts_.frame_subsampling_factor < 1 ||
opts_.frames_per_chunk < 1) {
KALDI_ERR << "--frame-subsampling-factor and "
<< "--frames-per-chunk must be > 0";
}
KALDI_ASSERT(nnet_modulus > 0);
int32 n = Lcm(opts_.frame_subsampling_factor, nnet_modulus);
if (opts_.frames_per_chunk % n != 0) {
// round up to the nearest multiple of n.
int32 frames_per_chunk = n * ((opts_.frames_per_chunk + n - 1) / n);
if (!warned_frames_per_chunk) {
warned_frames_per_chunk = true;
if (nnet_modulus == 1) {
// simpler error message.
KALDI_LOG << "Increasing --frames-per-chunk from "
<< opts_.frames_per_chunk << " to "
<< frames_per_chunk << " to make it a multiple of "
<< "--frame-subsampling-factor="
<< opts_.frame_subsampling_factor;
} else {
KALDI_LOG << "Increasing --frames-per-chunk from "
<< opts_.frames_per_chunk << " to "
<< frames_per_chunk << " due to "
<< "--frame-subsampling-factor="
<< opts_.frame_subsampling_factor << " and "
<< "nnet shift-invariance modulus = " << nnet_modulus;
}
}
opts_.frames_per_chunk = frames_per_chunk;
}
KALDI_ASSERT(opts_.minibatch_size >= 1 &&
opts_.edge_minibatch_size >= 1 &&
opts_.partial_minibatch_factor < 1.0 &&
opts_.partial_minibatch_factor >= 0.0);
}
void NnetBatchComputer::FormatInputs(
int32 minibatch_size,
const std::vector<NnetInferenceTask*> &tasks,
CuMatrix<BaseFloat> *input,
CuMatrix<BaseFloat> *ivector) {
int32 num_input_frames = tasks[0]->input.NumRows(),
input_dim = tasks[0]->input.NumCols(),
ivector_dim = tasks[0]->ivector.Dim(),
num_tasks = tasks.size();
KALDI_ASSERT(num_tasks > 0 && num_tasks <= minibatch_size);
// destination matrix
input->Resize(minibatch_size * num_input_frames, input_dim,
kUndefined);
#if HAVE_CUDA == 1
if (CuDevice::Instantiate().Enabled()) {
std::vector<const BaseFloat*> inputs(num_tasks);
std::vector<BaseFloat*> outputs(num_tasks);
std::vector<int32_t> ldi(num_tasks), ldo(num_tasks);
std::vector<int32_t> num_rows(num_tasks), num_cols(num_tasks);
// compute matrix descriptions for each copy
for (int32 n = 0; n < num_tasks; n++) {
const CuMatrix<BaseFloat> &input_mat = tasks[n]->input;
CuSubMatrix<BaseFloat> output_mat = input->RowRange(
n * num_input_frames, num_input_frames);
// create matrix batch description arrays
num_rows[n] = num_input_frames;
num_cols[n] = input_dim;
outputs[n] = output_mat.Data();
inputs[n] = input_mat.Data();
ldo[n] = output_mat.Stride();
ldi[n] = input_mat.Stride();
}
// execute batched copy
cuda_batched_copy_mats(num_tasks, &num_rows[0], &num_cols[0], &inputs[0],
&ldi[0], &outputs[0], &ldo[0]);
} else
#endif
{
for (int32 n = 0; n < num_tasks; n++) {
CuSubMatrix<BaseFloat> input_part(*input,
n * num_input_frames, num_input_frames,
0, input_dim);
input_part.CopyFromMat(tasks[n]->input);
}
}
if (GetVerboseLevel() >=2 ) {
if (num_tasks < minibatch_size) {
// The following will make things easier to debug if something fails, but
// shouldn't be strictly necessary.
// the -1 means 'take all remaining rows'.
input->RowRange(num_tasks * num_input_frames,
(minibatch_size - num_tasks) * num_input_frames).SetZero();
}
}
if (ivector_dim != 0) {
ivector->Resize(minibatch_size, ivector_dim, kUndefined);
#if HAVE_CUDA == 1
if (CuDevice::Instantiate().Enabled()) {
// using the batched matrix copy routine for this. This isn't
// extremely efficient but the kernel takes a minimal amount of
// time so making a batched vector copy is not worth the effort.
std::vector<const BaseFloat*> inputs(num_tasks);
std::vector<BaseFloat*> outputs(num_tasks);
std::vector<int32_t> ldi(num_tasks), ldo(num_tasks);
std::vector<int32_t> num_rows(num_tasks), num_cols(num_tasks);
// compute source pointers for each input
for (int32 n = 0; n < num_tasks; n++) {
const CuVector<BaseFloat> &input_vec = tasks[n]->ivector;
CuSubVector<BaseFloat> output_vec = ivector->Row(n);
// create matrix batch description arrays
num_rows[n] = 1;
num_cols[n] = ivector_dim;
outputs[n] = output_vec.Data();
inputs[n] = input_vec.Data();
ldo[n] = 1;
ldi[n] = 1;
}
// execute batched copy
cuda_batched_copy_mats(num_tasks, &num_rows[0], &num_cols[0], &inputs[0], &ldi[0],
&outputs[0], &ldo[0]);
} else
#endif
{
for (int32 n = 0; n < num_tasks; n++) {
ivector->Row(n).CopyFromVec(tasks[n]->ivector);
}
}
if (GetVerboseLevel() >= 2) {
if (num_tasks < minibatch_size) {
// The following will make things easier to debug if something fails, but
// shouldn't be strictly necessary.
// the -1 means 'take all remaining rows'.
ivector->RowRange(num_tasks, minibatch_size - num_tasks).SetZero();
}
}
}
}
void NnetBatchComputer::FormatOutputs(
const CuMatrix<BaseFloat> &output,
const std::vector<NnetInferenceTask*> &tasks) {
KALDI_ASSERT(!tasks.empty());
int32 num_output_frames = tasks[0]->num_output_frames,
output_dim = output.NumCols(),
num_tasks = tasks.size();
bool did_output_to_gpu = false;
// We don't bother zeroing frames of the output that are unused, but you could
// un-comment the commented lines of code below to do so and add equivalent
// calls to the cuda version.
#if HAVE_CUDA == 1
if (CuDevice::Instantiate().Enabled()) {
std::vector<const BaseFloat*> inputs(num_tasks);
std::vector<BaseFloat*> outputs(num_tasks);
std::vector<int32_t> ldi(num_tasks), ldo(num_tasks);
std::vector<int32_t> num_rows(num_tasks), num_cols(num_tasks);
int b=0; // batch counter
for (int32 n = 0; n < num_tasks; n++) {
NnetInferenceTask *task = tasks[n];
int32 left_unused = task->num_initial_unused_output_frames,
used = task->num_used_output_frames;
// int32 right_unused = num_output_frames - used - left_unused;
// TODO do we really expect different tasks to output CPU or GPU?
// This adds a bit of code complexity. Perhaps output_to_cpu should
// be a property of the batch computer and not the tasks
if (task->output_to_cpu) {
task->output_cpu.Resize(num_output_frames, output_dim,
kUndefined);
// if (left_unused > 0)
// task->output_cpu.RowRange(0, left_unused).SetZero();
task->output_cpu.RowRange(left_unused, used).CopyFromMat(
output.RowRange(n * num_output_frames + left_unused, used));
// if (right_unused > 0)
// task->output_cpu.RowRange(
// 0, left_unused + used, right_unused).SetZero();
} else {
did_output_to_gpu = true;
task->output.Resize(num_output_frames, output_dim,
kUndefined);
CuSubMatrix<BaseFloat> output_mat = task->output.RowRange(
left_unused, used);
const CuSubMatrix<BaseFloat> input_mat = output.RowRange(
n * num_output_frames + left_unused, used);
// create matrix batch description arrays
num_rows[b] = output_mat.NumRows();
num_cols[b] = output_mat.NumCols();
outputs[b] = output_mat.Data();
inputs[b] = input_mat.Data();
ldo[b] = output_mat.Stride();
ldi[b] = input_mat.Stride();
b++; // increase batch count
}
}
// execute batched copy
cuda_batched_copy_mats(b, &num_rows[0], &num_cols[0], &inputs[0], &ldi[0],
&outputs[0], &ldo[0]);
} else
#endif
{
//TODO i don't think all of these paths are actually possible. We should simplify this.
//Is it possible to output_to_gpu with HAVE_CUDA == 0 or when the device is disabled?
for (int32 n = 0; n < num_tasks; n++) {
NnetInferenceTask *task = tasks[n];
int32 left_unused = task->num_initial_unused_output_frames,
used = task->num_used_output_frames;
// int32 right_unused = num_output_frames - used - left_unused;
if (task->output_to_cpu) {
task->output_cpu.Resize(num_output_frames, output_dim,
kUndefined);
// if (left_unused > 0)
// task->output_cpu.RowRange(0, left_unused).SetZero();
task->output_cpu.RowRange(left_unused, used).CopyFromMat(
output.RowRange(n * num_output_frames + left_unused, used));
// if (right_unused > 0)
// task->output_cpu.RowRange(0, left_unused + used, right_unused).SetZero();
} else {
did_output_to_gpu = true;
task->output.Resize(num_output_frames, output_dim,
kUndefined);
// if (left_unused > 0)
// task->output.RowRange(0, left_unused).SetZero();
task->output.RowRange(left_unused, used).CopyFromMat(
output.RowRange(n * num_output_frames + left_unused, used));
// if (right_unused > 0)
// task->output.RowRange(0, left_unused + used, right_unused).SetZero();
}
}
}
// The output of this function will likely be consumed by another thread.
// The following call will make sure the relevant kernels complete before
// any kernels from the other thread use the output.
if (did_output_to_gpu)
SynchronizeGpu();
}
void NnetBatchComputer::AcceptTask(NnetInferenceTask *task,
int32 max_minibatches_full) {
std::unique_lock<std::mutex> lock(mutex_);
if (max_minibatches_full > 0 && num_full_minibatches_ > max_minibatches_full) {
std::unordered_map<int32, std::condition_variable*>::iterator
iter = no_more_than_n_minibatches_full_.find(max_minibatches_full);
std::condition_variable *cond;
if (iter != no_more_than_n_minibatches_full_.end()) {
cond = iter->second;
} else {
cond = new std::condition_variable();
no_more_than_n_minibatches_full_[max_minibatches_full] = cond;
}
while (num_full_minibatches_ > max_minibatches_full)
cond->wait(lock);
}
ComputationGroupKey key(*task);
ComputationGroupInfo &info = tasks_[key];
info.tasks.push_back(task);
int32 minibatch_size = GetMinibatchSize(info);
if (static_cast<int32>(info.tasks.size()) % minibatch_size == 0)
num_full_minibatches_++;
}
bool NnetBatchComputer::Compute(bool allow_partial_minibatch) {
int32 minibatch_size;
std::vector<NnetInferenceTask*> tasks;
MinibatchSizeInfo *minfo =
GetHighestPriorityComputation(allow_partial_minibatch,
&minibatch_size,
&tasks);
if (minfo == NULL)
return false;
Timer tim;
Nnet *nnet_to_update = NULL; // we're not doing any update
NnetComputer computer(opts_.compute_config, *(minfo->computation),
nnet_, nnet_to_update);
CuMatrix<BaseFloat> input;
CuMatrix<BaseFloat> ivector;
FormatInputs(minibatch_size, tasks, &input, &ivector);
computer.AcceptInput("input", &input);
if (ivector.NumRows() != 0)
computer.AcceptInput("ivector", &ivector);
computer.Run();
CuMatrix<BaseFloat> output;
computer.GetOutputDestructive("output", &output);
if (log_priors_.Dim() != 0) {
output.AddVecToRows(-1.0, log_priors_);
}
output.Scale(opts_.acoustic_scale);
FormatOutputs(output, tasks);
// Update the stats, for diagnostics.
minfo->num_done++;
minfo->tot_num_tasks += static_cast<int64>(tasks.size());
minfo->seconds_taken += tim.Elapsed();
SynchronizeGpu();
for (size_t i = 0; i < tasks.size(); i++)
tasks[i]->semaphore.Signal();
return true;
}
/**
This namespace contains things needed for the implementation of
the function NnetBatchComputer::SplitUtteranceIntoTasks().
*/
namespace utterance_splitting {
/**
This function figures out how many chunks are needed for this utterance,
sets 'tasks' to a vector with that many elements, and sets up the
following elements in 'tasks':
output_t_stride
num_output_frames
num_initial_unused_output_frames
num_used_output_frames
@param [in] opts Options class
@param [in] num_subsampled_frames The number of output frames in this
utterance. Must be > 0.
@param [in] num_subsampled_frames_per_chunk The number of output frames
per chunk
@param [out] The 'tasks' array is output to here; it will have one
task per chunk, with only the members 'output_t_stride',
'num_output_frames', 'num_initial_unused_output_frames',
'num_used_output_frames' and 'is_irregular' set up.
*/
void GetOutputFrameInfoForTasks(
const NnetBatchComputerOptions &opts,
int32 num_subsampled_frames,
int32 num_subsampled_frames_per_chunk,
std::vector<NnetInferenceTask> *tasks) {
KALDI_ASSERT(num_subsampled_frames > 0);
int32 fpc = num_subsampled_frames_per_chunk;
int32 num_tasks = (num_subsampled_frames + fpc - 1) / fpc;
tasks->resize(num_tasks);
for (int32 i = 0; i < num_tasks; i++) {
(*tasks)[i].output_t_stride = opts.frame_subsampling_factor;
}
if (num_subsampled_frames <= fpc) { // there is one chunk.
KALDI_ASSERT(num_tasks == 1); // TODO: remove this.
NnetInferenceTask &task = (*tasks)[0];
task.first_used_output_frame_index = 0;
if (opts.ensure_exact_final_context) {
task.num_output_frames = num_subsampled_frames;
task.num_initial_unused_output_frames = 0;
task.num_used_output_frames = num_subsampled_frames;
task.is_irregular = true;
} else {
task.num_output_frames = fpc;
task.num_initial_unused_output_frames = 0;
task.num_used_output_frames = num_subsampled_frames;
task.is_irregular = false;
}
} else {
for (int32 i = 0; i + 1 < num_tasks; i++) {
NnetInferenceTask &task = (*tasks)[i];
task.num_output_frames = fpc;
task.num_initial_unused_output_frames = 0;
task.num_used_output_frames = fpc;
task.first_used_output_frame_index = i * fpc;
task.is_irregular = false;
}
// The last chunk will end on the last frame of the file, but we won't use
// the part of its output that overlaps with the preceding chunk.
NnetInferenceTask &task = (*tasks)[num_tasks - 1];
task.num_output_frames = fpc;
task.num_initial_unused_output_frames = ((num_tasks - 1) * fpc) -
(num_subsampled_frames - fpc);
task.num_used_output_frames =
num_subsampled_frames - ((num_tasks - 1) * fpc);
task.first_used_output_frame_index = (num_tasks - 1) * fpc;
task.is_irregular = false;
}
if (true) {
// Do some checking. TODO: remove this.
KALDI_ASSERT((*tasks)[0].first_used_output_frame_index == 0);
for (int32 i = 1; i < num_tasks; i++) {
KALDI_ASSERT((*tasks)[i].first_used_output_frame_index ==
(*tasks)[i-1].first_used_output_frame_index +
(*tasks)[i-1].num_used_output_frames);
}
KALDI_ASSERT((*tasks)[num_tasks-1].first_used_output_frame_index +
(*tasks)[num_tasks-1].num_used_output_frames ==
num_subsampled_frames);
for (int32 i = 0; i < num_tasks; i++) {
const NnetInferenceTask &task = (*tasks)[i];
KALDI_ASSERT(task.num_used_output_frames +
task.num_initial_unused_output_frames <=
task.num_output_frames);
}
}
}
void AddOnlineIvectorsToTasks(
const NnetBatchComputerOptions &opts,
const CuMatrix<BaseFloat> &online_ivectors,
int32 online_ivector_period,
std::vector<NnetInferenceTask> *tasks) {
int32 f = opts.frame_subsampling_factor,
num_tasks = tasks->size();
for (int32 i = 0; i < num_tasks; i++) {
NnetInferenceTask &task = (*tasks)[i];
// begin_output_t and end_output_t are the subsampled frame indexes at
// the output; you'd have to multiply them by f to get real frame indexes.
int32 begin_output_t = task.first_used_output_frame_index -
task.num_initial_unused_output_frames,
mid_output_t = begin_output_t + (task.num_output_frames / 2),
mid_input_t = mid_output_t * f,
ivector_frame = mid_input_t / online_ivector_period,
num_ivector_frames = online_ivectors.NumRows(),
margin_in_frames = 20,
margin_in_ivector_frames =
(margin_in_frames + online_ivector_period - 1) / online_ivector_period;
// the 'margin' is our tolerance for when the number of rows of
// 'online_ivectors' is less than what we expected; we allow 20 frames of
// tolerance in the numbering of the original (input) features.
if (ivector_frame >= num_ivector_frames) {
if (num_ivector_frames > 0 && ivector_frame > num_ivector_frames -
margin_in_ivector_frames) {
ivector_frame = num_ivector_frames - 1; // Just take the last available one.
} else {
KALDI_ERR << "Could not get iVector for frame " << ivector_frame
<< ", online-ivectors matrix has "
<< online_ivectors.NumRows()
<< " rows. Mismatched --online-ivector-period?";
}
}
task.ivector = online_ivectors.Row(ivector_frame);
}
}
/**
This function sets up the 'input' and 'first_input_t' and 'is_edge' members
of the 'tasks' array; it is responsible for working out, for each task,
which input frames it needs (including left-context and right-context).
The 'nnet_left_context' and 'nnet_right_context' are the inherent left
and right context of the network (num-frames required on left and right
to compute an output frame), and may be computed by doing:
ComputeSimpleNnetContext(nnet, &nnet_left_context_, &nnet_right_context_)
*/
static void SplitInputToTasks(const NnetBatchComputerOptions &opts,
int32 nnet_left_context,
int32 nnet_right_context,
const CuMatrix<BaseFloat> &input,
std::vector<NnetInferenceTask> *tasks) {
int32 num_input_frames = input.NumRows(),
f = opts.frame_subsampling_factor,
num_subsampled_frames = (num_input_frames + f - 1) / f,
extra_left_context_initial = (opts.extra_left_context_initial < 0 ?
opts.extra_left_context :
opts.extra_left_context_initial),
extra_right_context_final = (opts.extra_right_context_final < 0 ?
opts.extra_right_context :
opts.extra_right_context_final),
num_tasks = tasks->size();
for (int32 i = 0; i < num_tasks; i++) {
NnetInferenceTask &task = (*tasks)[i];
// begin_output_t and end_output_t are the subsampled frame indexes at
// the output; you'd have to multiply them by f to get real frame indexes.
int32 begin_output_t = task.first_used_output_frame_index -
task.num_initial_unused_output_frames,
end_output_t = begin_output_t + task.num_output_frames;
// begin_input_t and end_input_t are the real 't' values corresponding to
// begin_output_t and end_output_t; they are the beginning and end
// (i.e. first and last-plus-one) frame indexes without any left or right
// context.
int32 begin_input_t = begin_output_t * f,
end_input_t = end_output_t * f;
// Detect whether the left and right edges touch (or pass over) the left
// and right boundaries. Note: we don't expect begin_output_t to ever be
// negative.
bool left_edge = (begin_output_t <= 0),
right_edge = (end_output_t >= num_subsampled_frames);
int32 tot_left_context = nnet_left_context +
(left_edge ? extra_left_context_initial : opts.extra_left_context),
tot_right_context = nnet_right_context +
(right_edge ? extra_right_context_final : opts.extra_right_context);
// 'is_edge' is only true if it's an edge minibatch *and* its being an
// edge actually made a difference to the structure of the example.
task.is_edge =
(tot_left_context != nnet_left_context + opts.extra_left_context ||
tot_right_context != nnet_right_context + opts.extra_right_context);
int32 begin_input_t_padded = begin_input_t - tot_left_context,
end_input_t_padded = end_input_t + tot_right_context;
// 'task.first_input_t' is a representation of 'begin_input_t_padded' in a
// shifted/normalized numbering where the output time indexes start from
// zero.
task.first_input_t = begin_input_t_padded - (begin_output_t * f);
task.input.Resize(end_input_t_padded - begin_input_t_padded,
input.NumCols(), kUndefined);
// Copy from intput into task input with clamping
task.input.CopyRangeFromMatClamped(input, begin_input_t_padded,
end_input_t_padded, 0, num_input_frames-1);
}
}
} // namespace utterance_splitting
void NnetBatchComputer::SplitUtteranceIntoTasks(
bool output_to_cpu,
const Matrix<BaseFloat> &input,
const Vector<BaseFloat> *h_ivector,
const Matrix<BaseFloat> *h_online_ivectors,
int32 online_ivector_period,
std::vector<NnetInferenceTask> *tasks) {
// Inputs are expected to be in device memory.
// create temporary device arrays and copy
// inputs into them
CuMatrix<BaseFloat> cu_input(input);
CuVector<BaseFloat> cu_ivector, *ivector = NULL;
CuMatrix<BaseFloat> cu_online_ivectors, *online_ivectors = NULL;
if (h_ivector!=NULL) {
cu_ivector.Resize(h_ivector->Dim(), kUndefined);
cu_ivector.CopyFromVec(*h_ivector);
ivector = &cu_ivector;
}
if (h_online_ivectors!=NULL) {
cu_online_ivectors.Resize(h_online_ivectors->NumRows(), h_online_ivectors->NumCols(), kUndefined);
cu_online_ivectors.CopyFromMat(*h_online_ivectors);
online_ivectors = &cu_online_ivectors;
}
SplitUtteranceIntoTasks(output_to_cpu, cu_input, ivector,
online_ivectors, online_ivector_period, tasks);
}
void NnetBatchComputer::SplitUtteranceIntoTasks(
bool output_to_cpu,
const CuMatrix<BaseFloat> &input,
const CuVector<BaseFloat> *ivector,
const CuMatrix<BaseFloat> *online_ivectors,
int32 online_ivector_period,
std::vector<NnetInferenceTask> *tasks) {
using namespace utterance_splitting;
{ // This block does some checking.
if (input.NumCols() != input_dim_) {
KALDI_ERR << "Input features did not have expected dimension: expected "
<< input_dim_ << ", got " << input.NumCols();
}
int32 ivector_dim = (ivector != NULL ? ivector->Dim() :
(online_ivectors != NULL ?
online_ivectors->NumCols() : 0));
if (ivector_dim_ != 0 && ivector_dim == 0)
KALDI_ERR << "Model expects i-vectors but none were supplied";
else if (ivector_dim_ == 0 && ivector_dim != 0)
KALDI_ERR << "You supplied i-vectors but model does not expect them.";
else if (ivector_dim != ivector_dim_)
KALDI_ERR << "I-vector dimensions mismatch: model expects "
<< ivector_dim_ << ", you supplied " << ivector_dim;
}
int32 num_input_frames = input.NumRows(),
f = opts_.frame_subsampling_factor,
num_subsampled_frames = (num_input_frames + f - 1) / f,
num_subsampled_frames_per_chunk = opts_.frames_per_chunk / f;
GetOutputFrameInfoForTasks(opts_, num_subsampled_frames,
num_subsampled_frames_per_chunk,
tasks);
SplitInputToTasks(opts_, nnet_left_context_, nnet_right_context_,
input, tasks);
if (ivector != NULL) {
KALDI_ASSERT(online_ivectors == NULL);
#if HAVE_CUDA == 1
if (CuDevice::Instantiate().Enabled()) {
int32_t num_tasks = tasks->size();
std::vector<const BaseFloat*> inputs(num_tasks);
std::vector<BaseFloat*> outputs(num_tasks);
std::vector<int32_t> ldi(num_tasks), ldo(num_tasks);
std::vector<int32_t> num_rows(num_tasks), num_cols(num_tasks);
int b=0; // batch counter
for (size_t i = 0; i < tasks->size(); i++) {
CuVector<BaseFloat> &output_vec = (*tasks)[i].ivector;
const CuVector<BaseFloat> &input_vec = *ivector;
output_vec.Resize(input_vec.Dim(), kUndefined);
// create matrix batch description arrays
num_rows[b] = 1;
num_cols[b] = output_vec.Dim();
outputs[b] = output_vec.Data();
inputs[b] = input_vec.Data();
ldo[b] = 0;
ldi[b] = 0;
b++; // increase batch count
}
// execute batched copy
cuda_batched_copy_mats(b, &num_rows[0], &num_cols[0], &inputs[0], &ldi[0],
&outputs[0], &ldo[0]);
} else
#endif
{
for (size_t i = 0; i < tasks->size(); i++)
(*tasks)[i].ivector = *ivector;
}
} else if (online_ivectors != NULL) {
AddOnlineIvectorsToTasks(opts_, *online_ivectors,
online_ivector_period, tasks);
}
for (size_t i = 0; i < tasks->size(); i++) {
(*tasks)[i].output_to_cpu = output_to_cpu;
// The priority will be set by the user; this just avoids undefined
// behavior.
(*tasks)[i].priority = 0.0;
}
}
void MergeTaskOutput(
const std::vector<NnetInferenceTask> &tasks,
Matrix<BaseFloat> *output) {
int32 num_tasks = tasks.size(),
num_output_frames = 0,
output_dim = -1;
for (int32 i = 0; i < num_tasks; i++) {
const NnetInferenceTask &task = tasks[i];
num_output_frames += task.num_used_output_frames;
if (i == 0) {
output_dim = (task.output_to_cpu ?
task.output_cpu.NumCols() :
task.output.NumCols());
}
}
KALDI_ASSERT(num_output_frames != 0 && output_dim != 0);
int32 cur_output_frame = 0;
output->Resize(num_output_frames, output_dim);
for (int32 i = 0; i < num_tasks; i++) {
const NnetInferenceTask &task = tasks[i];
int32 skip = task.num_initial_unused_output_frames,
num_used = task.num_used_output_frames;
KALDI_ASSERT(cur_output_frame == task.first_used_output_frame_index);
if (task.output_to_cpu) {
output->RowRange(cur_output_frame, num_used).CopyFromMat(
task.output_cpu.RowRange(skip, num_used));
} else {
output->RowRange(cur_output_frame, num_used).CopyFromMat(
task.output.RowRange(skip, num_used));
}
cur_output_frame += num_used;
}
KALDI_ASSERT(cur_output_frame == num_output_frames);
}
void MergeTaskOutput(
const std::vector<NnetInferenceTask> &tasks,
CuMatrix<BaseFloat> *output) {
int32 num_tasks = tasks.size(),
num_output_frames = 0,
output_dim = -1;
for (int32 i = 0; i < num_tasks; i++) {
const NnetInferenceTask &task = tasks[i];
num_output_frames += task.num_used_output_frames;
if (i == 0) {
output_dim = (task.output_to_cpu ?
task.output_cpu.NumCols() :
task.output.NumCols());
}
}
KALDI_ASSERT(num_output_frames != 0 && output_dim != 0);
int32 cur_output_frame = 0;
output->Resize(num_output_frames, output_dim, kUndefined);
#if HAVE_CUDA == 1
if (CuDevice::Instantiate().Enabled()) {
std::vector<const BaseFloat*> inputs(num_tasks);
std::vector<BaseFloat*> outputs(num_tasks);
std::vector<int32_t> ldi(num_tasks), ldo(num_tasks);
std::vector<int32_t> num_rows(num_tasks), num_cols(num_tasks);
int b=0; // batch counter
for (int32 i = 0; i < num_tasks; i++) {
const NnetInferenceTask &task = tasks[i];
int32 skip = task.num_initial_unused_output_frames,
num_used = task.num_used_output_frames;
KALDI_ASSERT(cur_output_frame == task.first_used_output_frame_index);
if (task.output_to_cpu) {
output->RowRange(cur_output_frame, num_used).CopyFromMat(
task.output_cpu.RowRange(skip, num_used));
} else {
CuSubMatrix<BaseFloat> output_mat =
output->RowRange(cur_output_frame, num_used);
const CuSubMatrix<BaseFloat> input_mat =
task.output.RowRange(skip, num_used);
// create matrix batch description arrays
num_rows[b] = output_mat.NumRows();
num_cols[b] = output_mat.NumCols();
outputs[b] = output_mat.Data();
inputs[b] = input_mat.Data();
ldo[b] = output_mat.Stride();
ldi[b] = input_mat.Stride();
b++; // increase batch count
}
cur_output_frame += num_used;
}
// execute batched copy
cuda_batched_copy_mats(b, &num_rows[0], &num_cols[0], &inputs[0], &ldi[0],
&outputs[0], &ldo[0]);
} else
#endif
{
for (int32 i = 0; i < num_tasks; i++) {
const NnetInferenceTask &task = tasks[i];
int32 skip = task.num_initial_unused_output_frames,
num_used = task.num_used_output_frames;
KALDI_ASSERT(cur_output_frame == task.first_used_output_frame_index);
if (task.output_to_cpu) {
output->RowRange(cur_output_frame, num_used).CopyFromMat(
task.output_cpu.RowRange(skip, num_used));
} else {
output->RowRange(cur_output_frame, num_used).CopyFromMat(
task.output.RowRange(skip, num_used));
}
cur_output_frame += num_used;
}
}
KALDI_ASSERT(cur_output_frame == num_output_frames);
}
NnetBatchInference::NnetBatchInference(
const NnetBatchComputerOptions &opts,
const Nnet &nnet,
const VectorBase<BaseFloat> &priors):
computer_(opts, nnet, priors),
is_finished_(false),
utterance_counter_(0) {
// 'thread_' will run the Compute() function in the background.
compute_thread_ = std::thread(ComputeFunc, this);
}
void NnetBatchInference::AcceptInput(
const std::string &utterance_id,
const Matrix<BaseFloat> &input,
const Vector<BaseFloat> *ivector,
const Matrix<BaseFloat> *online_ivectors,
int32 online_ivector_period) {
UtteranceInfo *info = new UtteranceInfo();
info->utterance_id = utterance_id;
info->num_tasks_finished = 0;
bool output_to_cpu = true; // This wrapper is for when you need the nnet
// output on CPU, e.g. because you want it
// written to disk. If this needs to be
// configurable in the future, we can make changes
// then.
computer_.SplitUtteranceIntoTasks(
output_to_cpu, input, ivector, online_ivectors,
online_ivector_period, &(info->tasks));
// Setting this to a nonzero value will cause the AcceptTask() call below to
// hang until the computation thread has made some progress, if too much
// data is already queued.
int32 max_full_minibatches = 2;
// Earlier utterances have higher priority, which is important to make sure
// that their corresponding tasks are completed and they can be output to disk.
double priority = -1.0 * (utterance_counter_++);
for (size_t i = 0; i < info->tasks.size(); i++) {
info->tasks[i].priority = priority;
computer_.AcceptTask(&(info->tasks[i]), max_full_minibatches);
}
utts_.push_back(info);
tasks_ready_semaphore_.Signal();
}
bool NnetBatchInference::GetOutput(std::string *utterance_id,
Matrix<BaseFloat> *output) {
if (utts_.empty())
return false;
UtteranceInfo *info = *utts_.begin();
std::vector<NnetInferenceTask> &tasks = info->tasks;
int32 num_tasks = tasks.size();
for (; info->num_tasks_finished < num_tasks; ++info->num_tasks_finished) {
Semaphore &semaphore = tasks[info->num_tasks_finished].semaphore;
if (is_finished_) {
semaphore.Wait();
} else {
if (!semaphore.TryWait()) {
// If not all of the tasks of this utterance are ready yet,
// just return false.
return false;
}
}
}
MergeTaskOutput(tasks, output);
*utterance_id = info->utterance_id;
delete info;
utts_.pop_front();
return true;
}
NnetBatchInference::~NnetBatchInference() {
if (!is_finished_)
KALDI_ERR << "Object destroyed before Finished() was called.";
if (!utts_.empty())
KALDI_ERR << "You should get all output before destroying this object.";
compute_thread_.join();
}
void NnetBatchInference::Finished() {
is_finished_ = true;
tasks_ready_semaphore_.Signal();
}
// This is run as the thread of class NnetBatchInference.
void NnetBatchInference::Compute() {
bool allow_partial_minibatch = false;
while (true) {
// keep calling Compute() as long as it makes progress.
while (computer_.Compute(allow_partial_minibatch));
// ... then wait on tasks_ready_semaphore_.
tasks_ready_semaphore_.Wait();
if (is_finished_) {
allow_partial_minibatch = true;
while (computer_.Compute(allow_partial_minibatch));
return;
}
}
}
NnetBatchDecoder::NnetBatchDecoder(
const fst::Fst<fst::StdArc> &fst,
const LatticeFasterDecoderConfig &decoder_opts,
const TransitionModel &trans_model,
const fst::SymbolTable *word_syms,
bool allow_partial,
int32 num_threads,
NnetBatchComputer *computer):
fst_(fst), decoder_opts_(decoder_opts),
trans_model_(trans_model), word_syms_(word_syms),
allow_partial_(allow_partial), computer_(computer),
is_finished_(false), tasks_finished_(false), priority_offset_(0.0),
tot_like_(0.0), frame_count_(0), num_success_(0), num_fail_(0),
num_partial_(0) {
KALDI_ASSERT(num_threads > 0);
for (int32 i = 0; i < num_threads; i++)
decode_threads_.push_back(new std::thread(DecodeFunc, this));
compute_thread_ = std::thread(ComputeFunc, this);
}
void NnetBatchDecoder::SetPriorities(std::vector<NnetInferenceTask> *tasks) {
size_t num_tasks = tasks->size();
double priority_offset = priority_offset_;
for (size_t i = 0; i < num_tasks; i++)
(*tasks)[i].priority = priority_offset - (double)i;
}
void NnetBatchDecoder::UpdatePriorityOffset(double priority) {
size_t num_tasks = decode_threads_.size(),
new_weight = 1.0 / num_tasks,
old_weight = 1.0 - new_weight;
// The next line is vulnerable to a race condition but if it happened it
// wouldn't matter.
priority_offset_ = priority_offset_ * old_weight + priority * new_weight;
}
void NnetBatchDecoder::AcceptInput(
const std::string &utterance_id,
const Matrix<BaseFloat> &input,
const Vector<BaseFloat> *ivector,
const Matrix<BaseFloat> *online_ivectors,
int32 online_ivector_period){
// This function basically does a handshake with one of the decoder threads.
// It may have to wait till one of the decoder threads becomes ready.
input_utterance_.utterance_id = utterance_id;
input_utterance_.input = &input;
input_utterance_.ivector = ivector;
input_utterance_.online_ivectors = online_ivectors;
input_utterance_.online_ivector_period = online_ivector_period;
UtteranceOutput *this_output = new UtteranceOutput();
this_output->utterance_id = utterance_id;
pending_utts_.push_back(this_output);
input_ready_semaphore_.Signal();
input_consumed_semaphore_.Wait();
}
int32 NnetBatchDecoder::Finished() {
is_finished_ = true;
for (size_t i = 0; i < decode_threads_.size(); i++)
input_ready_semaphore_.Signal();
for (size_t i = 0; i < decode_threads_.size(); i++) {
decode_threads_[i]->join();
delete decode_threads_[i];
decode_threads_[i] = NULL;
}
// don't clear decode_threads_, since its size is needed in the destructor to
// compute timing.
tasks_finished_ = true;
tasks_ready_semaphore_.Signal();
compute_thread_.join();
return num_success_;
}
bool NnetBatchDecoder::GetOutput(
std::string *utterance_id,
CompactLattice *clat,
std::string *sentence) {
if (!decoder_opts_.determinize_lattice)
KALDI_ERR << "Don't call this version of GetOutput if you are "
"not determinizing.";
while (true) {
if (pending_utts_.empty())
return false;
if (!pending_utts_.front()->finished)
return false;
UtteranceOutput *this_output = pending_utts_.front();
pending_utts_.pop_front();
if (this_output->compact_lat.NumStates() == 0) {
delete this_output;
// ... and continue round the loop, without returning any output to the
// user for this utterance. Something went wrong in decoding: for
// example, the user specified allow_partial == false and no final-states
// were active on the last frame, or something more unexpected. A warning
// would have been printed in the decoder thread.
} else {
*clat = this_output->compact_lat;
utterance_id->swap(this_output->utterance_id);
sentence->swap(this_output->sentence);
delete this_output;
return true;
}
}
}
bool NnetBatchDecoder::GetOutput(
std::string *utterance_id,
Lattice *lat,
std::string *sentence) {
if (decoder_opts_.determinize_lattice)
KALDI_ERR << "Don't call this version of GetOutput if you are "
"determinizing.";
while (true) {
if (pending_utts_.empty())
return false;
if (!pending_utts_.front()->finished)
return false;
UtteranceOutput *this_output = pending_utts_.front();
pending_utts_.pop_front();
if (this_output->lat.NumStates() == 0) {
delete this_output;
// ... and continue round the loop, without returning any output to the
// user for this utterance. Something went wrong in decoding: for
// example, the user specified allow_partial == false and no final-states
// were active on the last frame, or something more unexpected. A warning
// would have been printed in the decoder thread.
} else {
*lat = this_output->lat; // OpenFST has shallow copy so no need to swap.
utterance_id->swap(this_output->utterance_id);
sentence->swap(this_output->sentence);
delete this_output;
return true;
}
}
}
void NnetBatchDecoder::Compute() {
while (!tasks_finished_) {
tasks_ready_semaphore_.Wait();
bool allow_partial_minibatch = true;
while (computer_->Compute(allow_partial_minibatch));
}
}
void NnetBatchDecoder::Decode() {
while (true) {
input_ready_semaphore_.Wait();
if (is_finished_)
return;
std::vector<NnetInferenceTask> tasks;
std::string utterance_id;
// we can be confident that the last element of 'pending_utts_' is the one
// for this utterance, as we know exactly at what point in the code the main
// thread will be in AcceptInput().
UtteranceOutput *output_utterance = pending_utts_.back();
{
UtteranceInput input_utterance(input_utterance_);
utterance_id = input_utterance.utterance_id;
bool output_to_cpu = true;
computer_->SplitUtteranceIntoTasks(output_to_cpu,
*(input_utterance.input),
input_utterance.ivector,
input_utterance.online_ivectors,
input_utterance.online_ivector_period,
&tasks);
KALDI_ASSERT(output_utterance->utterance_id == utterance_id);
input_consumed_semaphore_.Signal();
// Now let input_utterance go out of scope; it's no longer valid as it may
// be overwritten by something else.
}
SetPriorities(&tasks);
for (size_t i = 0; i < tasks.size(); i++)
computer_->AcceptTask(&(tasks[i]));
tasks_ready_semaphore_.Signal();
{
int32 frame_offset = 0;
LatticeFasterDecoder decoder(fst_, decoder_opts_);
decoder.InitDecoding();
for (size_t i = 0; i < tasks.size(); i++) {
NnetInferenceTask &task = tasks[i];
task.semaphore.Wait();
UpdatePriorityOffset(task.priority);
SubMatrix<BaseFloat> post(task.output_cpu,
task.num_initial_unused_output_frames,
task.num_used_output_frames,
0, task.output_cpu.NumCols());
DecodableMatrixMapped decodable(trans_model_, post, frame_offset);
frame_offset += post.NumRows();
decoder.AdvanceDecoding(&decodable);
task.output.Resize(0, 0); // Free some memory.
}
bool use_final_probs = true;
if (!decoder.ReachedFinal()) {
if (allow_partial_) {
KALDI_WARN << "Outputting partial output for utterance "
<< utterance_id << " since no final-state reached\n";
use_final_probs = false;
std::unique_lock<std::mutex> lock(stats_mutex_);
num_partial_++;
} else {
KALDI_WARN << "Not producing output for utterance " << utterance_id
<< " since no final-state reached and "
<< "--allow-partial=false.\n";
std::unique_lock<std::mutex> lock(stats_mutex_);
num_fail_++;
continue;
}
}
// if we reached this point, we are getting a lattice.
decoder.GetRawLattice(&output_utterance->lat, use_final_probs);
// Let the decoder and the decodable object go out of scope, to save
// memory.
}
ProcessOutputUtterance(output_utterance);
}
}
void NnetBatchDecoder::UtteranceFailed() {
std::unique_lock<std::mutex> lock(stats_mutex_);
num_fail_++;
}
void NnetBatchDecoder::ProcessOutputUtterance(UtteranceOutput *output) {
fst::Connect(&(output->lat));
if (output->lat.NumStates() == 0) {
KALDI_WARN << "Unexpected problem getting lattice for utterance "
<< output->utterance_id;
std::unique_lock<std::mutex> lock(stats_mutex_);
num_fail_++;
return;
}
{ // This block accumulates diagnostics, prints log messages, and sets
// output->sentence.
Lattice best_path;
LatticeWeight weight;
ShortestPath(output->lat, &best_path);
std::vector<int32> alignment;
std::vector<int32> words;
GetLinearSymbolSequence(best_path, &alignment, &words, &weight);
int32 num_frames = alignment.size();
if (word_syms_ != NULL) {
std::ostringstream os;
for (size_t i = 0; i < words.size(); i++) {
std::string s = word_syms_->Find(words[i]);
if (s == "")
KALDI_ERR << "Word-id " << words[i] << " not in symbol table.";
os << s << ' ';
}
output->sentence = os.str();
}
double likelihood = -(weight.Value1() + weight.Value2());
// Note: these logging messages will be out-of-order w.r.t. the transcripts
// that are printed to cerr; we keep those transcripts in the same order
// that the utterances were in, but these logging messages may be out of
// order (due to multiple threads).
KALDI_LOG << "Log-like per frame for utterance " << output->utterance_id
<< " is " << (likelihood / num_frames) << " over "
<< num_frames << " frames.";
KALDI_VLOG(2) << "Cost for utterance " << output->utterance_id << " is "
<< weight.Value1() << " + " << weight.Value2();
std::unique_lock<std::mutex> lock(stats_mutex_);
tot_like_ += likelihood;
frame_count_ += num_frames;
num_success_ += 1;
}
if (decoder_opts_.determinize_lattice) {
if (!DeterminizeLatticePhonePrunedWrapper(
trans_model_,
&output->lat,
decoder_opts_.lattice_beam,
&(output->compact_lat),
decoder_opts_.det_opts))
KALDI_WARN << "Determinization finished earlier than the beam for "
<< "utterance " << output->utterance_id;
output->lat.DeleteStates(); // Save memory.
}
// We'll write the lattice without acoustic scaling, so we need to reverse
// the scale that we applied when decoding.
BaseFloat acoustic_scale = computer_->GetOptions().acoustic_scale;
if (acoustic_scale != 0.0) {
if (decoder_opts_.determinize_lattice)
fst::ScaleLattice(fst::AcousticLatticeScale(1.0 / acoustic_scale),
&(output->compact_lat));
else
fst::ScaleLattice(fst::AcousticLatticeScale(1.0 / acoustic_scale),
&(output->lat));
}
output->finished = true;
}
NnetBatchDecoder::~NnetBatchDecoder() {
if (!is_finished_ || !pending_utts_.empty()) {
// At this point the application is bound to fail so raising another
// exception is not a big problem.
KALDI_ERR << "Destroying NnetBatchDecoder object without calling "
"Finished() and consuming the remaining output";
}
// Print diagnostics.
kaldi::int64 input_frame_count =
frame_count_ * computer_->GetOptions().frame_subsampling_factor;
int32 num_threads = static_cast<int32>(decode_threads_.size());
KALDI_LOG << "Overall likelihood per frame was "
<< tot_like_ / std::max<int64>(1, frame_count_)
<< " over " << frame_count_ << " frames.";
double elapsed = timer_.Elapsed();
// the +1 below is just to avoid division-by-zero errors.
KALDI_LOG << "Time taken "<< elapsed
<< "s: real-time factor assuming 100 frames/sec is "
<< (num_threads * elapsed * 100.0 /
std::max<int64>(input_frame_count, 1))
<< " (per thread; with " << num_threads << " threads).";
KALDI_LOG << "Done " << num_success_ << " utterances ("
<< num_partial_ << " forced out); failed for "
<< num_fail_;
}
} // namespace nnet3
} // namespace kaldi