nnet-normalize-component.cc
25.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
// nnet3/nnet-normalize-component.cc
// Copyright 2015-2017 Johns Hopkins University (author: Daniel Povey)
// 2015 Guoguo Chen
// 2015 Daniel Galvez
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <iterator>
#include <sstream>
#include <algorithm>
#include <iomanip>
#include "nnet3/nnet-normalize-component.h"
#include "nnet3/nnet-parse.h"
#include "cudamatrix/cu-math.h"
namespace kaldi {
namespace nnet3 {
const BaseFloat NormalizeComponent::kSquaredNormFloor =
pow(2.0, NormalizeComponent::kExpSquaredNormFloor);
NormalizeComponent::NormalizeComponent(const NormalizeComponent &other):
input_dim_(other.input_dim_), block_dim_(other.block_dim_),
target_rms_(other.target_rms_),
add_log_stddev_(other.add_log_stddev_) { }
void NormalizeComponent::InitFromConfig(ConfigLine *cfl) {
input_dim_ = 0;
add_log_stddev_ = false;
target_rms_ = 1.0;
bool ok = cfl->GetValue("dim", &input_dim_) ||
cfl->GetValue("input-dim", &input_dim_);
block_dim_ = input_dim_;
cfl->GetValue("block-dim", &block_dim_);
cfl->GetValue("target-rms", &target_rms_);
cfl->GetValue("add-log-stddev", &add_log_stddev_);
if (!ok || cfl->HasUnusedValues() || input_dim_ <= 0 || target_rms_ <= 0.0 ||
block_dim_ <= 0 || input_dim_ % block_dim_ != 0)
KALDI_ERR << "Invalid initializer for layer of type "
<< Type() << ": \"" << cfl->WholeLine() << "\"";
}
void NormalizeComponent::Read(std::istream &is, bool binary) {
std::string token;
ReadToken(is, binary, &token);
if (token == "<NormalizeComponent>") {
ReadToken(is, binary, &token);
}
KALDI_ASSERT(token == "<Dim>" || token == "<InputDim>");
ReadBasicType(is, binary, &input_dim_); // Read dimension.
ReadToken(is, binary, &token);
if (token == "<BlockDim>") {
ReadBasicType(is, binary, &block_dim_);
ReadToken(is, binary, &token);
} else {
block_dim_ = input_dim_;
}
// read target_rms_ if it is available.
if (token == "<TargetRms>") {
ReadBasicType(is, binary, &target_rms_);
ReadToken(is, binary, &token);
}
// Read add_log_stddev_ token, if it is available.
if (token == "<AddLogStddev>") {
ReadBasicType(is, binary, &add_log_stddev_);
ReadToken(is, binary, &token);
} else {
add_log_stddev_ = false;
}
if (token == "<ValueAvg>") {
// back-compatibility code.
CuVector<double> temp;
temp.Read(is, binary);
ExpectToken(is, binary, "<DerivAvg>");
temp.Read(is, binary);
ExpectToken(is, binary, "<Count>");
double count;
ReadBasicType(is, binary, &count);
ReadToken(is, binary, &token);
}
KALDI_ASSERT(token == "</NormalizeComponent>");
}
void NormalizeComponent::Write(std::ostream &os, bool binary) const {
WriteToken(os, binary, "<NormalizeComponent>");
WriteToken(os, binary, "<InputDim>");
WriteBasicType(os, binary, input_dim_);
if (block_dim_ != input_dim_) {
WriteToken(os, binary, "<BlockDim>");
WriteBasicType(os, binary, block_dim_);
}
WriteToken(os, binary, "<TargetRms>");
WriteBasicType(os, binary, target_rms_);
WriteToken(os, binary, "<AddLogStddev>");
WriteBasicType(os, binary, add_log_stddev_);
WriteToken(os, binary, "</NormalizeComponent>");
}
std::string NormalizeComponent::Info() const {
std::ostringstream stream;
stream << Type() << ", input-dim=" << InputDim()
<< ", output-dim=" << OutputDim() << ", target-rms=" << target_rms_
<< ", add-log-stddev=" << std::boolalpha << add_log_stddev_;
if (block_dim_ != input_dim_)
stream << ", block-dim=" << block_dim_;
return stream.str();
}
// The output y_i = scale * x_i,
// and we want to RMS value of the y_i to equal target_rms,
// so y^t y = D * target_rms^2 (if y is one row of the input).
// we need to have scale = 1.0 / sqrt(x^t x / (D * target_rms^2)).
// there is also flooring involved, to avoid division-by-zero
// problems. It's important for the backprop, that the floor's
// square root is exactly representable as float.
// If add_log_stddev_ is true, log(max(epsi, sqrt(x^t x / D)))
// is an extra dimension of the output.
void* NormalizeComponent::Propagate(const ComponentPrecomputedIndexes *indexes,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const {
KALDI_ASSERT(in.NumCols() == InputDim() && out->NumCols() == OutputDim() &&
in.NumRows() == out->NumRows());
if (block_dim_ != input_dim_) {
int32 num_blocks = input_dim_ / block_dim_,
new_num_rows = in.NumRows() * num_blocks,
output_block_dim = block_dim_ + (add_log_stddev_ ? 1 : 0);
KALDI_ASSERT(in.Stride() == in.NumCols() && out->Stride() == out->NumCols());
CuSubMatrix<BaseFloat> in_reshaped(in.Data(), new_num_rows,
block_dim_, block_dim_),
out_reshaped(out->Data(), new_num_rows,
output_block_dim, output_block_dim);
cu::NormalizePerRow(in_reshaped, target_rms_, add_log_stddev_,
&out_reshaped);
} else {
cu::NormalizePerRow(in, target_rms_, add_log_stddev_, out);
}
return NULL;
}
/*
A note on the derivative of NormalizeComponent...
let both row_in and row_out be vectors of dimension D.
Let p = row_in^T row_in / (D * target_rms^2), and let
f = 1.0 / sqrt(max(kSquaredNormFloor, p)), and we compute row_out as:
row_out = f row_in.
Suppose we have a quantity deriv_out which is the derivative
of the objective function w.r.t. row_out. We want to compute
deriv_in which is the derivative of the objective function w.r.t.
row_in. Let the objective function be F. One term is obvious: we have
deriv_in = f deriv_out + ....
next we have to take into account the derivative that gets back-propagated
through f. Obviously, dF/df = deriv_out^T row_in.
And df/dp = (p <= kSquaredNormFloor ? 0.0 : -0.5 p^{-1.5}) = (f == 1.0 / sqrt(kSquaredNormFloor) ? 0.0 : -0.5 f^3),
and dp/d(row_in) = 2/(D * target_rms^2) row_in. [it's vector_valued].
So this term in dF/d(row_in) equals:
dF/df df/dp dp/d(row_in) = 2/(D * target_rms^2) (f == 1.0 / sqrt(kSquaredNormFloor) ? 0.0 : -0.5 f^3) (deriv_out^T row_in) row_in
So
deriv_in = f deriv_out + (f == 1.0 ? 0.0 : -f^3 / (D * target_rms^2) ) (deriv_out^T row_in) row_in
if add_log_stddev_ true, the deriv_in has another term as
dF/dx_i = dF/df . df/dx_i => df/dx_i = x_i/(x^T x)
*/
void NormalizeComponent::Backprop(const std::string &debug_info,
const ComponentPrecomputedIndexes *indexes,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &, // out_value
const CuMatrixBase<BaseFloat> &out_deriv,
void *memo,
Component *to_update,
CuMatrixBase<BaseFloat> *in_deriv) const {
if (!in_deriv)
return;
if (block_dim_ != input_dim_) {
int32 num_blocks = input_dim_ / block_dim_,
new_num_rows = in_value.NumRows() * num_blocks,
output_block_dim = block_dim_ + (add_log_stddev_ ? 1 : 0);
KALDI_ASSERT(in_value.Stride() == in_value.NumCols() &&
out_deriv.Stride() == out_deriv.NumCols() &&
in_deriv->Stride() == in_deriv->NumCols());
CuSubMatrix<BaseFloat> in_value_reshaped(in_value.Data(), new_num_rows,
block_dim_, block_dim_),
out_deriv_reshaped(out_deriv.Data(), new_num_rows,
output_block_dim, output_block_dim),
in_deriv_reshaped(in_deriv->Data(), new_num_rows,
block_dim_, block_dim_);
cu::DiffNormalizePerRow(in_value_reshaped, out_deriv_reshaped, target_rms_,
add_log_stddev_, &in_deriv_reshaped);
} else {
cu::DiffNormalizePerRow(in_value, out_deriv, target_rms_, add_log_stddev_,
in_deriv);
}
}
void BatchNormComponent::ComputeDerived() {
if (!test_mode_) {
offset_.Resize(0);
scale_.Resize(0);
return;
}
if (count_ == 0.0) {
KALDI_WARN << "Test-mode is set but there is no data count. "
"Creating random counts. This only makes sense "
"in unit-tests (or compute_prob_*.0.log). If you see this "
"elsewhere, something is very wrong.";
count_ = 1.0;
stats_sum_.SetRandn();
stats_sumsq_.SetRandn();
stats_sumsq_.AddVecVec(1.0, stats_sum_, stats_sum_, 1.0);
}
offset_.Resize(block_dim_);
scale_.Resize(block_dim_);
offset_.CopyFromVec(stats_sum_);
offset_.Scale(-1.0 / count_);
// now offset_ is -mean.
scale_.CopyFromVec(stats_sumsq_);
scale_.Scale(1.0 / count_);
scale_.AddVecVec(-1.0, offset_, offset_, 1.0);
// now scale_ is variance.
// Mathematically the ApplyFloor statement should be a no-op; this is in case
// of numerical roundoff.
scale_.ApplyFloor(0.0);
scale_.Add(epsilon_);
BaseFloat power = -0.5;
scale_.ApplyPow(power);
// now scale_ = min(variance, epsilon)^power
// next, multiply by the target RMS (normally 1.0).
scale_.Scale(target_rms_);
offset_.MulElements(scale_);
// now offset_ is -(scale*mean).
}
void BatchNormComponent::SetTestMode(bool test_mode) {
test_mode_ = test_mode;
ComputeDerived();
}
void BatchNormComponent::Check() const {
KALDI_ASSERT(dim_ > 0 && block_dim_ > 0 && dim_ % block_dim_ == 0 &&
epsilon_ > 0.0 && target_rms_ > 0.0);
}
BatchNormComponent::BatchNormComponent(const BatchNormComponent &other):
dim_(other.dim_), block_dim_(other.block_dim_),
epsilon_(other.epsilon_), target_rms_(other.target_rms_),
test_mode_(other.test_mode_), count_(other.count_),
stats_sum_(other.stats_sum_), stats_sumsq_(other.stats_sumsq_) {
ComputeDerived();
Check();
}
std::string BatchNormComponent::Info() const {
std::ostringstream stream;
stream << Type() << ", dim=" << dim_ << ", block-dim=" << block_dim_
<< ", epsilon=" << epsilon_ << ", target-rms=" << target_rms_
<< ", count=" << count_
<< ", test-mode=" << (test_mode_ ? "true" : "false");
if (count_ > 0) {
Vector<BaseFloat> mean(stats_sum_), var(stats_sumsq_);
mean.Scale(1.0 / count_);
var.Scale(1.0 / count_);
// subtract mean^2 from var.
var.AddVecVec(-1.0, mean, mean, 1.0);
var.ApplyFloor(0.0);
var.ApplyPow(0.5); // make it the stddev.
stream << ", data-mean=" << SummarizeVector(mean)
<< ", data-stddev=" << SummarizeVector(var);
}
return stream.str();
}
void BatchNormComponent::InitFromConfig(ConfigLine *cfl) {
dim_ = -1;
block_dim_ = -1;
epsilon_ = 1.0e-03;
target_rms_ = 1.0;
test_mode_ = false;
bool ok = cfl->GetValue("dim", &dim_);
cfl->GetValue("block-dim", &block_dim_);
cfl->GetValue("epsilon", &epsilon_);
cfl->GetValue("target-rms", &target_rms_);
cfl->GetValue("test-mode", &test_mode_);
if (!ok || dim_ <= 0) {
KALDI_ERR << "BatchNormComponent must have 'dim' specified, and > 0";
}
if (block_dim_ == -1)
block_dim_ = dim_;
if (!(block_dim_ > 0 && dim_ % block_dim_ == 0 &&
epsilon_ > 0 && target_rms_ > 0))
KALDI_ERR << "Invalid configuration in BatchNormComponent.";
if (cfl->HasUnusedValues())
KALDI_ERR << "Could not process these elements in initializer: "
<< cfl->UnusedValues();
count_ = 0;
stats_sum_.Resize(block_dim_);
stats_sumsq_.Resize(block_dim_);
if (test_mode_) {
ComputeDerived();
}
}
/*
BATCHNORM_MATH
This comment describes the equations involved in batch normalization, and
derives the forward and back-propagation.
This is all dimension-by-dimension, so we just imagine the inputs
are scalars x(i), for i=0 .. n-1.
FORWARD PASS:
Let 'power' be a constant, equal to -0.5 for regular batch-norm.
To simplify the math we (conceptually, not physically) do the normalization in
two stages: first mean, then variance, so we have x(i) -> y(i) -> z(i).
The name 'rscale' means 'raw scale', meaning the scale before including
target-rms. Later we'll define 'scale = target-rms * rscale', to make some
of the actual computations slightly more efficient.
Define: mean = 1/I * sum_i x(i)
y(i) = x(i) - mean
var = 1/I \sum_i y(i)^2
rscale = sqrt(var + epsilon)^power <---- For regular batchnorm, power == -0.5.
z(i) = target-rms * rscale * y(i)
Most of the rest of this comment derives how to compute the derivatives. If
you just want the formulas, please skip to the string 'BACKWARD PASS' below.
We'll use a notation where an apostrophe on something means (the derivative of
the objective function w.r.t. that thing), so y'(i) is df/dy(i), and so on.
We are given y'(i). Propagating the derivatives backward:
rscale' = (sum_i y(i) z'(i)) * target-rms
= (sum_i z(i) z'(i)) / rscale
[ note: d(rscale)/d(var) = power * (var + epsilon)^{power - 1}
= power * rscale^{(power-1)/power} ]
var' = rscale' * power * rscale^{(power-1)/power}
= power * (\sum_i z'(i) z(i)) * rscale^{(power-1)/power - 1}
= power * (\sum_i z'(i) z(i)) * rscale^{-1/power}
[note: the following formula is of the form "direct term" + "indirect term"]
y'(i) = z'(i) * target-rms * rscale + 2/I y(i) var'
Now, the above is inconvenient because it contains y(i) which is an intermediate
quantity. We reformulate in terms of z(i), using y(i) = z(i) / (target-rms * rscale), so:
defining
var_deriv_mod = 2/I * var' / (target-rms * rscale)
= 2/I * power/target-rms * (\sum_i z'(i) z(i)) * rscale^{-(1+power)/power}
we have:
y'(i) = z'(i) * target-rms * rscale + z(i) var_deriv_mod
Now,
mean' = \sum_i y'(i)
= (target-rms * rscale * \sum_i z'(i)) + (var_deriv_mod \sum_i z(i))
[... and the 2nd term above is zero when summed over i, because \sum_i z(i) is zero, ...]
= target-rms * rscale * \sum_i z(i)
and:
x'(i) = z'(i) * target-rms * rscale + z(i) var_deriv_mod - 1/I mean'
= z'(i) * target-rms * rscale + z(i) var_deriv_mod - 1/I * target-rms * rscale * \sum_i z'(i)
= target-rms * rscale * (z'(i) - 1/I * \sum_i z'(i)) + z(i) var_deriv_mod
It will simplify the code if we define:
scale = target-rms * rscale. This way, we can write as follows:
BACKWARD PASS (recap):
var_deriv_mod = 2 * power * target-rms^{1/power} * (1/I \sum_i z'(i) z(i)) * scale^{-(1+power)/power}
.. which for power = -0.5, simplifies to:
var_deriv_mod = -1.0 / (target-rms^2) * (1/I \sum_i z'(i) z(i)) * scale
x'(i) = scale * (z'(i) - 1/I * \sum_i z'(i)) + z(i) var_deriv_mod
*/
void* BatchNormComponent::Propagate(const ComponentPrecomputedIndexes *indexes,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const {
KALDI_ASSERT(SameDim(in, *out) &&
(in.NumCols() == dim_ || in.NumCols() == block_dim_));
if (in.NumCols() != block_dim_) {
// if block_dim_ != dim_, we recurse; this helps keep the main code
// simple.
KALDI_ASSERT(in.Stride() == in.NumCols() && out->Stride() == out->NumCols());
int32 ratio = dim_ / block_dim_, orig_rows = in.NumRows(),
orig_cols = in.NumCols(), new_rows = orig_rows * ratio,
new_cols = orig_cols / ratio;
CuSubMatrix<BaseFloat> in_reshaped(in.Data(), new_rows, new_cols, new_cols),
out_reshaped(out->Data(), new_rows, new_cols, new_cols);
return Propagate(indexes, in_reshaped, &out_reshaped);
}
// From this point, we can assume that the num-cols of 'in' and 'out'
// equals block_dim_.
if (!test_mode_) {
// search in the comment above for FORWARD PASS to see what is being
// implemented here.
// if this takes too much time due to multiple different CUDA calls,
// we'll consider making a single kernel for some of it.
Memo *memo = new Memo;
int32 num_frames = in.NumRows(), dim = block_dim_;
memo->num_frames = num_frames;
memo->mean_uvar_scale.Resize(5, dim);
CuSubVector<BaseFloat> mean(memo->mean_uvar_scale, 0),
uvar(memo->mean_uvar_scale, 1),
scale(memo->mean_uvar_scale, 2);
mean.AddRowSumMat(1.0 / num_frames, in, 0.0);
uvar.AddDiagMat2(1.0 / num_frames, in, kTrans, 0.0);
scale.CopyFromVec(uvar);
// by applying this scale at this point, we save a multiply later on.
BaseFloat var_scale = 1.0 / (target_rms_ * target_rms_);
scale.AddVecVec(-var_scale, mean, mean, var_scale);
// at this point, 'scale' contains just the variance (times target-rms^{-2}).
scale.ApplyFloor(0.0);
scale.Add(var_scale * epsilon_);
// Now 'scale' contains the variance floored to zero and then with epsilon
// added [both times 1/target-rms^2].
scale.ApplyPow(-0.5);
// now 'scale' is the actual scale we'll use.
// the next command will do no work if out == in, for in-place propagation.
out->CopyFromMat(in);
out->AddVecToRows(-1.0, mean, 1.0);
out->MulColsVec(scale);
return static_cast<void*>(memo);
} else {
if (offset_.Dim() != block_dim_) {
if (count_ == 0)
KALDI_ERR << "Test mode set in BatchNormComponent, but no stats.";
else // why was ComputeDerived() not called?
KALDI_ERR << "Code error in BatchNormComponent";
}
out->CopyFromMat(in);
out->MulColsVec(scale_);
out->AddVecToRows(1.0, offset_, 1.0);
return NULL;
}
}
void BatchNormComponent::Backprop(
const std::string &debug_info,
const ComponentPrecomputedIndexes *indexes,
const CuMatrixBase<BaseFloat> &in_value, // unused
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
void *memo_in,
Component *to_update, // unused
CuMatrixBase<BaseFloat> *in_deriv) const {
KALDI_ASSERT(SameDim(out_value, out_deriv) &&
SameDim(out_value, *in_deriv) &&
(out_value.NumCols() == dim_ ||
out_value.NumCols() == block_dim_));
if (out_value.NumCols() != block_dim_) {
// if block_dim_ != dim_, we recurse; this helps keep the main code
// simple.
KALDI_ASSERT(out_value.Stride() == out_value.NumCols() &&
out_deriv.Stride() == out_deriv.NumCols() &&
in_deriv->Stride() == in_deriv->NumCols());
int32 ratio = dim_ / block_dim_,
orig_rows = out_value.NumRows(),
orig_cols = out_value.NumCols(),
new_rows = orig_rows * ratio, new_cols = orig_cols / ratio;
CuSubMatrix<BaseFloat> out_value_reshaped(out_value.Data(), new_rows,
new_cols, new_cols),
out_deriv_reshaped(out_deriv.Data(), new_rows, new_cols, new_cols),
in_deriv_reshaped(in_deriv->Data(), new_rows, new_cols, new_cols);
// we'll never use in_value, so pass it in unchanged.
Backprop(debug_info, indexes, in_value,
out_value_reshaped, out_deriv_reshaped,
memo_in, to_update, &in_deriv_reshaped);
return;
}
Memo *memo = static_cast<Memo*>(memo_in);
if (!test_mode_) {
// search above for BACKWARD PASS for a comment describing the math.
KALDI_ASSERT(memo != NULL && "memo not passed into backprop");
int32 num_frames = memo->num_frames;
KALDI_ASSERT(out_value.NumRows() == num_frames);
CuSubVector<BaseFloat>
scale(memo->mean_uvar_scale, 2),
var_deriv_mod(memo->mean_uvar_scale, 3),
temp(memo->mean_uvar_scale, 4);
// var_deriv_mod is going to contain:
// 2 * power * target-rms^{1/power} * (1/I \sum_i z'(i) z(i)) * scale^{-(1+power)/power}
// which for power = -0.5 simplifies to:
// -1.0 / (target_rms * target_rms).
// but for now we don't have the power of 'scale', we'll add that later.
BaseFloat coeff = -1.0 / (target_rms_ * target_rms_ * num_frames);
var_deriv_mod.AddDiagMatMat(coeff, out_value, kTrans,
out_deriv, kNoTrans, 0.0);
var_deriv_mod.MulElements(scale);
temp.AddRowSumMat(-1.0 / num_frames, out_deriv, 0.0);
// the following statement does no work if in_deriv and out_deriv are the
// same matrix.
in_deriv->CopyFromMat(out_deriv);
in_deriv->AddVecToRows(1.0, temp);
// At this point, *in_deriv contains
// (z'(i) - 1/I * \sum_i z'(i))
in_deriv->MulColsVec(scale);
// At this point, *in_deriv contains
// scale * (z'(i) - 1/I * \sum_i z'(i))
in_deriv->AddMatDiagVec(1.0, out_value, kNoTrans,
var_deriv_mod, 1.0);
// At this point, *in_deriv contains what we described in the comment
// starting BATCHNORM_MATH as:
// x'(i) = scale * (z'(i) - 1/I * \sum_i z'(i)) + z(i) var_deriv_mod
} else {
KALDI_ASSERT(offset_.Dim() == block_dim_);
// the next call does no work if they point to the same memory.
in_deriv->CopyFromMat(out_deriv);
in_deriv->MulColsVec(scale_);
}
}
void BatchNormComponent::StoreStats(
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
void *memo_in) {
// in test mode this component does not store stats, it doesn't provide the
// kStoresStats flag.
KALDI_ASSERT(!test_mode_);
KALDI_ASSERT(out_value.NumCols() == dim_ || out_value.NumCols() == block_dim_);
if (out_value.NumCols() != block_dim_) {
// if block_dim_ != dim_, we recurse; this helps keep the main code
// simple.
KALDI_ASSERT(out_value.Stride() == out_value.NumCols());
int32 ratio = dim_ / block_dim_,
orig_rows = out_value.NumRows(),
orig_cols = out_value.NumCols(),
new_rows = orig_rows * ratio, new_cols = orig_cols / ratio;
CuSubMatrix<BaseFloat> out_value_reshaped(out_value.Data(), new_rows,
new_cols, new_cols);
// we'll never use in_value, so just pass it in unchanged.
StoreStats(in_value, out_value_reshaped, memo_in);
return;
}
Memo *memo = static_cast<Memo*>(memo_in);
KALDI_ASSERT(out_value.NumRows() == memo->num_frames);
CuSubVector<BaseFloat> mean(memo->mean_uvar_scale, 0),
uvar(memo->mean_uvar_scale, 1);
KALDI_ASSERT(mean.Dim() == block_dim_ && memo->num_frames > 0);
BaseFloat num_frames = memo->num_frames;
if (stats_sum_.Dim() != block_dim_) {
stats_sum_.Resize(block_dim_);
stats_sumsq_.Resize(block_dim_);
KALDI_ASSERT(count_ == 0);
}
count_ += num_frames;
stats_sum_.AddVec(num_frames, mean, 1.0);
stats_sumsq_.AddVec(num_frames, uvar, 1.0);
}
void BatchNormComponent::Read(std::istream &is, bool binary) {
ExpectOneOrTwoTokens(is, binary, "<BatchNormComponent>", "<Dim>");
ReadBasicType(is, binary, &dim_);
ExpectToken(is, binary, "<BlockDim>");
ReadBasicType(is, binary, &block_dim_);
ExpectToken(is, binary, "<Epsilon>");
ReadBasicType(is, binary, &epsilon_);
ExpectToken(is, binary, "<TargetRms>");
ReadBasicType(is, binary, &target_rms_);
ExpectToken(is, binary, "<TestMode>");
ReadBasicType(is, binary, &test_mode_);
ExpectToken(is, binary, "<Count>");
ReadBasicType(is, binary, &count_);
ExpectToken(is, binary, "<StatsMean>");
stats_sum_.Read(is, binary);
ExpectToken(is, binary, "<StatsVar>");
stats_sumsq_.Read(is, binary);
stats_sumsq_.AddVecVec(1.0, stats_sum_, stats_sum_, 1.0);
stats_sum_.Scale(count_);
stats_sumsq_.Scale(count_);
ExpectToken(is, binary, "</BatchNormComponent>");
ComputeDerived();
Check();
}
void BatchNormComponent::Write(std::ostream &os, bool binary) const {
Check();
WriteToken(os, binary, "<BatchNormComponent>");
WriteToken(os, binary, "<Dim>");
WriteBasicType(os, binary, dim_);
WriteToken(os, binary, "<BlockDim>");
WriteBasicType(os, binary, block_dim_);
WriteToken(os, binary, "<Epsilon>");
WriteBasicType(os, binary, epsilon_);
WriteToken(os, binary, "<TargetRms>");
WriteBasicType(os, binary, target_rms_);
WriteToken(os, binary, "<TestMode>");
WriteBasicType(os, binary, test_mode_);
WriteToken(os, binary, "<Count>");
WriteBasicType(os, binary, count_);
CuVector<BaseFloat> mean(stats_sum_), var(stats_sumsq_);
if (count_ != 0) {
mean.Scale(1.0 / count_);
var.Scale(1.0 / count_);
var.AddVecVec(-1.0, mean, mean, 1.0);
}
WriteToken(os, binary, "<StatsMean>");
mean.Write(os, binary);
WriteToken(os, binary, "<StatsVar>");
var.Write(os, binary);
WriteToken(os, binary, "</BatchNormComponent>");
}
void BatchNormComponent::Scale(BaseFloat scale) {
if (scale == 0) {
count_ = 0.0;
stats_sum_.SetZero();
stats_sumsq_.SetZero();
} else {
count_ *= scale;
stats_sum_.Scale(scale);
stats_sumsq_.Scale(scale);
}
}
void BatchNormComponent::Add(BaseFloat alpha, const Component &other_in) {
const BatchNormComponent *other =
dynamic_cast<const BatchNormComponent*>(&other_in);
count_ += alpha * other->count_;
stats_sum_.AddVec(alpha, other->stats_sum_);
stats_sumsq_.AddVec(alpha, other->stats_sumsq_);
// this operation might change offset_ and scale_, so we recompute them
// in this instance (but not in Scale()).
ComputeDerived();
}
void BatchNormComponent::ZeroStats() {
// We only zero the stats if we're not in test mode. In test mode, this would
// be dangerous as the stats are the source for the transform, and zeroing
// them and then calling ComputeDerived() again would remove the transform
// parameters (offset_ and scale_).
if (!test_mode_) {
count_ = 0.0;
stats_sum_.SetZero();
stats_sumsq_.SetZero();
}
}
} // namespace nnet3
} // namespace kaldi