nnet-descriptor.h 32.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
// nnet3/nnet-descriptor.h

// Copyright   2012-2015  Johns Hopkins University (author: Daniel Povey)

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#ifndef KALDI_NNET3_NNET_DESCRIPTOR_H_
#define KALDI_NNET3_NNET_DESCRIPTOR_H_

#include "base/kaldi-common.h"
#include "util/kaldi-io.h"
#include "matrix/matrix-lib.h"
#include "nnet3/nnet-common.h"
#include "nnet3/nnet-component-itf.h"

#include <iostream>
#include <sstream>
#include <vector>
#include <map>


namespace kaldi {
namespace nnet3 {

/**
   \file nnet-descriptor.h

   This file contains class definitions for classes ForwardingDescriptor,
   SumDescriptor and Descriptor.  Basically this is code that specifies how
   we glue together the outputs of possibly several other network-nodes, as the
   input of a particular network node (or as an output of the network).  In the
   neural-network code we refer to the top-level descriptor which is
   Descriptor.  The InputDescriptor is a concatenation of features; each part
   is a SumDescriptor.  The SumDescriptor is a summation over a set of features
   of all the same dimension, each of which is represented by a
   ForwardingDescriptor.  A ForwardingDescriptor in the simplest case just
   takes just points you to a particular network node, but in general can do
   things like adding time offsets, and selecting different rows of its matrix
   from different inputs.  Unlike the other descriptors, a ForwardingDescriptor
   is in general a bit like a parse tree, in that it can in general contain
   other ForwardingDescriptors.

   The following gives an overview of the expressions that can appear in
   descriptors.  Caution; this is a simplification that overgenerates
   descriptors: not all combinations are allowed.
\verbatim
<descriptor>  ::=   <node-name>      ;; node name of kInput or kComponent node.
<descriptor>  ::=   Append(<descriptor>, <descriptor> [, <descriptor> ... ] )
<descriptor>  ::=   Sum(<descriptor>, <descriptor>)
<descriptor>  ::=   Const(<value>, <dimension>)    ;; e.g. Const(1.0, 512)
<descriptor>  ::=   Scale(<scale>, <descriptor>)   ;; e.g. Scale(-1.0, tdnn2)
;; Failover or IfDefined might be useful for time t=-1 in a RNN, for instance.
<descriptor>  ::=   Failover(<descriptor>, <descriptor>)   ;; 1st arg if computable, else 2nd
<descriptor>  ::=   IfDefined(<descriptor>)     ;; the arg if defined, else zero.
<descriptor>  ::=   Offset(<descriptor>, <t-offset> [, <x-offset> ] ) ;; offsets are integers
;; Switch(...) is intended to be used in clockwork RNNs or similar schemes.  It chooses
;; one argument based on the value of t (in the requested Index) modulo the number of
;; arguments
<descriptor>  ::=   Switch(<descriptor>, <descriptor> [, <descriptor> ...])
;; For use in clockwork RNNs or similar, Round() rounds the time-index t of the
;; requested Index to the next-lowest multiple of the integer <t-modulus>,
;; and evaluates the input argument for the resulting Index.
<descriptor>  ::=   Round(<descriptor>, <t-modulus>)  ;; <t-modulus> is an integer
;; ReplaceIndex replaces some <variable-name> (t or x) in the requested Index
;; with a fixed integer <value>.  E.g. might be useful when incorporating
;; iVectors; iVector would always have time-index t=0.
<descriptor>  ::=   ReplaceIndex(<descriptor>, <variable-name>, <value>)
\endverbatim

 */



/// A ForwardingDescriptor describes how we copy data from another NetworkNode,
/// or from multiple other NetworkNodes, possibly with a scalar weight.  In the
/// base case this can just be equivalent to giving the name of another
/// NetworkNode, but we also support things like time-offsets, selecting
/// depending on the index from multiple different inputs, and things like that.
///
/// Note: nodes of type kOutput (i.e. output nodes of the network) cannot appear
/// as inputs in any descriptor.  This is to simplify compilation.
class ForwardingDescriptor {
 public:
  // Given an Index that's requested at the output of this descriptor, maps it
  // to a (node_index, Index) pair that says where we are to get the data from.
  //
  virtual Cindex MapToInput(const Index &output) const = 0;

  // Return the feature dimension.
  virtual int32 Dim(const Nnet &nnet) const = 0;

  virtual ForwardingDescriptor *Copy() const = 0;

  /// This function is for use in things like clockwork RNNs, where shifting the
  /// time of the inputs and outputs of the network by some multiple integer n
  /// would leave things the same, but shifting by non-multiples would change the
  /// network structure.  It returns the smallest modulus to which this
  /// descriptor is invariant; the lowest common multiple of all descriptors in
  /// the network gives you the modulus for the whole network.
  virtual int32 Modulus() const { return 1; }

  // Write to string that will be one line of a config-file-like format.  The
  // opposite of Parse.
  virtual void WriteConfig(std::ostream &os,
                           const std::vector<std::string> &node_names) const = 0;

  /// This function appends to "node_indexes" all the node indexes
  // that this descriptor may access.
  virtual void GetNodeDependencies(std::vector<int32> *node_indexes) const = 0;

  /// This function returns the scale on the node-index 'node_index' when it
  /// appears in expressions inside this descriptor, or +infinity if it does not
  /// appear.  E.g. if the descriptor is just `Scale(tdnn2, 2.0)` and the node
  /// index for `tdnn2` is 4, then GetScaleForNode(4) would return 2.0.  If a
  /// particular node_index > 0 appears in different sub-expressions of the
  /// descriptor with different scales it is an error (it's not supported) and
  /// this function would crash.
  virtual BaseFloat GetScaleForNode(int32 node_index) const = 0;

  virtual ~ForwardingDescriptor() { }
  ForwardingDescriptor() { }
 private:
  KALDI_DISALLOW_COPY_AND_ASSIGN(ForwardingDescriptor);
};

/// SimpleForwardingDescriptor is the base-case of ForwardingDescriptor,
/// consisting of a source node in the graph with a given scalar weight (which
/// will in the normal case be 1.0).  The string representation in the
/// normal (scale=1.0) case is just the node-name, like `tdnn2`; if
/// the weight is not 1.0 it's something like `Scale(2.0, tdnn2)`
class SimpleForwardingDescriptor: public ForwardingDescriptor {
 public:
  virtual Cindex MapToInput(const Index &index) const;
  virtual int32 Dim(const Nnet &nnet) const;
  virtual ForwardingDescriptor *Copy() const;
  virtual void GetNodeDependencies(std::vector<int32> *node_indexes) const;
  virtual BaseFloat GetScaleForNode(int32 node_index) const;

  // Write to string that will be one line of a config-file-like format.  The
  // opposite of Parse.
  // written form is just the node-name of src_node_.
  virtual void WriteConfig(std::ostream &os,
                           const std::vector<std::string> &node_names) const;

  SimpleForwardingDescriptor(int32 src_node,
                             BaseFloat scale = 1.0):
      src_node_(src_node), scale_(scale) {
    KALDI_ASSERT(src_node >= 0);
  }
  virtual ~SimpleForwardingDescriptor() { }
 private:
  int32 src_node_;  // index of the source NetworkNode.
  BaseFloat scale_;  // Scale of the node in the expression; this will be 1.0
                     // unless you used a Scale(...) expression in your
                     // Descriptor.
};

/// Offsets in 't' and 'x' values of other ForwardingDescriptors.
/// Written form is:
///   `Offset(<descriptor>, <t-offset> [, <x-offset> ] )`
/// e.g. `Offset(tdnn2, -2)`
class OffsetForwardingDescriptor: public ForwardingDescriptor {
 public:
  virtual Cindex MapToInput(const Index &ind) const;
  virtual int32 Dim(const Nnet &nnet) const { return src_->Dim(nnet); }
  virtual ForwardingDescriptor *Copy() const;

  // written form is: Offset(<src-written-form>, t-offset [, x-offset])
  virtual void WriteConfig(std::ostream &os,
                           const std::vector<std::string> &node_names) const;

  virtual int32 Modulus() const { return src_->Modulus(); }

  virtual void GetNodeDependencies(std::vector<int32> *node_indexes) const;
  virtual BaseFloat GetScaleForNode(int32 node_index) const;

  // takes ownership of src.
  OffsetForwardingDescriptor(ForwardingDescriptor *src,
                             Index offset): src_(src), offset_(offset) { }

  virtual ~OffsetForwardingDescriptor() { delete src_; }


  // this function is not in the shared interface. it's used
  // in class ModelCollapser.
  const ForwardingDescriptor &Src() const { return *src_; }
 private:
  ForwardingDescriptor *src_;  // Owned here.
  Index offset_;  // The index-offset to be added to the index.
};

/// Chooses from different inputs based on the the time index modulo
/// (the number of ForwardingDescriptors given as inputs).  This is rarely
/// if ever used.  Written form is:
///  `Switch(<descriptor>, <descriptor> [, <descriptor> ...])`
/// e.g. `Switch(tdnn2a, tdnn2b, tdnn2c)`
class SwitchingForwardingDescriptor: public ForwardingDescriptor {
 public:
  virtual Cindex MapToInput(const Index &ind) const;
  virtual int32 Dim(const Nnet &nnet) const { return src_[0]->Dim(nnet); }
  virtual ForwardingDescriptor *Copy() const;
  // Written form is "Switch(<written-form-of-src1>, <written-form-of-src2>, ... )"
  virtual void WriteConfig(std::ostream &os,
                          const std::vector<std::string> &node_names) const;

  virtual int32 Modulus() const;

  /// This function appends to "node_indexes" all the node indexes
  // that this descriptor may access.
  virtual void GetNodeDependencies(std::vector<int32> *node_indexes) const;
  virtual BaseFloat GetScaleForNode(int32 node_index) const;

  // takes ownership of items in src.
  SwitchingForwardingDescriptor(std::vector<ForwardingDescriptor*> &src):
      src_(src) { }
  virtual ~SwitchingForwardingDescriptor() { DeletePointers(&src_); }
 private:
  // Pointers are owned here.
  std::vector<ForwardingDescriptor*> src_;
};



/// For use in clockwork RNNs and the like, this forwarding-descriptor
/// rounds the time-index t down to the the closest t' <= t that is
/// an exact multiple of t_modulus_.
/// Written form is: `Round(<descriptor>, <t-modulus>)`
/// e.g.: `Round(tdnn2, 3)`
class RoundingForwardingDescriptor: public ForwardingDescriptor {
 public:
  virtual Cindex MapToInput(const Index &ind) const;
  virtual int32 Dim(const Nnet &nnet) const { return src_->Dim(nnet); }
  virtual ForwardingDescriptor *Copy() const;
  // Written form is "Round(<written-form-of-src>, <t_modulus>)"
  virtual void WriteConfig(std::ostream &os,
                          const std::vector<std::string> &node_names) const;

  virtual int32 Modulus() const { return t_modulus_; }

  /// This function appends to "node_indexes" all the node indexes
  // that this descriptor may access.
  virtual void GetNodeDependencies(std::vector<int32> *node_indexes) const;
  virtual BaseFloat GetScaleForNode(int32 node_index) const;

  // takes ownership of src.
  RoundingForwardingDescriptor(ForwardingDescriptor *src,
                               int32 t_modulus):
      src_(src), t_modulus_(t_modulus) { }

  virtual ~RoundingForwardingDescriptor() { delete src_; }
 private:
  ForwardingDescriptor *src_;
  int32 t_modulus_;
};

/// This ForwardingDescriptor modifies the indexes (n, t, x) by replacing one
/// of them (normally t) with a constant value and keeping the rest.
/// Written form is: `ReplaceIndex(<descriptor>, <variable-name>, <value>)`
/// e.g. `ReplaceIndex(ivector, t, 0)`
class ReplaceIndexForwardingDescriptor: public ForwardingDescriptor {
 public:
  enum VariableName { kN = 0, kT = 1, kX = 2};

  virtual Cindex MapToInput(const Index &ind) const;
  virtual int32 Dim(const Nnet &nnet) const { return src_->Dim(nnet); }
  virtual ForwardingDescriptor *Copy() const;
  // Written form is "ReplaceIndex(<written-form-of-src>, <variable-name>, <value>)"
  // where <variable-name> is either "t" or "x".
  virtual void WriteConfig(std::ostream &os,
                          const std::vector<std::string> &node_names) const;

  /// This function appends to "node_indexes" all the node indexes
  // that this descriptor may access.
  virtual void GetNodeDependencies(std::vector<int32> *node_indexes) const;
  virtual BaseFloat GetScaleForNode(int32 node_index) const;

  // takes ownership of src.
  ReplaceIndexForwardingDescriptor(ForwardingDescriptor *src,
                                   VariableName variable_name,
                                   int32 value):
      src_(src), variable_name_(variable_name), value_(value) { }

  virtual ~ReplaceIndexForwardingDescriptor() { delete src_; }
 private:
  ForwardingDescriptor *src_;
  VariableName variable_name_;
  int32 value_;
};


/// Forward declaration.  This is declared in nnet-computation-graph.h.
class CindexSet;

/// This is an abstract base-class.  In the normal case a SumDescriptor is a sum
/// over one or more ForwardingDescriptors (all of which must be of the same
/// dimension).  However, it also allows for logic for dealing with cases where
/// only some terms in the sum are present, and only some are included in the
/// sum: for example, not just expressions like A + B but also A + (B if
/// present), or (A if present; if not, B).  It also handles
/// expressions involving adding a constant, e.g.
/// `Sum(Scale(tdnn2, -1.0), Const(1.0, 512))` (see ConstantSumDescriptor).
class SumDescriptor {
 public:
  /// Given an Index at the output of this Descriptor, append to "dependencies"
  /// a list of Cindexes that describes what inputs we potentially depend on.
  /// The output list is not necessarily sorted, and this function doesn't make
  /// sure that it's unique.
  virtual void GetDependencies(const Index &ind,
                               std::vector<Cindex> *dependencies) const = 0;

  /// This function exists to enable us to manage optional dependencies,
  /// i.e. for making sense of expressions like (A + (B is present)) and (A if
  /// present; if not, B).  Suppose we are trying to compute the index "ind",
  /// and the user represents that "cindex_set" is the set of Cindexes are
  /// available to the computation; then this function will return true if we
  /// can compute the expression given these inputs; and if so, will output to
  /// "used_inputs" the list of Cindexes that this expression will be a
  /// summation over.
  ///
  ///  @param [in] ind  The index that we want to compute at the output of the
  ///                   Descriptor.
  ///  @param [in] cindex_set  The set of Cindexes that are available at the
  ///                   input of the Descriptor.
  ///  @param [out] used_inputs If non-NULL, if this function returns true then
  ///                  to this vector will be *appended* the inputs that will
  ///                  actually participate in the computation.  Else (if non-NULL) it
  ///                  will be left unchanged.
  ///  @return Returns true if this output is computable given the provided
  ///          inputs.
  virtual bool IsComputable(const Index &ind,
                            const CindexSet &cindex_set,
                            std::vector<Cindex> *used_inputs) const = 0;

  virtual int32 Dim(const Nnet &nnet) const = 0;

  virtual SumDescriptor *Copy() const = 0;

  virtual ~SumDescriptor() { }

  /// This function appends to "node_indexes" a list (not necessarily sorted or
  /// unique) of all the node indexes that this descriptor may forward data from.
  virtual void GetNodeDependencies(std::vector<int32> *node_indexes) const = 0;

  /// This function returns the scale on the node-index 'node_index' when it
  /// appears in expressions inside this descriptor.  E.g. if the descriptor is
  /// just `Scale(tdnn2, 2.0)` and the node index for `tdnn2` is 4, then
  /// GetScaleForNode(4) would return 2.0.  It will return +infinity if the node
  /// is >= 0 and does not appear in this descriptor.  If node_index < 0, it
  /// returns the constant offset value from this descriptor, which will equal
  /// 0.0 if there is no expression like `Const(1.0, 512)` in this node.  If a
  /// particular node_index > 0 appears in different sub-expressions of the
  /// descriptor with different scales it is an error (it's not supported) and
  /// this function would crash.
  virtual BaseFloat GetScaleForNode(int32 node_index) const = 0;

  // see Modulus function of ForwardingDescriptor for explanation.
  virtual int32 Modulus() const = 0;

  /// Write in config-file format.  Conventional Read and Write methods are not
  /// supported.
  virtual void WriteConfig(std::ostream &os,
                           const std::vector<std::string> &node_names) const = 0;
};

/// This is the case of class SumDescriptor, in which we contain just one term,
/// and that term is optional (an IfDefined() expression).  That term is a
/// general SumDescriptor.
///  The written form is: `IfDefined(<descriptor>)`, e.g.
///   `IfDefined(Offset(lstm2.s, -3))`
class OptionalSumDescriptor: public SumDescriptor {
 public:
  virtual void GetDependencies(const Index &ind,
                               std::vector<Cindex> *dependencies) const;
  virtual bool IsComputable(const Index &ind,
                            const CindexSet &cindex_set,
                            std::vector<Cindex> *used_inputs) const {
      return src_->IsComputable(ind, cindex_set, used_inputs) || true;
  }

  virtual int32 Dim(const Nnet &nnet) const;

  // This function appends to "node_indexes" a list (not necessarily sorted or
  // unique) of all the node indexes that this descriptor may forward data from.
  virtual void GetNodeDependencies(std::vector<int32> *node_indexes) const;
  virtual BaseFloat GetScaleForNode(int32 node_index) const;
  virtual int32 Modulus() const { return src_->Modulus(); }
  /// written form is: if required_ == true, "<written-form-of-src>"
  /// else "IfDefined(<written-form-of-src>)".
  virtual void WriteConfig(std::ostream &os,
                           const std::vector<std::string> &node_names) const;
  virtual SumDescriptor *Copy() const;

  OptionalSumDescriptor(SumDescriptor *src): src_(src) { }
  virtual ~OptionalSumDescriptor() { delete src_; }
 private:
  SumDescriptor *src_;
};

/// This is the normal base-case of SumDescriptor which just wraps a
/// ForwardingDescriptor.  The written form is any valid ForwardingDescriptor,
/// e.g. in the simplest case just `tdnn3`.
/// See also ConstantSumDescriptor().
class SimpleSumDescriptor: public SumDescriptor {
 public:
  virtual void GetDependencies(const Index &ind,
                               std::vector<Cindex> *dependencies) const;
  virtual bool IsComputable(const Index &ind,
                            const CindexSet &cindex_set,
                            std::vector<Cindex> *used_inputs) const;
  virtual int32 Dim(const Nnet &nnet) const;

  virtual BaseFloat GetScaleForNode(int32 node_index) const;

  // This function appends to "node_indexes" a list (not necessarily sorted or
  // unique) of all the node indexes that this descriptor may forward data from.
  virtual void GetNodeDependencies(std::vector<int32> *node_indexes) const;
  virtual int32 Modulus() const { return src_->Modulus(); }
  /// written form is: if required_ == true, "<written-form-of-src>"
  /// else "IfDefined(<written-form-of-src>)".
  virtual void WriteConfig(std::ostream &os,
                           const std::vector<std::string> &node_names) const;
  virtual SumDescriptor *Copy() const;

  SimpleSumDescriptor(ForwardingDescriptor *src): src_(src) { }
  virtual ~SimpleSumDescriptor() { delete src_; }

  // this function is not in the shared interface. it's used
  // in class ModelCollapser.
  const ForwardingDescriptor &Src() const { return *src_; }
 private:
  ForwardingDescriptor *src_;
};


/// This is an alternative base-case of SumDescriptor (an alternative to
/// SimpleSumDescriptor) which represents a constant term, e.g. `Const(1.0,
/// 512)`.  Note that this is not allowed to appear inside conditionals
/// such as IfDefined() or Failover(); this is enforced in the parsing
/// code involving class GeneralDescriptor.
/// The written form is: `Const(<value>, <dimension>)`, e.g.
/// `Const(-1.0, 512)`
class ConstantSumDescriptor: public SumDescriptor {
 public:
  virtual void GetDependencies(const Index &ind,
                               std::vector<Cindex> *dependencies) const { }
  virtual bool IsComputable(const Index &ind,
                            const CindexSet &cindex_set,
                            std::vector<Cindex> *used_inputs) const {
    return true;
  }
  virtual int32 Dim(const Nnet &nnet) const { return dim_; }
  virtual BaseFloat GetScaleForNode(int32 node_index) const;

  virtual void GetNodeDependencies(std::vector<int32> *node_indexes) const { }
  virtual int32 Modulus() const { return 1; }
  /// The written form is: `Const(<value>, <dimension>)`, e.g.
  /// `Const(-1.0, 512)`
  virtual void WriteConfig(std::ostream &os,
                           const std::vector<std::string> &node_names) const;
  virtual SumDescriptor *Copy() const;

  ConstantSumDescriptor(BaseFloat value, int32 dim);
  virtual ~ConstantSumDescriptor() {}
 private:
  BaseFloat value_;
  int32 dim_;
};

/// BinarySumDescriptor can represent either A + B, or (A if defined, else B).
/// Other expressions such as A + (B if defined, else zero), (A if defined, else
/// zero) + (B if defined, else zero), and (A if defined, else B if defined,
/// else zero) can be expressed using combinations of the two provided options
/// for BinarySumDescriptor and the variant
class BinarySumDescriptor: public SumDescriptor {
 public:
  enum Operation {
    kSumOperation,  // A + B
    kFailoverOperation, // A if defined, else B.
  };
  virtual void GetDependencies(const Index &ind,
                               std::vector<Cindex> *dependencies) const;
  virtual bool IsComputable(const Index &ind,
                            const CindexSet &cindex_set,
                            std::vector<Cindex> *used_inputs) const;
  virtual int32 Dim(const Nnet &nnet) const;
  virtual BaseFloat GetScaleForNode(int32 node_index) const;

  // This function appends to "node_indexes" a list (not necessarily sorted or
  // unique) of all the node indexes that this descriptor may forward data from.
  virtual void GetNodeDependencies(std::vector<int32> *node_indexes) const;
  virtual int32 Modulus() const;
  /// Written form is: if op_ == kSum then "Sum(<src1>, <src2>)";
  /// if op_ == kFailover, then "Failover(<src1>, <src2>)"
  /// If you need more than binary operations, just use Sum(a, Sum(b, c)).
  virtual void WriteConfig(std::ostream &os,
                           const std::vector<std::string> &node_names) const;
  virtual SumDescriptor *Copy() const;
  BinarySumDescriptor(Operation op, SumDescriptor *src1, SumDescriptor *src2):
      op_(op), src1_(src1), src2_(src2) {}
  virtual ~BinarySumDescriptor() { delete src1_; delete src2_; }
 private:
  Operation op_;
  SumDescriptor *src1_;
  SumDescriptor *src2_;
};


// A Descriptor concatenates over its parts, so its feature-dimension will
// be the sum of the feature-dimensions of its parts.  In a valid Descriptor,
// "parts" will be nonempty.  Each part may be (in general) a summation, but
// usually a summation with just one term.
class Descriptor {
 public:
  int32 Dim(const Nnet &nnet) const;

  // The Parse method is used for reading a config-file-style represenation.
  // Internally this uses class GeneralDescriptor to read and normalize the
  // input.  Assumes the input has already been tokenized into an array of
  // strings by DescriptorTokenize(); it moves the begin-pointer "next_token" to
  // account for each token that it consumes.  Prints warning and returns false on
  // error (including if there was junk after the last token).  The input tokens
  // should be terminated with a token that says "end of input".
  bool Parse(const std::vector<std::string> &node_names,
             const std::string **next_token);

  // Write in config-file format.
  // if parts_.size() == 1, written form is just "<written-form-of-part0>"
  // otherwise, written form is "Append(<written-form-of-part0>, <written-form-of-part1>,  ... )".
  void WriteConfig(std::ostream &os,
                   const std::vector<std::string> &node_names) const;

  /// This function exists to enable us to manage optional dependencies,
  /// i.e. for making sense of expressions like (A + (B is present)) and (A if
  /// present; if not, B).  Suppose we are trying to compute the index "ind",
  /// and the user represents that "cindex_set" is the set of Cindexes are
  /// available to the computation; then this function will return true if we
  /// can compute the expression given these inputs; and if so, will output to
  /// "used_inputs" the list of Cindexes (not necessarily unique) that this
  /// expression will include.  Otherwise it will return false and set
  /// used_inputs to the empty vector.
  ///
  ///  @param [in] ind  The index that we want to compute at the output of the
  ///                   Descriptor.
  ///  @param [in] cindex_set  The set of Cindexes that are available at the
  ///                   input of the Descriptor.
  ///  @param [out] used_inputs If non-NULL, if this function returns true then
  ///                  to this vector will be *appended* the inputs that will
  ///                  actually participate in the computation.  Else (if non-NULL) it
  ///                  will be left unchanged.
  ///  @return Returns true if this output is computable given the provided
  ///          inputs.
  void GetDependencies(const Index &index,
                       std::vector<Cindex> *used_inputs) const;

  /// Has the same purpose and interface as the IsComputable function of the
  /// SumDescriptor function.   Outputs to used_inputs rather than appending
  /// to it, though.  used_inputs will not be sorted or have repeats removed.
  bool IsComputable(const Index &ind,
                    const CindexSet &cindex_set,
                    std::vector<Cindex> *used_inputs) const;

  // This function outputs to "node_indexes" a list (not necessarily sorted or
  // unique) of all the node indexes that this descriptor may forward data from.
  void GetNodeDependencies(std::vector<int32> *node_indexes) const;

  // see Modulus function of ForwardingDescriptor for explanation.
  int32 Modulus() const;

  /// Returns the number of parts that are concatenated over.
  int32 NumParts() const { return parts_.size(); }
  /// returns the n'th part.
  const SumDescriptor &Part(int32 n) const;

  Descriptor() { }
  /// Copy constructor
  Descriptor(const Descriptor &other) { *this = other; }
  /// Assignment operator.
  Descriptor &operator = (const Descriptor &other);
  /// Takes ownership of pointers in "parts".
  Descriptor(const std::vector<SumDescriptor*> &parts):
      parts_(parts) { }
  /// Destructor
  ~Descriptor() { Destroy(); }
 private:
  void Destroy();
  // the elements of parts_ are owned here.
  std::vector<SumDescriptor*> parts_;
};


/**
   This class is only used when parsing Descriptors.  It is useful for normalizing
   descriptors that are structured in an invalid or redundant way, into a
   form that can be turned into a real Descriptor.
 */
struct GeneralDescriptor {
  enum DescriptorType { kAppend, kSum, kFailover, kIfDefined, kOffset, kSwitch,
                        kRound, kReplaceIndex, kScale, kConst, kNodeName };

  // The Parse method is used for reading a config-file-style represenation.
  // Assumes the input has already been tokenized into an array of strings, and
  // it moves the begin-pointer "next_token" to account for token that it
  // consumes.  Calls KALDI_ERR on error.  The list of tokens should be
  // terminated with a string saying "end of input".  Does not check that all
  // the input has been consumed-- the caller should do that [check that
  // **next_token == "end of input" after calling.]
  static GeneralDescriptor *Parse(const std::vector<std::string> &node_names,
                                  const std::string **next_token);

  explicit GeneralDescriptor(DescriptorType t, int32 value1 = -1,
                             int32 value2 = -1, BaseFloat alpha = 0.0):
      descriptor_type_(t), value1_(value1), value2_(value2),
      alpha_(alpha) { }


  ~GeneralDescriptor() { DeletePointers(&descriptors_); }

  GeneralDescriptor *GetNormalizedDescriptor() const;

  Descriptor *ConvertToDescriptor();

  // prints in text form-- this is really only used for debug.
  void Print(const std::vector<std::string> &node_names,
             std::ostream &os);

 private:
  KALDI_DISALLOW_COPY_AND_ASSIGN(GeneralDescriptor);

  DescriptorType descriptor_type_;

  // value1_ is only relevant if:
  //    (a) descriptor_type_ == kReplaceIndex (value1_ is 1 for t, 2 for x)
  //    (b) descriptor_type_ == kNodeName (value1_ is the index of the node)
  //    (c) descriptor_type_ == kOffset (value1_ is the t offset).
  //    (d) descriptor_type_ == kConst (value1_ is the dimension and alpha_
  //                                   is the value).
  int32 value1_;
  // value2_ is only relevant if
  //    (a) descriptor_type == kReplaceIndex (value2_ is the value
  //                                          we replace the index with).
  //    (b) descriptor_type_ == kOffset (value2_ is the x offset)
  int32 value2_;

  // alpha is only relevant if
  //  (a) descriptor_type == kScale, and this will be the scaling factor.
  //  (b) descriptor_type == kConst; this is the value, and value1_ is set to the
  //          dimension.
  BaseFloat alpha_;

  // For any descriptor types that take args of type kDescriptor, a list of those
  // args.  Pointers owned here.
  std::vector<GeneralDescriptor*> descriptors_;

  //  parses an Append() or Sum() or Switch() expression after the "Append(" or
  //  "Sum(" or "Switch(" has been read.
  void ParseAppendOrSumOrSwitch(const std::vector<std::string> &node_names,
                                const std::string **next_token);
  // parse an IfDefined() expression after the IfDefined( has already been
  // read.
  void ParseIfDefined(const std::vector<std::string> &node_names,
                      const std::string **next_token);
  // ... and so on.
  void ParseOffset(const std::vector<std::string> &node_names,
                   const std::string **next_token);
  void ParseSwitch(const std::vector<std::string> &node_names,
                   const std::string **next_token);
  void ParseFailover(const std::vector<std::string> &node_names,
                     const std::string **next_token);
  void ParseRound(const std::vector<std::string> &node_names,
                  const std::string **next_token);
  void ParseScale(const std::vector<std::string> &node_names,
                  const std::string **next_token);
  void ParseConst(const std::vector<std::string> &node_names,
                  const std::string **next_token);
  void ParseReplaceIndex(const std::vector<std::string> &node_names,
                         const std::string **next_token);



  // Used inside NormalizeAppend().  Return the number of terms there
  // would be in a single consolidated Append() expressions, and asserts that in
  // whichever branch of any other expressions we take, the number of terms is
  // the same.
  int32 NumAppendTerms() const;
  // Used inside NormalizeAppend().  Gets one of the appended terms from this
  // descriptor, with 0 <= term < NumAppendTerms().  Answer is newly allocated.
  GeneralDescriptor *GetAppendTerm(int32 term) const;


  // Normalizes w.r.t. Append expressions by moving Append() to the outside.
  // Called only at the top level.
  GeneralDescriptor *NormalizeAppend() const;

  // This call does all other types of normalization except for normalizing
  // Append() expressions (which is assumed to have been done already).  Returns
  // true if anything was changed.
  static bool Normalize(GeneralDescriptor *ptr);

  SumDescriptor *ConvertToSumDescriptor() const;
  ForwardingDescriptor *ConvertToForwardingDescriptor() const;

};




} // namespace nnet3
} // namespace kaldi

#endif