nnet-general-component.h
45 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
// nnet3/nnet-general-component.h
// Copyright 2015 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_NNET3_NNET_GENERAL_COMPONENT_H_
#define KALDI_NNET3_NNET_GENERAL_COMPONENT_H_
#include "nnet3/nnet-common.h"
#include "nnet3/nnet-component-itf.h"
#include "nnet3/natural-gradient-online.h"
#include <iostream>
namespace kaldi {
namespace nnet3 {
/// @file nnet-general-component.h
/// This file contains declarations of components that are not "simple",
/// meaning they care about the indexes they are operating on, don't return
/// the kSimpleComponent flag in their Properties(), and may return a different
/// number of outputs than inputs.
/// Also see nnet-convolutional-component.h, which also contains
/// number of convolution-related 'general' components.
/**
This Component takes a larger input-dim than output-dim, where the input-dim
must be a multiple of the output-dim, and distributes different blocks of the
input dimension to different 'x' values. In the normal case where the input
is only valid at x=0, the first block of output goes to x=0, the second block
at x=1, and so on. It also supports a more general usage, so in general a
value 'x' at the output will map to block 'x % n_blocks' of the dimension
blocks of the input, and to an x value 'x / n_blocks' of the input. For negative
x values the % and / operations are always rounded down, not towards zero.
The config line is of the form
input-dim=xx output-dim=xx
where input-dim must be a multiple of the output-dim, and n_blocks is
set to input-dim / output-dim.
*/
class DistributeComponent: public Component {
public:
DistributeComponent(int32 input_dim, int32 output_dim) {
Init(input_dim, output_dim);
}
DistributeComponent(): input_dim_(0), output_dim_(0) { }
virtual int32 InputDim() const { return input_dim_; }
virtual int32 OutputDim() const { return output_dim_; }
// use the default Info() function.
virtual void InitFromConfig(ConfigLine *cfl);
virtual std::string Type() const { return "DistributeComponent"; }
virtual int32 Properties() const { return 0; }
virtual void* Propagate(const ComponentPrecomputedIndexes *indexes,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const std::string &debug_info,
const ComponentPrecomputedIndexes *indexes,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
void *memo,
Component *, // to_update,
CuMatrixBase<BaseFloat> *in_deriv) const;
virtual void Read(std::istream &is, bool binary); // This Read function
// requires that the Component has the correct type.
/// Write component to stream
virtual void Write(std::ostream &os, bool binary) const;
virtual Component* Copy() const {
return new DistributeComponent(input_dim_, output_dim_);
}
// Some functions that are only to be reimplemented for GeneralComponents.
virtual void GetInputIndexes(const MiscComputationInfo &misc_info,
const Index &output_index,
std::vector<Index> *desired_indexes) const;
// This function returns true if at least one of the input indexes used to
// compute this output index is computable.
virtual bool IsComputable(const MiscComputationInfo &misc_info,
const Index &output_index,
const IndexSet &input_index_set,
std::vector<Index> *used_inputs) const;
virtual ComponentPrecomputedIndexes* PrecomputeIndexes(
const MiscComputationInfo &misc_info,
const std::vector<Index> &input_indexes,
const std::vector<Index> &output_indexes,
bool need_backprop) const;
// Some functions that are specific to this class.
void Init(int32 input_dim, int32 output_dim);
private:
// computes the input index corresponding to a particular output index.
// if block != NULL, also computes which block of the input this corresponds to.
inline void ComputeInputIndexAndBlock(const Index &output_index,
Index *input_index,
int32 *block) const;
inline void ComputeInputPointers(
const ComponentPrecomputedIndexes *indexes,
const CuMatrixBase<BaseFloat> &in,
int32 num_output_rows,
std::vector<const BaseFloat*> *input_pointers) const;
// non-const version of the above.
inline void ComputeInputPointers(
const ComponentPrecomputedIndexes *indexes,
int32 num_output_rows,
CuMatrixBase<BaseFloat> *in,
std::vector<BaseFloat*> *input_pointers) const;
int32 input_dim_;
int32 output_dim_;
};
class DistributeComponentPrecomputedIndexes:
public ComponentPrecomputedIndexes {
public:
// each pair is a pair (row, dim_offset), and by
// computing (input.Data() + row * input.Stride() + dim_offset)
// we get an address that points to the correct input location.
std::vector<std::pair<int32, int32> > pairs;
// this class has a virtual destructor so it can be deleted from a pointer
// to ComponentPrecomputedIndexes.
virtual ~DistributeComponentPrecomputedIndexes() { }
virtual ComponentPrecomputedIndexes* Copy() const {
return new DistributeComponentPrecomputedIndexes(*this);
}
virtual void Write(std::ostream &ostream, bool binary) const;
virtual void Read(std::istream &istream, bool binary);
virtual std::string Type() const { return "DistributeComponentPrecomputedIndexes"; }
};
/*
Class StatisticsExtractionComponent is used together with
StatisticsPoolingComponent to extract moving-average mean and
standard-deviation statistics.
StatisticsExtractionComponent is designed to extract statistics-- 0th-order,
1st-order and optionally diagonal 2nd-order stats-- from small groups of
frames, such as 10 frames. The statistics will then be further processed by
StatisticsPoolingComponent to compute moving-average means and (if configured)
standard deviations. The reason for the two-component way of doing this is
efficiency, particularly in the graph-compilation phase. (Otherwise there
would be too many dependencies to process). The StatisticsExtractionComponent
is designed to let you extract statistics from fixed-size groups of frames
(e.g. 10 frames), and in StatisticsPoolingComponent you are only expected to
compute the averages at the same fixed period (e.g. 10 frames), so it's more
efficient than if you were to compute a moving average at every single frame;
and the computation of the intermediate stats means that most of the
computation that goes into extracting the means and standard deviations for
nearby frames is shared.
The config line in a typical setup will be something like:
input-dim=250 input-period=1 output-period=10 include-variance=true
input-dim is self-explanatory. The inputs will be obtained at multiples of
input-period (e.g. it might be 3 for chain models). output-period must be a
multiple of input period, and the requested output indexes will be expected to
be multiples of output-period (which you can ensure through use of the Round
descriptor). For instance, if you request the output on frame 80, it will
consist of stats from input frames 80 through 89.
An output of this component will be 'computable' any time at least one of
the corresponding inputs is computable.
In all cases the first dimension of the output will be a count (between 1 and
10 inclusive in this example). If include-variance=false, then the output
dimension will be input-dim + 1. and the output dimensions >0 will be
1st-order statistics (sums of the input). If include-variance=true, then the
output dimension will be input-dim * 2 + 1, where the raw diagonal 2nd-order
statistics are appended to the 0 and 1st order statistics.
The default configuration values are:
input-dim=-1 input-period=1 output-period=1 include-variance=true
*/
class StatisticsExtractionComponent: public Component {
public:
// Initializes to defaults which would not pass Check(); use InitFromConfig()
// or Read() or copy constructor to really initialize.
StatisticsExtractionComponent();
// copy constructor, used in Copy().
StatisticsExtractionComponent(const StatisticsExtractionComponent &other);
virtual int32 InputDim() const { return input_dim_; }
virtual int32 OutputDim() const {
// count + sum stats [ + sum-squared stats].
return 1 + input_dim_ + (include_variance_ ? input_dim_ : 0);
}
virtual void InitFromConfig(ConfigLine *cfl);
virtual std::string Type() const { return "StatisticsExtractionComponent"; }
virtual int32 Properties() const {
return kPropagateAdds|kReordersIndexes|
(include_variance_ ? kBackpropNeedsInput : 0);
}
virtual void* Propagate(const ComponentPrecomputedIndexes *indexes,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const std::string &debug_info,
const ComponentPrecomputedIndexes *indexes,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
void *memo,
Component *, // to_update,
CuMatrixBase<BaseFloat> *in_deriv) const;
virtual void Read(std::istream &is, bool binary); // This Read function
// requires that the Component has the correct type.
/// Write component to stream
virtual void Write(std::ostream &os, bool binary) const;
virtual Component* Copy() const {
return new StatisticsExtractionComponent(*this);
}
// Some functions that are only to be reimplemented for GeneralComponents.
virtual void GetInputIndexes(const MiscComputationInfo &misc_info,
const Index &output_index,
std::vector<Index> *desired_indexes) const;
virtual bool IsComputable(const MiscComputationInfo &misc_info,
const Index &output_index,
const IndexSet &input_index_set,
std::vector<Index> *used_inputs) const;
// This function reorders the input and output indexes so that they
// are sorted first on n and then x and then t.
virtual void ReorderIndexes(std::vector<Index> *input_indexes,
std::vector<Index> *output_indexes) const;
virtual ComponentPrecomputedIndexes* PrecomputeIndexes(
const MiscComputationInfo &misc_info,
const std::vector<Index> &input_indexes,
const std::vector<Index> &output_indexes,
bool need_backprop) const;
private:
// Checks that the parameters are valid.
void Check() const;
// Disallow assignment operator.
StatisticsExtractionComponent &operator =(
const StatisticsExtractionComponent &other);
int32 input_dim_;
int32 input_period_;
int32 output_period_;
bool include_variance_;
};
class StatisticsExtractionComponentPrecomputedIndexes:
public ComponentPrecomputedIndexes {
public:
// While creating the output we sum over row ranges of the input.
// forward_indexes.Dim() equals the number of rows of the output, and each
// element is a (start, end) range of inputs, that is summed over.
CuArray<Int32Pair> forward_indexes;
// This vector stores the number of inputs for each output. Normally this will be
// the same as the component's output_period_ / input_period_, but could be less
// due to edge effects at the utterance boundary.
CuVector<BaseFloat> counts;
// Each input row participates in exactly one output element, and
// 'backward_indexes' identifies which row of the output each row
// of the input is part of. It's used in backprop.
CuArray<int32> backward_indexes;
ComponentPrecomputedIndexes *Copy() const {
return new StatisticsExtractionComponentPrecomputedIndexes(*this);
}
virtual void Write(std::ostream &os, bool binary) const;
virtual void Read(std::istream &is, bool binary);
virtual std::string Type() const { return "StatisticsExtractionComponentPrecomputedIndexes"; }
private:
virtual ~StatisticsExtractionComponentPrecomputedIndexes() { }
};
/*
Class StatisticsPoolingComponent is used together with
StatisticsExtractionComponent to extract moving-average mean and
standard-deviation statistics.
StatisticsPoolingComponent pools the stats over a specified window and
computes means and possibly log-count and stddevs from them for you.
# In StatisticsPoolingComponent, the first element of the input is interpreted
# as a count, which we divide by.
# Optionally the log of the count can be output, and you can allow it to be
# repeated several times if you want (useful for systems using the jesus-layer).
# The output dimension is equal to num-log-count-features plus (input-dim - 1).
# If include-log-count==false, the output dimension is the input dimension minus one.
# If output-stddevs=true, then it expects the input-dim to be of the form 2n+1 where n is
# presumably the original feature dim, and it interprets the last n dimensions of the feature
# as a variance; it outputs the square root of the variance instead of the actual variance.
configs and their defaults: input-dim=-1, input-period=1, left-context=-1, right-context=-1,
num-log-count-features=0, output-stddevs=true, variance-floor=1.0e-10
You'd access the output of the StatisticsPoolingComponent using rounding, e.g.
Round(component-name, 10)
or whatever, instead of just component-name, because its output is only defined at multiples
of its input-period.
The output of StatisticsPoolingComponent will only be defined if at least one input was defined.
*/
class StatisticsPoolingComponent: public Component {
public:
// Initializes to defaults which would not pass Check(); use InitFromConfig()
// or Read() or copy constructor to really initialize.
StatisticsPoolingComponent();
// copy constructor, used in Copy()
StatisticsPoolingComponent(const StatisticsPoolingComponent &other);
virtual int32 InputDim() const { return input_dim_; }
virtual int32 OutputDim() const {
return input_dim_ + num_log_count_features_ - 1;
}
virtual void InitFromConfig(ConfigLine *cfl);
virtual std::string Type() const { return "StatisticsPoolingComponent"; }
virtual int32 Properties() const {
return kReordersIndexes|kBackpropAdds|
(output_stddevs_ || num_log_count_features_ > 0 ?
kBackpropNeedsOutput : 0) |
(num_log_count_features_ == 0 ? kBackpropNeedsInput : 0);
}
virtual void* Propagate(const ComponentPrecomputedIndexes *indexes,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const std::string &debug_info,
const ComponentPrecomputedIndexes *indexes,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
void *memo,
Component *, // to_update,
CuMatrixBase<BaseFloat> *in_deriv) const;
virtual void Read(std::istream &is, bool binary); // This Read function
// requires that the Component has the correct type.
/// Write component to stream
virtual void Write(std::ostream &os, bool binary) const;
virtual Component* Copy() const {
return new StatisticsPoolingComponent(*this);
}
// Some functions that are only to be reimplemented for GeneralComponents.
virtual void GetInputIndexes(const MiscComputationInfo &misc_info,
const Index &output_index,
std::vector<Index> *desired_indexes) const;
// returns true if at least one of its inputs is computable.
virtual bool IsComputable(const MiscComputationInfo &misc_info,
const Index &output_index,
const IndexSet &input_index_set,
std::vector<Index> *used_inputs) const;
// This function reorders the input and output indexes so that they
// are sorted first on n and then x and then t.
virtual void ReorderIndexes(std::vector<Index> *input_indexes,
std::vector<Index> *output_indexes) const;
virtual ComponentPrecomputedIndexes* PrecomputeIndexes(
const MiscComputationInfo &misc_info,
const std::vector<Index> &input_indexes,
const std::vector<Index> &output_indexes,
bool need_backprop) const;
private:
// Checks that the parameters are valid.
void Check() const;
// Disallow assignment operator.
StatisticsPoolingComponent &operator =(
const StatisticsPoolingComponent &other);
int32 input_dim_;
int32 input_period_;
int32 left_context_;
int32 right_context_;
int32 num_log_count_features_;
bool output_stddevs_;
BaseFloat variance_floor_;
};
class StatisticsPoolingComponentPrecomputedIndexes:
public ComponentPrecomputedIndexes {
public:
// in the first stage of creating the output we sum over row ranges of
// the input. forward_indexes.Dim() equals the number of rows of the
// output, and each element is a (start, end) range of inputs, that is
// summed over.
CuArray<Int32Pair> forward_indexes;
// backward_indexes contains the same information as forward_indexes, but in a
// different format. backward_indexes.Dim() is the same as the number of rows
// of input, and each element contains the (start,end) of the range of outputs
// for which this input index appears as an element of the sum for that
// output. This is possible because of the way the inputs and outputs are
// ordered and because of how we select the elments to appear in the sum using
// a window. This quantity is used in backprop.
CuArray<Int32Pair> backward_indexes;
virtual ~StatisticsPoolingComponentPrecomputedIndexes() { }
ComponentPrecomputedIndexes *Copy() const {
return new StatisticsPoolingComponentPrecomputedIndexes(*this);
}
virtual void Write(std::ostream &os, bool binary) const;
virtual void Read(std::istream &is, bool binary);
virtual std::string Type() const { return "StatisticsPoolingComponentPrecomputedIndexes"; }
};
// BackpropTruncationComponent zeroes out the gradients every certain number
// of frames, as well as having gradient-clipping functionality as
// ClipGradientComponent.
// This component will be used to prevent gradient explosion problem in
// recurrent neural networks
class BackpropTruncationComponent: public Component {
public:
BackpropTruncationComponent(int32 dim,
BaseFloat scale,
BaseFloat clipping_threshold,
BaseFloat zeroing_threshold,
int32 zeroing_interval,
int32 recurrence_interval) {
Init(dim, scale, clipping_threshold, zeroing_threshold,
zeroing_interval, recurrence_interval);}
BackpropTruncationComponent(): dim_(0), scale_(1.0), clipping_threshold_(-1),
zeroing_threshold_(-1), zeroing_interval_(0), recurrence_interval_(0),
num_clipped_(0), num_zeroed_(0), count_(0), count_zeroing_boundaries_(0) { }
virtual int32 InputDim() const { return dim_; }
virtual int32 OutputDim() const { return dim_; }
virtual void InitFromConfig(ConfigLine *cfl);
void Init(int32 dim, BaseFloat scale, BaseFloat clipping_threshold,
BaseFloat zeroing_threshold, int32 zeroing_interval,
int32 recurrence_interval);
virtual std::string Type() const { return "BackpropTruncationComponent"; }
virtual int32 Properties() const {
return kPropagateInPlace|kBackpropInPlace;
}
virtual void ZeroStats();
virtual Component* Copy() const;
virtual void* Propagate(const ComponentPrecomputedIndexes *indexes,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const std::string &debug_info,
const ComponentPrecomputedIndexes *indexes,
const CuMatrixBase<BaseFloat> &, // in_value,
const CuMatrixBase<BaseFloat> &, // out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
void *memo,
Component *to_update,
CuMatrixBase<BaseFloat> *in_deriv) const;
virtual ComponentPrecomputedIndexes* PrecomputeIndexes(
const MiscComputationInfo &misc_info,
const std::vector<Index> &input_indexes,
const std::vector<Index> &output_indexes,
bool need_backprop) const;
virtual void Scale(BaseFloat scale);
virtual void Add(BaseFloat alpha, const Component &other);
virtual void Read(std::istream &is, bool binary); // This Read function
// requires that the Component has the correct type.
/// Write component to stream
virtual void Write(std::ostream &os, bool binary) const;
virtual std::string Info() const;
virtual ~BackpropTruncationComponent() {
}
private:
// input/output dimension
int32 dim_;
// Scale that is applied in the forward propagation (and of course in the
// backprop to match. Expected to normally be 1, but setting this to other
// values (e.g. slightly less than 1) can be used to produce variants of
// LSTMs where the activations are bounded.
BaseFloat scale_;
// threshold (e.g., 30) to be used for clipping corresponds to max-row-norm
BaseFloat clipping_threshold_;
// threshold (e.g., 3) to be used for zeroing corresponds to max-row-norm
BaseFloat zeroing_threshold_;
// interval (e.g., 20, in number of frames) at which we would zero the
// gradient if the norm of the gradient is above zeroing_threshold_
int32 zeroing_interval_;
// recurrence_interval_ should be the absolute recurrence offset used in RNNs
// (e.g., 3). It is used to see whether the index the component is processing,
// crosses a boundary that's a multiple of zeroing_interval_ frames.
int32 recurrence_interval_;
// component-node name, used in the destructor to print out stats of
// self-repair
std::string debug_info_;
BackpropTruncationComponent &operator =
(const BackpropTruncationComponent &other); // Disallow.
protected:
// variables to store stats
// An element corresponds to rows of derivative matrix
double num_clipped_; // number of elements which were clipped
double num_zeroed_; // number of elements which were zeroed
double count_; // number of elements which were processed
double count_zeroing_boundaries_; // number of zeroing boundaries where we had
// the opportunity to perform zeroing
// the gradient
};
class BackpropTruncationComponentPrecomputedIndexes:
public ComponentPrecomputedIndexes {
public:
// zeroing has the same dimension as the number of rows of out-deriv.
// Each element in zeroing can take two possible values: -1.0, meaning its
// corresponding frame is one that we need to consider zeroing the
// gradient of, and 0.0 otherwise
CuVector<BaseFloat> zeroing;
// caches the negative sum of elements in zeroing for less CUDA calls
// (the sum is computed by CPU). Note that this value would be positive.
BaseFloat zeroing_sum;
BackpropTruncationComponentPrecomputedIndexes(): zeroing_sum(0.0) {}
// this class has a virtual destructor so it can be deleted from a pointer
// to ComponentPrecomputedIndexes.
virtual ~BackpropTruncationComponentPrecomputedIndexes() { }
virtual ComponentPrecomputedIndexes* Copy() const {
return new BackpropTruncationComponentPrecomputedIndexes(*this);
}
virtual void Write(std::ostream &ostream, bool binary) const;
virtual void Read(std::istream &istream, bool binary);
virtual std::string Type() const {
return "BackpropTruncationComponentPrecomputedIndexes";
}
};
/*
ConstantComponent returns a constant value for all requested
indexes, and it has no dependencies on any input.
It's like a ConstantFunctionComponent, but done the "right"
way without requiring an unnecessary input.
It is optionally trainable, and optionally you can use natural
gradient.
Configuration values accepted by this component, with defaults if
applicable:
output-dim Dimension that this component outputs.
is-updatable=true True if you want this to be updatable.
use-natural-gradient=true True if you want the update to use natural gradient.
output-mean=0.0 Mean of the parameters at initialization (the parameters
are what it outputs).
output-stddev=0.0 Standard deviation of the parameters at initialization.
Values inherited from UpdatableComponent (see its declaration in
nnet-component-itf for details):
learning-rate
learning-rate-factor
max-change
*/
class ConstantComponent: public UpdatableComponent {
public:
// actually this component requires no inputs; this value
// is really a don't-care.
virtual int32 InputDim() const { return output_.Dim(); }
virtual int32 OutputDim() const { return output_.Dim(); }
virtual std::string Info() const;
// possible parameter values with their defaults:
// is-updatable=true use-natural-gradient=true output-dim=-1
// output-mean=0 output-stddev=0
virtual void InitFromConfig(ConfigLine *cfl);
ConstantComponent();
ConstantComponent(const ConstantComponent &other);
virtual std::string Type() const { return "ConstantComponent"; }
virtual int32 Properties() const {
return
(is_updatable_ ? kUpdatableComponent : 0);
}
virtual void* Propagate(const ComponentPrecomputedIndexes *indexes,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const std::string &debug_info,
const ComponentPrecomputedIndexes *indexes,
const CuMatrixBase<BaseFloat> &, // in_value
const CuMatrixBase<BaseFloat> &, // out_value
const CuMatrixBase<BaseFloat> &out_deriv,
void *memo,
Component *to_update,
CuMatrixBase<BaseFloat> *in_deriv) const;
virtual void Read(std::istream &is, bool binary);
virtual void Write(std::ostream &os, bool binary) const;
virtual Component* Copy() const;
// Some functions that are only to be reimplemented for GeneralComponents.
virtual void GetInputIndexes(const MiscComputationInfo &misc_info,
const Index &output_index,
std::vector<Index> *desired_indexes) const {
desired_indexes->clear(); // requires no inputs.
}
// This function returns true if at least one of the input indexes used to
// compute this output index is computable.
// it's simple because this component requires no inputs.
virtual bool IsComputable(const MiscComputationInfo &misc_info,
const Index &output_index,
const IndexSet &input_index_set,
std::vector<Index> *used_inputs) const {
if (used_inputs) used_inputs->clear();
return true;
}
// Some functions from base-class UpdatableComponent.
virtual void Scale(BaseFloat scale);
virtual void Add(BaseFloat alpha, const Component &other);
virtual void PerturbParams(BaseFloat stddev);
virtual BaseFloat DotProduct(const UpdatableComponent &other) const;
virtual int32 NumParameters() const;
virtual void Vectorize(VectorBase<BaseFloat> *params) const;
virtual void UnVectorize(const VectorBase<BaseFloat> ¶ms);
virtual void ConsolidateMemory();
private:
// the output value-- a vector.
CuVector<BaseFloat> output_;
bool is_updatable_;
// if true, and if updatable, do natural-gradient update.
bool use_natural_gradient_;
OnlineNaturalGradient preconditioner_;
const ConstantComponent &operator
= (const ConstantComponent &other); // Disallow.
};
// DropoutMaskComponent outputs a random zero-or-one value for all dimensions of
// all requested indexes, and it has no dependencies on any input. It's like a
// ConstantComponent, but with random output that has value zero
// a proportion (dropout_proportion) of the time, and otherwise one.
// This is not the normal way to implement dropout; you'd normally use a
// DropoutComponent (see nnet-simple-component.h). This component is used while
// implementing per-frame dropout with the LstmNonlinearityComponent; we
// generate a two-dimensional output representing dropout
//
class DropoutMaskComponent: public RandomComponent {
public:
// actually this component requires no inputs; this value
// is really a don't-care.
virtual int32 InputDim() const { return output_dim_; }
virtual int32 OutputDim() const { return output_dim_; }
virtual std::string Info() const;
// possible parameter values with their defaults:
// dropout-proportion=0.5 output-dim=-1 continuous=false
// With the 'continous=false' option (the default), it generates
// 0 with probability 'dropout-proportion' and 1 otherwise.
// With 'continuous=true' it outputs 1 plus dropout-proportion times
// a value uniformly distributed on [-2, 2]. (e.g. if dropout-proportion is
// 0.5, this would amount to a value uniformly distributed on [0,2].)
virtual void InitFromConfig(ConfigLine *cfl);
DropoutMaskComponent();
DropoutMaskComponent(const DropoutMaskComponent &other);
virtual std::string Type() const { return "DropoutMaskComponent"; }
virtual int32 Properties() const { return kRandomComponent; }
// note: the matrix 'in' will be empty.
virtual void* Propagate(const ComponentPrecomputedIndexes *indexes,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
// backprop does nothing, there is nothing to backprop to and nothing
// to update.
virtual void Backprop(const std::string &debug_info,
const ComponentPrecomputedIndexes *indexes,
const CuMatrixBase<BaseFloat> &, // in_value
const CuMatrixBase<BaseFloat> &, // out_value
const CuMatrixBase<BaseFloat> &out_deriv,
void *memo,
Component *to_update,
CuMatrixBase<BaseFloat> *in_deriv) const { }
virtual void Read(std::istream &is, bool binary);
virtual void Write(std::ostream &os, bool binary) const;
virtual Component* Copy() const;
// Some functions that are only to be reimplemented for GeneralComponents.
virtual void GetInputIndexes(const MiscComputationInfo &misc_info,
const Index &output_index,
std::vector<Index> *desired_indexes) const {
desired_indexes->clear(); // requires no inputs.
}
// This function returns true if at least one of the input indexes used to
// compute this output index is computable.
// it's simple because this component requires no inputs.
virtual bool IsComputable(const MiscComputationInfo &misc_info,
const Index &output_index,
const IndexSet &input_index_set,
std::vector<Index> *used_inputs) const {
if (used_inputs) used_inputs->clear();
return true;
}
void SetDropoutProportion(BaseFloat p) { dropout_proportion_ = p; }
private:
// The output dimension
int32 output_dim_;
BaseFloat dropout_proportion_;
bool continuous_;
const DropoutMaskComponent &operator
= (const DropoutMaskComponent &other); // Disallow.
};
/**
GeneralDropoutComponent implements dropout, including a continuous
variant where the thing we multiply is not just zero or one, but may
be a continuous value. It is intended for the case where you want to
either share the dropout mask across all of time, or across groups
of 't' values (e.g. the first block of 10 values gets one dropout
mask, the second block of 10 gets another one, and so on).
It also has support for the frequency component of SpecAugment.
Configuration values accepted on the command line, with defaults:
dim Dimension of the input and output of this component,
e.g. 512
block-dim Block size if you want the dropout mask to repeat,
e.g. if dim=512 and you sent block-dim=128, there will
be a mask of dimension 128 repeated 4 times. This can
be useful in convolutional setups. If not specified,
block-dim defaults to 'dim'; if specified, it must be
a divisor of 'dim'.
dropout-proportion=0.5 For conventional dropout, this is the proportion
of mask values that (in expectation) are zero; it would
normally be between 0 and 0.5. The nonzero mask values
will be given values 1.0 / dropout_proportion, so that the
expected value is 1.0. This behavior is different from
DropoutComponent and DropoutMaskComponent.
For continuous dropout (continuous==true), the dropout scales
will have values (1.0 + 2 * dropout-proportion *
Uniform[-1,1]). This might seem like a strange choice, but it
means that dropout-proportion=0.5 gives us a kind of
'extremal' case where the dropout scales are distributed as
Uniform[0, 2] and we can pass in the dropout scale as if it
were a conventional dropout scale.
time-period=0 This determines how the dropout mask interacts
with the time index (t). In all cases, different sequences
(different 'n' values) get different dropout masks.
If time-period==0, then the dropout mask is shared across
all time values. If you set time-period > 0, then the
dropout mask is shared across blocks of time values: for
instance if time-period==10, then we'll use one dropout
mask for t values 0 through 9, another for 10 through 19,
and so on. In all cases, the dropout mask will be shared
across all 'x' values, although in most setups the x values
are just zero so this isn't very interesting.
If you set time-period==1 it would be similar to regular
dropout, and it would probably make more sense to just use the
normal DropoutComponent.
specaugment-max-proportion=0 If nonzero, causes this component to
implement SpecAugment. (Note: you probably would want this
after a batch-norm component so the average at input is
zero), and the input dim will be interpreted as some kind of
frequency space, e.g. linear or mel. specaugment-max-proportion
will be the maximum proportion of the frequency
space that this component might zero out (so multiply this by
by input dim to get the maximum columns that might be zeroed out);
the actual number of columns zeroed out for each sequence will
be randomly chosen between zero and the maximum. Note: the
non-zeroed frequencies won't be multiplied by a constant more
than one as we would in the normal dropout mode.
specaugment-max-regions=1 This can be set to a value greater than one
(e.g., 2) to implement a variant of SpecAugment where instead
of zeroing out a single region of the frequency spectrum
we zero out a randomly chosen number of regions, from one to
this number. The maximum proportion of the frequency spectrum
that we remove is unaffected.
*/
class GeneralDropoutComponent: public RandomComponent {
public:
virtual int32 InputDim() const { return dim_; }
virtual int32 OutputDim() const { return dim_; }
virtual std::string Info() const;
virtual void InitFromConfig(ConfigLine *cfl);
GeneralDropoutComponent();
GeneralDropoutComponent(const GeneralDropoutComponent &other);
virtual std::string Type() const { return "GeneralDropoutComponent"; }
virtual int32 Properties() const {
return kRandomComponent|kPropagateInPlace|kBackpropInPlace|kUsesMemo|
(block_dim_ != dim_ ? (kInputContiguous|kOutputContiguous) : 0);
}
virtual void* Propagate(const ComponentPrecomputedIndexes *indexes,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const std::string &debug_info,
const ComponentPrecomputedIndexes *indexes,
const CuMatrixBase<BaseFloat> &, // in_value
const CuMatrixBase<BaseFloat> &, // out_value
const CuMatrixBase<BaseFloat> &out_deriv,
void *memo,
Component *to_update,
CuMatrixBase<BaseFloat> *in_deriv) const;
virtual void DeleteMemo(void *memo) const {
delete static_cast<CuMatrix<BaseFloat>*>(memo);
}
virtual ComponentPrecomputedIndexes* PrecomputeIndexes(
const MiscComputationInfo &misc_info,
const std::vector<Index> &input_indexes,
const std::vector<Index> &output_indexes,
bool need_backprop) const;
virtual void Read(std::istream &is, bool binary);
virtual void Write(std::ostream &os, bool binary) const;
virtual Component* Copy() const;
void SetDropoutProportion(BaseFloat p) { dropout_proportion_ = p; }
private:
// Returns a random matrix reflecting the masking we are applying.
// In the normal case where we are doing a
// of dimension 'num_mask_rows' by 'block_dim_'. This
// should not be called if test_mode_ is true or dropout_proportion_ is zero.
CuMatrix<BaseFloat> *GetMemo(int32 num_mask_rows) const;
// The input and output dimension
int32 dim_;
// block_dim_ must divide dim_.
int32 block_dim_;
// time_period_ can be zero if we want all 't' values to share the same
// dropout mask, and a value more than zero if we want blocks of 't' values to
// share the dropout mask. For example, if time_period_ is 10, blocks of size
// 10 frames will share the same dropout mask.
int32 time_period_;
BaseFloat dropout_proportion_;
BaseFloat specaugment_max_proportion_;
int32 specaugment_max_regions_;
bool continuous_;
const GeneralDropoutComponent &operator
= (const GeneralDropoutComponent &other); // Disallow.
};
// This stores some precomputed indexes for GeneralDropoutComponent.
// This object is created for every instance of the Propagate()
// function in the compiled computation.
class GeneralDropoutComponentPrecomputedIndexes:
public ComponentPrecomputedIndexes {
public:
// num_mask_rows is the number of rows in the dropout-mask matrix, which will
// in the normal case equal the number of sequences we are processing. Its
// num-cols is the block_dim_ of the component (e.g. might be the InputDim()
// (which is the same as OutputDim()), or maybe less if the block-dim option
// was specified.
int32 num_mask_rows;
// 'indexes' is of dimension (the number of rows in the matrix we're doing
// Propagate() or Backprop() on) times the (dim_ / block_dim_) of the
// GeneralDropoutComponent. Each value is in the range [0, num_mask_rows-1],
// and each value is repeated (dim_ / block_dim_) times. This array is used
// to multiply the reshaped values or derivatives by the appropriate rows of
// the dropout matrix.
CuArray<int32> indexes;
virtual ~GeneralDropoutComponentPrecomputedIndexes() { }
ComponentPrecomputedIndexes *Copy() const {
return new GeneralDropoutComponentPrecomputedIndexes(*this);
}
virtual void Write(std::ostream &os, bool binary) const;
virtual void Read(std::istream &is, bool binary);
virtual std::string Type() const {
return "GeneralDropoutComponentPrecomputedIndexes";
}
};
class SpecAugmentTimeMaskComponentPrecomputedIndexes;
/**
SpecAugmentTimeMaskComponent implements the time part of SpecAugment.
Instead of zeroing out a single time-region of the input, though,
it zeroes out multiple smaller time-regions.
Configuration values accepted on the command line, with defaults:
dim Dimension of the input and output of this component,
e.g. 512
zeroed-proportion=0.25 Proportion of the input that is to be zeroed;
should be in the range (0, 1).
time-mask-max-frames=10 The maximum time duration of the *zeroed*
regions. The non-zeroed regions in between will have maximum
duration equal to this times (1-z)/z, where z
is zeroed-proportion.
*/
class SpecAugmentTimeMaskComponent: public RandomComponent {
public:
virtual int32 InputDim() const { return dim_; }
virtual int32 OutputDim() const { return dim_; }
virtual std::string Info() const;
virtual void InitFromConfig(ConfigLine *cfl);
SpecAugmentTimeMaskComponent();
SpecAugmentTimeMaskComponent(const SpecAugmentTimeMaskComponent &other);
virtual std::string Type() const { return "SpecAugmentTimeMaskComponent"; }
virtual int32 Properties() const {
return kRandomComponent|kPropagateInPlace|kBackpropInPlace|kUsesMemo;
}
virtual void* Propagate(const ComponentPrecomputedIndexes *indexes,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const std::string &debug_info,
const ComponentPrecomputedIndexes *indexes,
const CuMatrixBase<BaseFloat> &, // in_value
const CuMatrixBase<BaseFloat> &, // out_value
const CuMatrixBase<BaseFloat> &out_deriv,
void *memo,
Component *to_update,
CuMatrixBase<BaseFloat> *in_deriv) const;
virtual void DeleteMemo(void *memo) const {
delete static_cast<CuVector<BaseFloat>*>(memo);
}
virtual ComponentPrecomputedIndexes* PrecomputeIndexes(
const MiscComputationInfo &misc_info,
const std::vector<Index> &input_indexes,
const std::vector<Index> &output_indexes,
bool need_backprop) const;
virtual void Read(std::istream &is, bool binary);
virtual void Write(std::ostream &os, bool binary) const;
virtual Component* Copy() const;
private:
// Returns a random vector reflecting the masking we are applying.
CuVector<BaseFloat> *GetMemo(
const SpecAugmentTimeMaskComponentPrecomputedIndexes &indexes) const;
// The input and output dimension
int32 dim_;
BaseFloat zeroed_proportion_;
int32 time_mask_max_frames_;
const SpecAugmentTimeMaskComponent &operator
= (const SpecAugmentTimeMaskComponent &other); // Disallow.
};
// This stores some precomputed indexes for SpecAugmentTimeMaskComponent.
// This object is created for every instance of the Propagate()
// function in the compiled computation.
class SpecAugmentTimeMaskComponentPrecomputedIndexes:
public ComponentPrecomputedIndexes {
public:
// 'indexes' is indexed first by sequence and then by time within that
// sequence; each list indexes[s] is a consecutive list of the elements of
// that sequence (e.g. t=0, t=1, and so on). The int32 values inside these
// lists are row-indexes into the matrix that is at the input and output of
// this component.
std::vector<std::vector<int32> > indexes;
// 'tot_size' is the total number of elements in 'indexes', equal to the
// num-rows of the matrix we're doing dropout on.
int32 tot_size;
virtual ~SpecAugmentTimeMaskComponentPrecomputedIndexes() { }
ComponentPrecomputedIndexes *Copy() const {
return new SpecAugmentTimeMaskComponentPrecomputedIndexes(*this);
}
virtual void Write(std::ostream &os, bool binary) const;
virtual void Read(std::istream &is, bool binary);
virtual std::string Type() const {
return "SpecAugmentTimeMaskComponentPrecomputedIndexes";
}
};
} // namespace nnet3
} // namespace kaldi
#endif