nnet-optimize-utils.cc
210 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
// nnet3/nnet-optimize-utils.cc
// Copyright 2015 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <map>
#include "nnet3/nnet-optimize-utils.h"
#include "nnet3/nnet-optimize.h"
namespace kaldi {
namespace nnet3 {
void IdentifySubmatrixArgs(NnetComputation::Command *c,
std::vector<int32*> *submatrix_args) {
submatrix_args->clear();
switch (c->command_type) {
case kAllocMatrix:
case kDeallocMatrix:
case kSetConst:
submatrix_args->push_back(&c->arg1);
break;
case kSwapMatrix:
submatrix_args->push_back(&c->arg1);
submatrix_args->push_back(&c->arg2);
break;
case kPropagate:
submatrix_args->push_back(&c->arg3);
submatrix_args->push_back(&c->arg4);
break;
case kBackprop:
case kBackpropNoModelUpdate:
submatrix_args->push_back(&c->arg3);
submatrix_args->push_back(&c->arg4);
submatrix_args->push_back(&c->arg5);
submatrix_args->push_back(&c->arg6);
break;
case kMatrixCopy:
case kMatrixAdd:
case kAddRows:
case kCopyRows:
case kAddRowRanges:
submatrix_args->push_back(&c->arg1);
submatrix_args->push_back(&c->arg2);
break;
case kAddRowsMulti:
case kCopyRowsMulti:
case kAddToRowsMulti:
case kCopyToRowsMulti:
submatrix_args->push_back(&c->arg1);
break;
case kAcceptInput: case kProvideOutput:
submatrix_args->push_back(&c->arg1);
break;
case kNoOperation:
case kNoOperationPermanent:
case kNoOperationMarker:
case kNoOperationLabel:
case kGotoLabel:
break;
default:
KALDI_ERR << "Unknown command type.";
}
}
void IdentifySubmatrixArgs(std::vector<NnetComputation::Command> *commands,
std::vector<int32*> *submatrix_args) {
submatrix_args->clear();
std::vector<NnetComputation::Command>::iterator iter = commands->begin(),
end = commands->end();
std::vector<int32*> this_submatrix_args;
for (; iter != end; ++iter) {
IdentifySubmatrixArgs(&(*iter), &this_submatrix_args);
submatrix_args->insert(submatrix_args->end(),
this_submatrix_args.begin(),
this_submatrix_args.end());
}
}
void IdentifyMatrixArgsInComputation(NnetComputation *computation,
std::vector<int32*> *matrix_args) {
int32 num_submatrices = computation->submatrices.size();
matrix_args->reserve(computation->submatrices.size());
for (int32 s = 1; s < num_submatrices; s++)
matrix_args->push_back(&(computation->submatrices[s].matrix_index));
}
void IdentifyIndexesMultiArgs(std::vector<NnetComputation::Command> *commands,
std::vector<int32*> *indexes_multi_args) {
indexes_multi_args->clear();
std::vector<NnetComputation::Command>::iterator iter = commands->begin(),
end = commands->end();
for (; iter != end; ++iter) {
NnetComputation::Command &command = *iter;
if (command.command_type == kAddRowsMulti ||
command.command_type == kAddToRowsMulti ||
command.command_type == kCopyRowsMulti ||
command.command_type == kCopyToRowsMulti)
indexes_multi_args->push_back(&(command.arg2));
}
}
void IdentifyIndexesRangesArgs(std::vector<NnetComputation::Command> *commands,
std::vector<int32*> *indexes_ranges_args) {
indexes_ranges_args->clear();
std::vector<NnetComputation::Command>::iterator iter = commands->begin(),
end = commands->end();
for (; iter != end; ++iter) {
NnetComputation::Command &command = *iter;
if (command.command_type == kAddRowRanges)
indexes_ranges_args->push_back(&(command.arg3));
}
}
void IdentifyIndexesArgs(std::vector<NnetComputation::Command> *commands,
std::vector<int32*> *indexes_args) {
indexes_args->clear();
std::vector<NnetComputation::Command>::iterator iter = commands->begin(),
end = commands->end();
for (; iter != end; ++iter) {
NnetComputation::Command &command = *iter;
if (command.command_type == kCopyRows ||
command.command_type == kAddRows)
indexes_args->push_back(&(command.arg3));
}
}
// We declare this class in the .cc file, we don't need to export it.
// It's used inside RenumberComputation.
class ComputationRenumberer {
public:
ComputationRenumberer(NnetComputation *computation):
computation_(computation) { }
void Renumber();
private:
// this function removes unused vectors within the indexes_multi_ array, i.e.
// ones that are not referenced in the computation.
void RemoveUnusedIndexesMulti();
// this function computes the submatrix_is_used_ vector, saying whether each
// of the original submatrices is referenced somewhere.
void ComputeSubmatrixIsUsed();
// this function computes the matrix_is_used_ vector (from the
// submatrix_is_used_ vector, from computation_->input_output_info, and from
// computation_->commands, saying whether each of the original matrices is
// referenced somewhere, directly or indirectly.
void ComputeMatrixIsUsed();
// This function sets up mappings from old to new matrix and submatrix indexes,
// writing to num_{,sub}matrices_new_ and old_to_new_{,sub}matrix_.
void SetUpMappings();
// This function renumbers submatrix indexes appearing within commands and
// indexes_multi_, and then removes unused submatrices from the list of
// submatrices while leaving the matrix-indexes at their old values (they will
// be mapped by RenumberMatrices()).
void RenumberSubmatrices();
// renumber matrix indexes appearing within 'commmands', within 'submatrices'
// and 'input_output_info'; renumber 'matrices' and if applicable
// 'debug_info'.
void RenumberMatrices();
// removes duplicates within the indexes_multi array itself.
void RemoveIndexesMultiDuplicates();
// removes unused elements and duplicates within 'computation->indexes'
void RenumberIndexes();
// removes unused elements and duplicates within 'computation->indexes_ranges'
void RenumberIndexesRanges();
// renumbers memos, removing any gaps between memo indexes.
void RenumberMemos();
struct SubMatrixHasher {
SubMatrixHasher() { }
size_t operator () (const NnetComputation::SubMatrixInfo &submat) const noexcept {
// these numbers are arbitrarily chosen primes.
return submat.matrix_index +
19553 * submat.row_offset +
29297 * submat.num_rows +
42209 * submat.col_offset +
56527 * submat.num_cols;
}
};
// Here, T will be int32 or std::pair<int32,int32>
template <class T>
struct PointerCompare {
// This provides an operator < on two vectors of ints or pairs of ints. It
// is designed to provide a total order on the vectors while accessing as
// small a portion of the vectors' data as possible. It's used in removing
// duplicates from computation_->indexes_multi and computation_->indexes.
// First it compares the length, then it does lexicographical compare.
bool operator ()(const std::vector<T> *ptr1,
const std::vector<T> *ptr2) const {
size_t size1 = ptr1->size(), size2 = ptr2->size();
if (size1 < size2) return true;
else if (size1 > size2) return false;
else return (*ptr1 < *ptr2); // use the std::vector operator <, which is
// lexicographical comparison.
}
};
/// creates a renumbering that removes the elements in "to_remove",
/// e.g. if old_num_elements = 3 and to_remove = [1], would output
/// the vector [ 0, -1, 1 ].
static void CreateRenumbering(int32 old_num_elements,
const std::vector<int32> &to_remove,
std::vector<int32> *renumbering);
/// creates a renumbering from old to new index that removes the unused
/// elements, e.g. if used == [ true, false, true, true], would output the
/// vector [ 0, -1, 1, 2 ]. Returns number of new elements, i.e. the
/// number of elements of 'used' that were true.
static int32 CreateRenumbering(const std::vector<bool> &used,
std::vector<int32> *renumbering);
// vector of bool indexed by original submatrix-index, that is true if a
// submatrix-index is used somewhere in the computation (always true for
// the zeroth element).
std::vector<bool> submatrix_is_used_;
// vector of bool indexed by original submatrix-index, that is true if a
// submatrix-index will be kept; this is like submatrix_is_used_; but for
// duplicate submatrices, all but the first duplicate will be marked false).
std::vector<bool> submatrix_is_kept_;
// vector of bool indexed by original-matrix-index > 0, that is true if a
// matrix-index is used somewhere in the computation, directly or indirectly.
// always true for the zeroth element.
std::vector<bool> matrix_is_used_;
NnetComputation *computation_;
int32 num_matrices_new_;
int32 num_submatrices_new_;
std::vector<int32> old_to_new_matrix_; // numbered by orig-matrix-index, gives
// new-matrix-index. -1 for removed
// ones.
std::vector<int32> old_to_new_submatrix_; // numbered by orig-submatrix-index,
// gives new-submatrix-index. -1
// for removed ones.
};
// static
int32 ComputationRenumberer::CreateRenumbering(
const std::vector<bool> &used,
std::vector<int32> *renumbering) {
renumbering->clear();
renumbering->reserve(used.size());
std::vector<bool>::const_iterator iter = used.begin(), end = used.end();
int32 cur_index = 0;
for (; iter != end; ++iter) {
if (*iter) renumbering->push_back(cur_index++);
else renumbering->push_back(-1);
}
return cur_index;
}
// static
void ComputationRenumberer::CreateRenumbering(
int32 old_num_elements,
const std::vector<int32> &to_remove,
std::vector<int32> *renumbering) {
KALDI_ASSERT(IsSortedAndUniq(to_remove) && old_num_elements > 0);
renumbering->clear();
renumbering->resize(old_num_elements, 0);
int32 num_remove = to_remove.size();
for (int32 r = 0; r < num_remove; r++) {
int32 this_remove = to_remove[r];
// the "> 0" would be ">= 0" in a more generic context, but zero is
// not valid in this particular application.
KALDI_ASSERT(this_remove > 0 && this_remove < old_num_elements);
(*renumbering)[this_remove] = -1;
}
int32 cur_number = 0;
for (int32 i = 0; i < old_num_elements; i++) {
if ((*renumbering)[i] != -1)
(*renumbering)[i] = cur_number++;
}
KALDI_ASSERT(cur_number == old_num_elements -
static_cast<int32>(to_remove.size()));
}
void ComputationRenumberer::RenumberMemos() {
// this is indexed by memo-index, and maps to the
// (propagate, backprop) commands that use that memo-index, or
// (-1, -1) if there are no such commands.
std::vector<std::pair<int32, int32> > memo_to_commands;
std::vector<int32> memo_indexes_used;
std::pair<int32, int32> blank(-1, -1);
int32 num_commands = computation_->commands.size();
for (int32 c = 0; c < num_commands; c++) {
NnetComputation::Command &command = computation_->commands[c];
if (command.command_type == kPropagate) {
int32 memo_index = command.arg5;
if (memo_index > 0) {
if (memo_to_commands.size() <= static_cast<size_t>(memo_index))
memo_to_commands.resize(memo_index + 1, blank);
KALDI_ASSERT(memo_to_commands[memo_index].first == -1);
memo_to_commands[memo_index].first = c;
memo_indexes_used.push_back(memo_index);
}
} else if (command.command_type == kBackprop) {
int32 memo_index = command.arg7;
if (memo_index > 0) {
if (memo_to_commands.size() <= static_cast<size_t>(memo_index))
memo_to_commands.resize(memo_index + 1, blank);
KALDI_ASSERT(memo_to_commands[memo_index].first > 0 &&
memo_to_commands[memo_index].second == -1);
memo_to_commands[memo_index].second = c;
}
}
}
int32 new_memo_index = 1;
for (std::vector<int32>::iterator iter = memo_indexes_used.begin();
iter != memo_indexes_used.end(); ++iter) {
int32 memo_index = *iter;
int32 propagate_command = memo_to_commands[memo_index].first,
backprop_command = memo_to_commands[memo_index].second;
KALDI_ASSERT(backprop_command > 0 &&
"Propagate generates memo but backprop doesn't use it.");
computation_->commands[propagate_command].arg5 = new_memo_index;
computation_->commands[backprop_command].arg7 = new_memo_index;
new_memo_index++;
}
}
void IdentifySubmatrixArgsInComputation(NnetComputation *computation,
std::vector<int32*> *submatrix_args) {
IdentifySubmatrixArgs(&(computation->commands), submatrix_args);
size_t extra_size = 0;
for (size_t i = 0; i < computation->indexes_multi.size(); i++)
extra_size += computation->indexes_multi[i].size();
submatrix_args->reserve(submatrix_args->size() + extra_size);
for (size_t i = 0; i < computation->indexes_multi.size(); i++) {
std::vector<std::pair<int32, int32> > &indexes_multi =
computation->indexes_multi[i];
std::vector<std::pair<int32, int32> >::iterator
iter = indexes_multi.begin(), end = indexes_multi.end();
for (; iter != end; ++iter)
if (iter->first != -1)
submatrix_args->push_back(&(iter->first));
}
}
void ComputationRenumberer::ComputeSubmatrixIsUsed() {
int32 num_submatrices = computation_->submatrices.size();
submatrix_is_used_.clear();
submatrix_is_used_.resize(num_submatrices, false);
submatrix_is_used_[0] = true;
// the zeroth element of the array is 'special', it refers to the
// zero submatrix, and we don't want to renumber it.
std::vector<int32*> submatrix_args;
IdentifySubmatrixArgsInComputation(computation_, &submatrix_args);
std::vector<int32*>::iterator iter = submatrix_args.begin(),
end = submatrix_args.end();
int32 cur_submatrix_index = -1; // an optimization to avoid too many
// indexings of the bool vector
// submatrix_is_used_.
for (; iter != end; ++iter) {
int32 submatrix_index = **iter;
if (submatrix_index > 0 && submatrix_index != cur_submatrix_index) {
cur_submatrix_index = submatrix_index;
KALDI_ASSERT(submatrix_index < num_submatrices);
submatrix_is_used_[submatrix_index] = true;
}
}
}
void ComputationRenumberer::ComputeMatrixIsUsed() {
matrix_is_used_.clear();
matrix_is_used_.resize(computation_->matrices.size(), false);
matrix_is_used_[0] = true;
// We also need to take into account when matrices are used indirectly via
// submatrices (which is actually the main way they are accessed).
int32 num_submatrices = computation_->submatrices.size();
for (int32 s = 1; s < num_submatrices; s++) {
int32 matrix_index = computation_->submatrices[s].matrix_index;
if (submatrix_is_used_[s])
matrix_is_used_[matrix_index] = true;
}
}
void ComputationRenumberer::SetUpMappings() {
num_matrices_new_ = CreateRenumbering(matrix_is_used_, &old_to_new_matrix_);
unordered_map<NnetComputation::SubMatrixInfo, int32,
SubMatrixHasher> submat_map;
int32 cur_index = 1, num_submatrices_orig =
computation_->submatrices.size();
// the old_to_new_submatrix_ map will remove duplicates.
// -1's will appear wherever a particular submatrix was never used.
submatrix_is_kept_ = submatrix_is_used_;
old_to_new_submatrix_.resize(num_submatrices_orig, -1);
old_to_new_submatrix_[0] = 0;
for (int32 s = 1; s < num_submatrices_orig; s++) {
if (submatrix_is_used_[s]) {
const NnetComputation::SubMatrixInfo &info =
computation_->submatrices[s];
if (submat_map.count(info) > 0) { // a duplicate...
old_to_new_submatrix_[s] = submat_map[info];
submatrix_is_kept_[s] = false;
} else {
old_to_new_submatrix_[s] = (submat_map[info] = cur_index++);
}
}
}
num_submatrices_new_ = cur_index;
}
void ComputationRenumberer::RenumberSubmatrices() {
std::vector<int32*> submatrix_args;
IdentifySubmatrixArgsInComputation(computation_, &submatrix_args);
std::vector<int32*>::iterator iter = submatrix_args.begin(),
end = submatrix_args.end();
for (; iter != end; ++iter) {
if (**iter > 0) {
int32 new_submatrix_index = old_to_new_submatrix_[**iter];
// old_to_new_submatrix_[s] for s > 0 is only <= 0 (actually, -1) for
// submatrices that are never accessed, and these should never appear
// in this list.
KALDI_ASSERT(new_submatrix_index > 0);
**iter = new_submatrix_index;
}
}
std::vector<NnetComputation::SubMatrixInfo> new_submatrices;
int32 num_submatrices_old = computation_->submatrices.size();
new_submatrices.reserve(num_submatrices_old);
for (int32 s = 0; s < num_submatrices_old; s++)
if (submatrix_is_kept_[s])
new_submatrices.push_back(computation_->submatrices[s]);
computation_->submatrices.swap(new_submatrices);
// We'll map the matrix indexes inside computation_->submatrices
// when we call RenumberMatrices().
}
void ComputationRenumberer::RenumberMatrices() {
std::vector<int32*> matrix_args;
int32 num_submatrices = computation_->submatrices.size();
for (int32 s = 1; s < num_submatrices; s++) {
int32 *matrix_index = &(computation_->submatrices[s].matrix_index);
// old_to_new_matrix_[s] for s > 0 is only <= 0 (actually, -1) for
// submatrices that are never accessed, and these should never appear
// in this list. (presumably because we renumber the submatrices first).
int32 new_matrix_index = old_to_new_matrix_[*matrix_index];
KALDI_ASSERT(new_matrix_index > 0);
*matrix_index = new_matrix_index;
}
std::vector<NnetComputation::MatrixInfo> new_matrices;
int32 num_matrices_old = computation_->matrices.size();
new_matrices.reserve(num_matrices_old);
for (int32 m = 0; m < num_matrices_old; m++)
if (matrix_is_used_[m])
new_matrices.push_back(computation_->matrices[m]);
computation_->matrices.swap(new_matrices);
std::vector<NnetComputation::MatrixDebugInfo> new_debug_info;
int32 debug_info_size = computation_->matrix_debug_info.size();
KALDI_ASSERT(debug_info_size == 0 || debug_info_size == num_matrices_old);
new_debug_info.reserve(debug_info_size);
for (int32 m = 0; m < debug_info_size; m++) {
if (matrix_is_used_[m]) {
new_debug_info.push_back(NnetComputation::MatrixDebugInfo());
new_debug_info.back().Swap(&(computation_->matrix_debug_info[m]));
}
}
computation_->matrix_debug_info.swap(new_debug_info);
}
void ComputationRenumberer::Renumber() {
RemoveUnusedIndexesMulti();
ComputeSubmatrixIsUsed();
ComputeMatrixIsUsed();
SetUpMappings();
RenumberSubmatrices();
RenumberMatrices();
RemoveIndexesMultiDuplicates();
RenumberIndexes();
RenumberIndexesRanges();
RenumberMemos();
}
void ComputationRenumberer::RemoveUnusedIndexesMulti() {
int32 num_indexes_multi = computation_->indexes_multi.size();
if (num_indexes_multi == 0)
return; // Nothing to do. An optimization.
std::vector<bool> indexes_multi_used(num_indexes_multi, false);
std::vector<int32*> indexes_multi_args;
IdentifyIndexesMultiArgs(&(computation_->commands), &indexes_multi_args);
std::vector<int32*>::iterator iter = indexes_multi_args.begin(),
end = indexes_multi_args.end();
for (; iter != end; ++iter) {
int32 indexes_multi_index = **iter;
KALDI_ASSERT(indexes_multi_index >= 0 &&
indexes_multi_index < num_indexes_multi);
indexes_multi_used[indexes_multi_index] = 1;
}
// old->new mapping for the indexes_multi arrays. will remain -1 for
// ones that are unused.
std::vector<int32> old_to_new(num_indexes_multi, -1);
int32 new_num_indexes_multi = CreateRenumbering(indexes_multi_used,
&old_to_new);
if (new_num_indexes_multi == num_indexes_multi)
return; // Nothing to do. An optimization.
std::vector<std::vector<std::pair<int32, int32> > >
new_indexes_multi(new_num_indexes_multi);
for (int32 i = 0; i < num_indexes_multi; i++) {
if (old_to_new[i] != -1)
new_indexes_multi[old_to_new[i]].swap(computation_->indexes_multi[i]);
}
computation_->indexes_multi.swap(new_indexes_multi);
// renumber within the commands.
for (iter = indexes_multi_args.begin(); iter != end; ++iter)
**iter = old_to_new[**iter];
}
// removes duplicates within the indexes_multi_ array itself.
void ComputationRenumberer::RemoveIndexesMultiDuplicates() {
int32 cur_index = 0,
old_indexes_multi_size = computation_->indexes_multi.size();
if (old_indexes_multi_size == 0)
return;
// create index mapping from old to new. the use of map is generally not that
// efficient, but the idea here is that we can do most of the comparisons just
// based on the size of the vectors, and avoid even visiting most of their
// contents.
std::vector<int32> indexes_multi_old_to_new(old_indexes_multi_size);
typedef std::vector<std::pair<int32,int32> > PairVectorType;
typedef std::map<const PairVectorType*, int32,
PointerCompare<std::pair<int32,int32> > > MapType;
MapType indexes_multi_map;
for (int32 i = 0; i < computation_->indexes_multi.size(); i++) {
std::pair<MapType::iterator, bool> p =
indexes_multi_map.insert(std::pair<const PairVectorType*, int32>(
&(computation_->indexes_multi[i]), cur_index));
if (p.second) { // was inserted-- was not there already.
indexes_multi_old_to_new[i] = cur_index++;
} else {
int32 index_from_map = p.first->second;
indexes_multi_old_to_new[i] = index_from_map;
}
}
if (cur_index == old_indexes_multi_size)
return; // An optimization. No duplicates were found.
std::vector<PairVectorType> new_indexes_multi(cur_index);
for (int32 i = 0; i < old_indexes_multi_size; i++) {
int32 new_index = indexes_multi_old_to_new[i];
computation_->indexes_multi[i].swap(new_indexes_multi[new_index]);
}
computation_->indexes_multi.swap(new_indexes_multi);
std::vector<int32*> indexes_multi_args;
IdentifyIndexesMultiArgs(&(computation_->commands), &indexes_multi_args);
std::vector<int32*>::const_iterator iter = indexes_multi_args.begin(),
end = indexes_multi_args.end();
for (; iter != end; ++iter)
**iter = indexes_multi_old_to_new[**iter];
}
void ComputationRenumberer::RenumberIndexes() {
int32 old_num_indexes = computation_->indexes.size();
if (old_num_indexes == 0)
return;
std::vector<int32*> indexes_args;
IdentifyIndexesArgs(&(computation_->commands), &indexes_args);
std::vector<bool> indexes_seen(old_num_indexes, false);
std::vector<int32*>::const_iterator iter = indexes_args.begin(),
end = indexes_args.end();
for (; iter != end; ++iter)
indexes_seen[**iter] = true;
std::vector<int32> old_to_new_index(old_num_indexes);
typedef std::map<const std::vector<int32>*, int32,
PointerCompare<int32> > MapType;
MapType indexes_map;
int32 cur_index = 0;
for (int32 i = 0; i < old_num_indexes; i++) {
if (!indexes_seen[i]) {
old_to_new_index[i] = -1;
} else {
std::pair<MapType::iterator, bool> p =
indexes_map.insert(std::pair<const std::vector<int32>*, int32>(
&(computation_->indexes[i]), cur_index));
if (p.second) { // was inserted-- was not there already.
old_to_new_index[i] = cur_index++;
} else {
int32 index_from_map = p.first->second;
old_to_new_index[i] = index_from_map;
}
}
}
if (cur_index == old_num_indexes)
return; // An optimization. No changes to the numbering are made.
std::vector<std::vector<int32> > new_indexes(cur_index);
for (int32 i = 0; i < old_num_indexes; i++) {
int32 new_index = old_to_new_index[i];
if (new_index != -1)
computation_->indexes[i].swap(new_indexes[new_index]);
}
computation_->indexes.swap(new_indexes);
// renumber the indexes inside the commmands.
for (iter = indexes_args.begin(); iter != end; ++iter) {
int32 old_index = **iter;
KALDI_ASSERT(old_index >= 0 && old_index < old_num_indexes);
int32 new_index = old_to_new_index[old_index];
KALDI_ASSERT(new_index >= 0);
**iter = new_index;
}
}
void ComputationRenumberer::RenumberIndexesRanges() {
int32 old_num_indexes_ranges = computation_->indexes_ranges.size();
if (old_num_indexes_ranges == 0)
return;
std::vector<int32*> indexes_ranges_args;
IdentifyIndexesRangesArgs(&(computation_->commands), &indexes_ranges_args);
std::vector<bool> is_seen(old_num_indexes_ranges, false);
std::vector<int32*>::const_iterator iter = indexes_ranges_args.begin(),
end = indexes_ranges_args.end();
for (; iter != end; ++iter)
is_seen[**iter] = true;
std::vector<int32> old_to_new_index(old_num_indexes_ranges);
typedef std::map<const std::vector<std::pair<int32, int32> >*, int32,
PointerCompare<std::pair<int32, int32> > > MapType;
MapType indexes_map;
int32 cur_index = 0;
for (int32 i = 0; i < old_num_indexes_ranges; i++) {
if (!is_seen[i]) {
old_to_new_index[i] = -1;
} else {
std::pair<MapType::iterator, bool> p =
indexes_map.insert(
std::pair<const std::vector<std::pair<int32, int32> >*, int32>(
&(computation_->indexes_ranges[i]), cur_index));
if (p.second) { // was inserted-- was not there already.
old_to_new_index[i] = cur_index++;
} else {
int32 index_from_map = p.first->second;
old_to_new_index[i] = index_from_map;
}
}
}
if (cur_index == old_num_indexes_ranges)
return; // An optimization. No changes to the numbering are made.
std::vector<std::vector<std::pair<int32, int32> > > new_indexes_ranges(
cur_index);
for (int32 i = 0; i < old_num_indexes_ranges; i++) {
int32 new_index = old_to_new_index[i];
if (new_index != -1)
computation_->indexes_ranges[i].swap(new_indexes_ranges[new_index]);
}
computation_->indexes_ranges.swap(new_indexes_ranges);
// renumber the indexes inside the commmands.
for (iter = indexes_ranges_args.begin(); iter != end; ++iter) {
int32 old_index = **iter;
KALDI_ASSERT(old_index >= 0 && old_index < old_num_indexes_ranges);
int32 new_index = old_to_new_index[old_index];
KALDI_ASSERT(new_index >= 0);
**iter = new_index;
}
}
void RenumberComputation(NnetComputation *computation) {
ComputationRenumberer renumberer(computation);
renumberer.Renumber();
}
static bool IsNoop(const NnetComputation::Command &command) {
return command.command_type == kNoOperation;
}
void RemoveNoOps(NnetComputation *computation) {
computation->commands.erase(
std::remove_if(computation->commands.begin(),
computation->commands.end(),
IsNoop), computation->commands.end());
}
VariableMergingOptimizer::VariableMergingOptimizer(
const NnetOptimizeOptions &config,
const Nnet &nnet,
NnetComputation *computation):
config_(config), nnet_(nnet),
computation_(computation),
already_called_merge_variables_(false) {
analyzer_.Init(nnet, *computation);
ComputeMatrixToSubmatrix(*computation_, &matrix_to_submatrix_);
variable_dirty_.resize(analyzer_.variables.NumVariables(), false);
}
bool VariableMergingOptimizer::MergeVariables() {
KALDI_ASSERT(!already_called_merge_variables_);
already_called_merge_variables_ = true;
if (!config_.optimize)
return false;
bool merged = false;
int32 num_commands = computation_->commands.size();
for (int32 command_index = 0; command_index < num_commands;
command_index++) {
// This loop looks for pairs of sub-matrix indexes s1,s2 that we could
// potentially merge into a single variable.
const NnetComputation::Command &c = computation_->commands[command_index];
int32 s1 = -1, s2 = -1;
if (c.command_type == kMatrixCopy &&
config_.remove_assignments) {
s2 = c.arg1; // s2 is the written-to matrix.
s1 = c.arg2;
} else if (c.command_type == kPropagate &&
config_.propagate_in_place) {
const Component *component = nnet_.GetComponent(c.arg1);
if (component->Properties() & kPropagateInPlace) {
s1 = c.arg3;
s2 = c.arg4; // s2 is the written-to matrix.
}
} else if ((c.command_type == kBackprop ||
c.command_type == kBackpropNoModelUpdate) &&
config_.backprop_in_place) {
const Component *component = nnet_.GetComponent(c.arg1);
if (component->Properties() & kBackpropInPlace) {
s1 = c.arg5;
s2 = c.arg6; // s2 is the written-to matrix.
if (s1 == c.arg3 || s2 == c.arg3 || s1 == c.arg4 || s2 == c.arg4) {
// we don't think this should ever happen, but just out of an
// abundance of caution: if either of these submatrix indexes are the
// input-value or output-value args to Backprop, don't do the optimization.
s1 = -1;
s2 = -1;
}
}
}
if (s1 > 0 && s2 > 0) {
std::pair<bool,bool> p = MayBeMerged(command_index, s1, s2);
if (p.first) {
DoMerge(command_index, s1, s2);
merged = true;
} else if (p.second) {
DoMerge(command_index, s2, s1);
merged = true;
}
}
}
if (merged) {
RenumberComputation(computation_);
RemoveNoOps(computation_);
}
return merged;
}
/**
This static function returns a SubMatrixInfo corresponding to
replacing the matrix-index in a's "matrix_index" with, essentially, sub-matrix b.
Of course the matrix_index will be b's "matrix_index", but we may
have to modify the row and column offsets. The idea is that sub-matrix
submat_b should have the same dimensions as the matrix underlying
submat_a.
*/
static NnetComputation::SubMatrixInfo GetSubMatrixOfSubMatrix(
const NnetComputation &computation, int32 submat_a, int32 submat_b) {
KALDI_ASSERT(static_cast<size_t>(submat_a) < computation.submatrices.size());
KALDI_ASSERT(static_cast<size_t>(submat_b) < computation.submatrices.size());
const NnetComputation::SubMatrixInfo &a = computation.submatrices[submat_a],
&b = computation.submatrices[submat_b];
const NnetComputation::MatrixInfo &a_mat =
computation.matrices[a.matrix_index];
KALDI_ASSERT(a_mat.num_rows == b.num_rows && a_mat.num_cols == b.num_cols);
NnetComputation::SubMatrixInfo ans;
ans.matrix_index = b.matrix_index;
ans.row_offset = a.row_offset + b.row_offset;
ans.num_rows = a.num_rows;
ans.col_offset = a.col_offset + b.col_offset;
ans.num_cols = a.num_cols;
return ans;
}
void VariableMergingOptimizer::MarkAsDirty(int32 s) {
std::vector<int32> variable_indexes;
analyzer_.variables.AppendVariablesForSubmatrix(s, &variable_indexes);
std::vector<int32>::const_iterator iter = variable_indexes.begin(),
end = variable_indexes.end();
for (; iter != end; ++iter) {
int32 v = *iter;
KALDI_ASSERT(static_cast<size_t>(v) < variable_dirty_.size());
variable_dirty_[v] = true;
}
}
void VariableMergingOptimizer::DoMerge(int32 command_index,
int32 s_to_keep,
int32 s_to_discard) {
// Prevent further optimizations touching either submatrix (we can try again
// in a later round of optimization, with a new instance of this class).
MarkAsDirty(s_to_keep);
MarkAsDirty(s_to_discard);
int32 m_to_keep = computation_->submatrices[s_to_keep].matrix_index,
m_to_discard = computation_->submatrices[s_to_discard].matrix_index;
KALDI_ASSERT(m_to_keep != m_to_discard && m_to_keep > 0 && m_to_discard > 0);
{ // modify submatrices of m_to_discard to effectively be sub-matrices of
// s_to_keep instead (they will refer to m_to_keep as the matrix_index).
std::vector<int32>::const_iterator iter =
matrix_to_submatrix_[m_to_discard].begin(),
end = matrix_to_submatrix_[m_to_discard].end();
for (; iter != end; ++iter) {
int32 submatrix_index = *iter;
KALDI_ASSERT(computation_->submatrices[submatrix_index].matrix_index
== m_to_discard);
computation_->submatrices[submatrix_index] =
GetSubMatrixOfSubMatrix(*computation_, submatrix_index,
s_to_keep);
}
}
ComputationAnalysis analysis(*computation_, analyzer_);
NnetComputation::Command &c = computation_->commands[command_index];
const std::vector<MatrixAccesses> &matrix_accesses =
analyzer_.matrix_accesses;
// - If it was a matrix-copy (assignment) with scale 1.0, replace the
// assignment command with a no-op.
// If it was matrix-copy with a scale, leave the command there;
// it will have the effect of scaling the matrix (it will be
// mapped so that arg1 == arg2, but that is OK).
if (c.command_type == kMatrixCopy && c.alpha == 1.0) {
// remove the command.
c.command_type = kNoOperation;
c.arg1 = -1;
c.arg2 = -1;
}
// We want to ensure that there is only one deallocation command.
// If neither matrix is an output, then there will be 2 deallocation
// commands and we keep the one for m_to_keep (which, if the sizes
// differ, will be the larger of the two, so it's the one whose
// submatrix index refers to the entirety of the matrix).
// If one of them is an output, then remove the deallocation command
// of whichever one is not an output.
// As a simplification to the logic above: if the 'discard' matrix
// has a deallocation command (i.e. if that matrix was not an output)
// then remove it; otherwise remove the deallocation command of
// the 'keep' matrix.
int32 dealloc_keep = matrix_accesses[m_to_keep].deallocate_command,
dealloc_discard = matrix_accesses[m_to_discard].deallocate_command;
if (dealloc_discard != -1) {
computation_->commands[dealloc_discard].command_type = kNoOperation;
} else {
KALDI_ASSERT(dealloc_keep != -1);
computation_->commands[dealloc_keep].command_type = kNoOperation;
}
{
// - Both m_to_keep and m_to_discard will have commands that allocate
// them, as all matrices do (note, kAcceptInput counts as an allocation
// command). If one of them is kAcceptInput, then delete the other one,
// because the position of the kAcceptInput commands is important.
// Otherwise delete the "discard" one. As a simplification of the logic
// of the previous sentence: if the "discard" allocate command is
// kAcceptInput then delete the "keep" allocate command, else delete
// the "discard" allocate command.
// Note: after we renumber the submatrices, they both refer to the
// same underlying matrix, but we need to refer to them using a
// submatrix that refers to the entire matrix. The one we keep will
// always refer to the entire matrix. (In the case where one of
// them is an input, both submatrices are guaranteed to refer to the
// entire matrix, this is guaranteed by the logic we use to decide
// which matrices we can merge).
int32 alloc_keep = matrix_accesses[m_to_keep].allocate_command,
alloc_discard = matrix_accesses[m_to_discard].allocate_command;
KALDI_ASSERT(alloc_keep != -1 && alloc_discard != -1);
KALDI_ASSERT(analysis.FirstNontrivialMatrixAccess(m_to_discard) >
alloc_keep);
NnetComputation::Command
&keep_alloc_command = computation_->commands[alloc_keep],
&discard_alloc_command = computation_->commands[alloc_discard];
int32 matrix_whose_zeroing_to_discard;
if (discard_alloc_command.command_type == kAcceptInput) {
keep_alloc_command.command_type = kNoOperation;
matrix_whose_zeroing_to_discard = m_to_keep;
} else {
discard_alloc_command.command_type = kNoOperation;
matrix_whose_zeroing_to_discard = m_to_discard;
}
// Now remove the command that zeroed one of the matrices
// (the one whose allocation command we just discarded).
int32 zeroing_command_to_discard =
matrix_accesses[matrix_whose_zeroing_to_discard].accesses[0].command_index;
NnetComputation::Command &zeroing_command =
computation_->commands[zeroing_command_to_discard];
if (zeroing_command.command_type == kSetConst &&
zeroing_command.alpha == 0.0) {
// if 'zeroing_command' actually *was* a zeroing command, then remove it.
zeroing_command.command_type = kNoOperation;
}
}
// If the matrix to discard had stride_type == kStrideEqualNumCols, set the
// stride type of the matrix we're keeping to kStrideEqualNumCols.
if (computation_->matrices[m_to_discard].stride_type == kStrideEqualNumCols) {
computation_->matrices[m_to_keep].stride_type = kStrideEqualNumCols;
// ... and perform an additional check.
KALDI_ASSERT(computation_->matrices[m_to_discard].num_rows ==
computation_->matrices[m_to_keep].num_rows &&
computation_->matrices[m_to_discard].num_cols ==
computation_->matrices[m_to_keep].num_cols);
}
}
std::pair<bool,bool> VariableMergingOptimizer::MayBeMerged(
int32 command_index, int32 s1, int32 s2) const {
KALDI_ASSERT(s1 > 0 && s2 > 0 && static_cast<size_t>(command_index) <
computation_->commands.size());
if (!config_.allow_left_merge && !config_.allow_right_merge)
return std::pair<bool,bool>(false,false);
int32 m1 = computation_->submatrices[s1].matrix_index,
m2 = computation_->submatrices[s2].matrix_index;
// we can't merge two different submatrices of the same matrix.
if (m1 == m2) return std::pair<bool,bool>(false,false);
std::vector<int32> variable_indexes;
analyzer_.variables.AppendVariablesForSubmatrix(s1, &variable_indexes);
analyzer_.variables.AppendVariablesForSubmatrix(s2, &variable_indexes);
std::vector<int32>::iterator iter = variable_indexes.begin(),
end = variable_indexes.end();
// condition c5:
for (; iter != end; ++iter)
if (variable_dirty_[*iter])
return std::pair<bool,bool>(false,false);
const std::vector<MatrixAccesses> &matrix_accesses = analyzer_.matrix_accesses;
const MatrixAccesses &m1_access = matrix_accesses[m1],
&m2_access = matrix_accesses[m2];
// condition c1:
if ((m1_access.is_input && m2_access.is_input) ||
(m1_access.is_output && m2_access.is_output))
return std::pair<bool,bool>(false,false);
// condition c2:
if ((m1_access.is_input || m1_access.is_output ||
m2_access.is_input || m2_access.is_output) &&
(!computation_->IsWholeMatrix(s1) ||
!computation_->IsWholeMatrix(s2)))
return std::pair<bool,bool>(false,false);
bool left = config_.allow_left_merge,
right = config_.allow_right_merge;
// condition c3:
if (!computation_->IsWholeMatrix(s2)) left = false;
// condition c4:
if (!computation_->IsWholeMatrix(s1)) right = false;
// condition c6:
if (computation_->matrices[m2].stride_type == kStrideEqualNumCols &&
!computation_->IsWholeMatrix(s1)) left = false;
// condition c7:
if (computation_->matrices[m1].stride_type == kStrideEqualNumCols &&
!computation_->IsWholeMatrix(s2)) right = false;
if (!left && !right) // save some time.
return std::pair<bool,bool>(false,false);
bool is_assignment = (computation_->commands[command_index].command_type ==
kMatrixCopy &&
computation_->commands[command_index].alpha == 1.0);
ComputationAnalysis analysis(*computation_, analyzer_);
if (is_assignment) {
if (analysis.FirstNontrivialAccess(s2) == command_index &&
analysis.LastWriteAccess(s1) < command_index &&
analysis.LastAccess(s1) <
analysis.DataInvalidatedCommand(command_index, s2)) {
return std::pair<bool,bool>(left, right); // possible success.
}
} else {
if (analysis.FirstNontrivialAccess(s2) == command_index &&
analysis.LastAccess(s1) == command_index) {
return std::pair<bool,bool>(left, right); // possible success.
}
}
// failure.
return std::pair<bool,bool>(false,false);
}
// This class is used inside the function
// `void ExtendMatrices(NnetComputation *computation)`;
// see that function's declaration in nnet-optimize-utils.h for
// a summary of what this class does.
class MatrixExtender {
public:
typedef NnetComputation::SubMatrixInfo SubMatrixInfo;
typedef NnetComputation::MatrixInfo MatrixInfo;
MatrixExtender(NnetComputation *computation);
void ExtendMatrices();
private:
// This function returns true if a copy command from 'src_submatrix'
// to 'dest_submatrix' has the properties we need to be able to
// extend its rows to cover all of the source matrix.
bool CanBeExtended(int32 dest_submatrix_index,
int32 src_submatrix_index);
// This actually extends the matrices... it's called only if CanBeExtended()
// with the same args returned true. It modifies 'dest_submatrix_index'
// and 'src_submatrix_index'.
void Extend(int32 *dest_submatrix_index, int32 *src_submatrix_index);
// This function modifies the computation to fix certain problems
// that might have been introduced by Extend()... allocation, deallocation,
void FixComputation();
// This function modifies the computation to fix the debug info; if needed,
// it's called from FixComputation().
void FixDebugInfo();
// don't extend a destination matrix if it wasn't already
// at least 'min_proportion' (80%) big enough to store the source.
BaseFloat min_proportion_;
NnetComputation *computation_;
// Indexed by matrix-index m, orig_num_rows_[m] is the value of
// computation_->matrices[m].num_rows when this class was initialized,
// i.e. before we changed anything.
std::vector<int32> orig_num_rows_;
// Indexed by matrix-index m, this vector contains true if matrix
// m is involved in any AcceptInput() or ProvideOutput() operations.
std::vector<bool> is_input_or_output_;
};
// note: the initializer for min_proportion_ below needs to be kept in sync with
// the min_proportion variable in
// ComputationChecker::CheckComputationUndefined() in nnet-analyze.cc.
MatrixExtender::MatrixExtender(NnetComputation *computation):
min_proportion_(0.8),
computation_(computation) {
int32 num_matrices = computation_->matrices.size();
{ // set up orig_num_rows_.
orig_num_rows_.resize(num_matrices);
// matrix 0 is not a real matrix so skip that index.
for (int32 m = 1; m < num_matrices; m++)
orig_num_rows_[m] = computation_->matrices[m].num_rows;
}
{ // set up is_input_or_output_.
is_input_or_output_.resize(num_matrices, false);
std::vector<NnetComputation::Command>::iterator
command_iter = computation_->commands.begin(),
command_end = computation_->commands.end();
for (; command_iter != command_end; ++command_iter) {
const NnetComputation::Command &command = *command_iter;
// make sure there are no kSwapMatrix commands; they should not be present
// at this stage of optimization.
KALDI_ASSERT(command.command_type != kSwapMatrix);
if (command.command_type == kProvideOutput ||
command.command_type == kAcceptInput) {
int32 s = command.arg1,
m = computation_->submatrices[s].matrix_index;
is_input_or_output_[m] = true;
}
}
}
}
bool MatrixExtender::CanBeExtended(int32 dest_submatrix_index,
int32 src_submatrix_index) {
const SubMatrixInfo
&src_submatrix = computation_->submatrices[src_submatrix_index],
&dest_submatrix = computation_->submatrices[dest_submatrix_index];
if (src_submatrix.matrix_index == dest_submatrix.matrix_index)
return false;
// we can't resize the destination matrix if it's involved in input or output.
if (is_input_or_output_[dest_submatrix.matrix_index])
return false;
const MatrixInfo
&src_matrix = computation_->matrices[src_submatrix.matrix_index];
int32 dest_matrix_orig_num_rows = orig_num_rows_[dest_submatrix.matrix_index],
src_matrix_orig_num_rows = orig_num_rows_[src_submatrix.matrix_index];
if (src_submatrix.num_rows < min_proportion_ * src_matrix_orig_num_rows)
return false;
// The following checks that the source submatrix covers be all of the
// source matrix except a few final rows, and the destination submatrix goes
// to the final row of its matrix.
return (src_submatrix.col_offset == 0 &&
src_submatrix.num_cols == src_matrix.num_cols &&
src_submatrix.row_offset == 0 &&
src_submatrix.num_rows < src_matrix.num_rows &&
dest_submatrix.row_offset + dest_submatrix.num_rows ==
dest_matrix_orig_num_rows);
}
void MatrixExtender::Extend(int32 *dest_submatrix_index,
int32 *src_submatrix_index) {
// copy the SubMatrixInfo to avoid iterator invalidation.
SubMatrixInfo
src_submatrix = computation_->submatrices[*src_submatrix_index],
dest_submatrix = computation_->submatrices[*dest_submatrix_index];
MatrixInfo &src_matrix = computation_->matrices[src_submatrix.matrix_index],
&dest_matrix = computation_->matrices[dest_submatrix.matrix_index];
int32 new_dest_num_rows = dest_submatrix.row_offset + src_matrix.num_rows;
// extend the destination matrix so it has enough rows to fit the entire
// source matrix. Note: doing this will break certain invariances in the
// computation, principally with allocation and deallocation commands, which
// we'll later fix up by calling FixComputation().
if (new_dest_num_rows > dest_matrix.num_rows) {
dest_matrix.num_rows = new_dest_num_rows;
// make sure there's a submatrix index covering the whole of the dest matrix.
computation_->submatrices.push_back(
SubMatrixInfo(dest_submatrix.matrix_index, 0, new_dest_num_rows,
0, dest_matrix.num_cols));
}
// The following 3 statements create a new submatrix that will be
// the destination submatrix; it's the same as the original destination
// submatrix, but with a few extra rows.
*dest_submatrix_index = computation_->submatrices.size();
dest_submatrix.num_rows = src_matrix.num_rows;
computation_->submatrices.push_back(
SubMatrixInfo(dest_submatrix));
// The following 3 statements create a new submatrix that will be
// the source submatrix; it's the same as the original source
// submatrix, but with a few extra rows, and actually will cover
// the entire source matrix.
*src_submatrix_index = computation_->submatrices.size();
computation_->submatrices.push_back(
SubMatrixInfo(src_submatrix.matrix_index, 0, src_matrix.num_rows,
0, src_matrix.num_cols));
}
void MatrixExtender::ExtendMatrices() {
std::vector<NnetComputation::Command>::iterator
command_iter = computation_->commands.begin(),
command_end = computation_->commands.end();
bool changed = false;
for (; command_iter != command_end; ++command_iter) {
NnetComputation::Command &command = *command_iter;
if (command.command_type == kMatrixCopy &&
command.alpha == 1.0) {
int32 dest_submatrix_index = command.arg1,
src_submatrix_index = command.arg2;
if (CanBeExtended(dest_submatrix_index, src_submatrix_index)) {
Extend(&command.arg1, &command.arg2);
changed = true;
}
}
}
if (changed)
FixComputation();
}
void MatrixExtender::FixComputation() {
// make sure that allocation and deallocation commands
// operate on whole matrix.
std::vector<NnetComputation::Command>::iterator
command_iter = computation_->commands.begin(),
command_end = computation_->commands.end();
std::vector<int32> whole_submatrices;
computation_->GetWholeSubmatrices(&whole_submatrices);
for (; command_iter != command_end; ++command_iter) {
NnetComputation::Command &command = *command_iter;
if (command.command_type == kAllocMatrix ||
command.command_type == kDeallocMatrix) {
int32 s = command.arg1,
m = computation_->submatrices[s].matrix_index,
new_s = whole_submatrices[m];
if (new_s != s) {
KALDI_ASSERT(
computation_->submatrices[s] == computation_->submatrices[new_s] ||
orig_num_rows_[m] != computation_->matrices[m].num_rows);
command.arg1 = new_s;
}
}
if (command.command_type == kSetConst && command.alpha == 0.0) {
int32 s = command.arg1,
m = computation_->submatrices[s].matrix_index,
new_s = whole_submatrices[m];
if (new_s != s) {
{
const NnetComputation::SubMatrixInfo &info = computation_->submatrices[
command.arg1];
const NnetComputation::MatrixInfo &mat_info = computation_->matrices[
info.matrix_index];
// If this command wasn't zeroing the the entirety of a matrix,
// (before we extended the matrix), we don't need to extend it.
if (!(info.row_offset == 0 && info.col_offset == 0 &&
info.num_cols == mat_info.num_cols &&
info.num_rows == orig_num_rows_[info.matrix_index]))
continue;
// I know doing this via 'continue' is odd, but it's done this way to
// avoid invalid iterators still being in scope; I think some runtimes
// check for it.
}
command.arg1 = new_s;
}
}
}
if (!computation_->matrix_debug_info.empty())
FixDebugInfo();
RenumberComputation(computation_);
}
void MatrixExtender::FixDebugInfo() {
int32 num_matrices = computation_->matrices.size();
// matrix zero is not a 'real' matrix.
for (int32 m = 1; m < num_matrices; m++) {
NnetComputation::MatrixDebugInfo &debug_info =
computation_->matrix_debug_info[m];
int32 new_num_rows = computation_->matrices[m].num_rows,
old_num_rows = debug_info.cindexes.size();
if (new_num_rows != old_num_rows) {
debug_info.cindexes.resize(new_num_rows);
int32 num_extra_rows = new_num_rows - old_num_rows;
// the following should be true because min_proportion_ > 0.5.
KALDI_ASSERT(num_extra_rows <= old_num_rows);
for (int32 r = old_num_rows; r < new_num_rows; r++) {
Cindex cindex = debug_info.cindexes[r - num_extra_rows];
// set the 't' value to kNoTime which indicates that it's not a 'real'
// time step, and may avoid errors in checking code.
cindex.second.t = kNoTime;
debug_info.cindexes[r] = cindex;
}
}
}
}
void ExtendMatrices(NnetComputation *computation) {
MatrixExtender ext(computation);
ext.ExtendMatrices();
}
/** This class is responsible for consolidating the model-update part of
backprop commands, for components in (e.g.) recurrent networks that need to
have many separate backprop commands, into more efficient single commands
operating on consolidated data in larger matrices. This is useful for
recurrent networks. */
class ModelUpdateConsolidator {
public:
ModelUpdateConsolidator(const Nnet &nnet,
NnetComputation *computation);
void ConsolidateModelUpdate();
private:
void ConsolidateUpdateForComponent(
int32 component,
const std::vector<int32> &backprop_commands);
/// This function, called at the end of ConsolidateModelUpdate(), takes the
/// commands that we have put in extra_commands_, final_commands_ and
/// final_deallocate_commands_, and puts them in the appropriate place in
/// computation->commands_.
void AddCommandsToComputation();
/// You call this function when you want to consolidate the values of a list
/// of submatrices taken just prior to particular commands. The input
/// 'commands' and 'submatrices' lists must be the same size, and size must be
/// > 1. This function will create a new matrix that is the row-wise
/// concatentation of all these submatrices, with values taken just prior to
/// the respective command indexes. This function will will add to
/// extra_commands_ the commands to do the copying at the appropriate places
/// (at the supplied command indexes; they will be inserted just before). The
/// return value is the submatrix index of a submatrix that represents the
/// whole of the consolidated matrix. This command will insert, at the
/// beginning of the computation (in extra_commands_[0]), a command to
/// initialize the matrix; and will append to final_deallocate_commands_ the
/// commands to deallocate the matrix. If computation_->matrix_debug_info is
/// nonempty, this function will also update computation_->matrix_debug_info
/// with suitable values for the newly added matrix
int32 ConsolidateSubmatrices(
const std::vector<int32> &commands,
const std::vector<int32> &submatrices);
/// This function, called from ConsolidateSubmatrices, will
/// update 'debug_info' by appending the corresponding 'indexes' from
/// the existing debug info for this submatrix. It will also set
/// the 'is_deriv' of '*debug_info' to the same value as the
/// debug info for 'submatrix_index', and set the 'node_index' to the
/// 'node_index' in the debug info for that submatrix-index.
/// It requires that computation_->matrix_debug_info be nonempty.
void AppendDebugInfoForSubmatrix(
int32 submatrix_index,
NnetComputation::MatrixDebugInfo *debug_info) const;
const Nnet &nnet_;
NnetComputation *computation_;
// Indexed by the original command index in *computation_ (and sized to the
// original number of commands in *computation_ before we added anything),
// extra_commands_[c] contains a list of commands that need to be inserted
// just before command c in the previously existing computation.
std::vector<std::vector<NnetComputation::Command> > extra_commands_;
// This is as list of kBackprop commands that will be placed after the
// commands in 'computation_->commands' and 'extra_commands_', but before
// the 'final_deallocate_commands_'.
std::vector<NnetComputation::Command> final_commands_;
// This is a list of commands to deallocate our 'consolidated' matrices; the
// commands will be placed after the commands in 'final_commands_'.
std::vector<NnetComputation::Command> final_deallocate_commands_;
};
void ModelUpdateConsolidator::AppendDebugInfoForSubmatrix(
int32 submatrix_index,
NnetComputation::MatrixDebugInfo *debug_info) const {
KALDI_ASSERT(!computation_->matrix_debug_info.empty());
KALDI_ASSERT(static_cast<size_t>(submatrix_index) <
computation_->submatrices.size());
NnetComputation::SubMatrixInfo submatrix_info =
computation_->submatrices[submatrix_index];
int32 matrix_index = submatrix_info.matrix_index;
KALDI_ASSERT(matrix_index > 0 && static_cast<size_t>(matrix_index) <
computation_->matrix_debug_info.size());
const NnetComputation::MatrixDebugInfo &src_info =
computation_->matrix_debug_info[matrix_index];
debug_info->is_deriv = src_info.is_deriv;
KALDI_ASSERT(src_info.cindexes.size() ==
computation_->matrices[matrix_index].num_rows);
int32 row_begin = submatrix_info.row_offset,
row_end = row_begin + submatrix_info.num_rows;
debug_info->cindexes.insert(debug_info->cindexes.end(),
src_info.cindexes.begin() + row_begin,
src_info.cindexes.begin() + row_end);
}
// see comment by declaration in header.
int32 ModelUpdateConsolidator::ConsolidateSubmatrices(
const std::vector<int32> &commands,
const std::vector<int32> &submatrices) {
int32 num_submatrices = submatrices.size();
KALDI_ASSERT(num_submatrices > 1 && commands.size() == submatrices.size());
int32 first_submatrix = submatrices[0];
int32 num_cols = computation_->submatrices[first_submatrix].num_cols,
num_rows = 0;
MatrixStrideType stride_type = kDefaultStride;
NnetComputation::MatrixDebugInfo debug_info;
for (int32 i = 0; i < num_submatrices; i++) {
int32 submatrix = submatrices[i];
num_rows += computation_->submatrices[submatrix].num_rows;
KALDI_ASSERT(computation_->submatrices[submatrix].num_cols == num_cols);
if (!computation_->matrix_debug_info.empty())
AppendDebugInfoForSubmatrix(submatrix, &debug_info);
if (computation_->IsWholeMatrix(submatrix)) {
int32 matrix = computation_->submatrices[submatrix].matrix_index;
if (computation_->matrices[matrix].stride_type == kStrideEqualNumCols)
stride_type = kStrideEqualNumCols;
}
}
// new_whole_submatrix is a new submatrix index corresponding to the whole
// of a new matrix that we are creating.
int32 new_whole_submatrix = computation_->NewMatrix(num_rows, num_cols,
stride_type);
// Add commands at the very start, to initialize and then zero this new
// matrix. we can later on remove the zeroing if it is not necessary.
extra_commands_[0].push_back(
NnetComputation::Command(kAllocMatrix, new_whole_submatrix));
extra_commands_[0].push_back(
NnetComputation::Command(0.0, kSetConst, new_whole_submatrix));
final_deallocate_commands_.push_back(
NnetComputation::Command(kDeallocMatrix, new_whole_submatrix));
int32 new_matrix_index =
computation_->submatrices[new_whole_submatrix].matrix_index;
if (!computation_->matrix_debug_info.empty())
computation_->matrix_debug_info[new_matrix_index].Swap(&debug_info);
int32 row_offset = 0;
for (int32 i = 0; i < num_submatrices; i++) {
int32 submatrix_index = submatrices[i];
int32 this_num_rows = computation_->submatrices[submatrix_index].num_rows;
// submatrix corresponding to the part of the new matrix corresponding
// to 'submatrices[i]'.
int32 new_submatrix = computation_->NewSubMatrix(new_whole_submatrix,
row_offset, this_num_rows,
0, num_cols);
// Just before command 'commands[i]', add a command that assigns to the
// submatrix numbered 'new_submatrix' the contents of the submatrix numbered
// 'submatrices[i]'. Note: we hope that a later pass of optimization
// (VariableMergingOptimization) will remove this redundant copy by
// having the operation that created it write directly to the location
// we want it to be.
NnetComputation::Command c(kMatrixCopy, new_submatrix, submatrices[i]);
extra_commands_[commands[i]].push_back(c);
row_offset += this_num_rows;
}
KALDI_ASSERT(row_offset == num_rows);
return new_whole_submatrix;
}
void ModelUpdateConsolidator::AddCommandsToComputation() {
KALDI_ASSERT(computation_->commands.size() == extra_commands_.size());
int32 old_num_commands = computation_->commands.size(),
new_num_commands = old_num_commands +
static_cast<int32>(final_commands_.size() +
final_deallocate_commands_.size());
for (size_t i = 0; i < extra_commands_.size(); i++)
new_num_commands += static_cast<int32>(extra_commands_[i].size());
std::vector<NnetComputation::Command> new_commands;
new_commands.reserve(new_num_commands);
for (int32 c = 0; c < old_num_commands; c++) {
new_commands.insert(new_commands.end(),
extra_commands_[c].begin(), extra_commands_[c].end());
new_commands.push_back(computation_->commands[c]);
}
new_commands.insert(new_commands.end(),
final_commands_.begin(), final_commands_.end());
new_commands.insert(new_commands.end(),
final_deallocate_commands_.begin(),
final_deallocate_commands_.end());
computation_->commands.swap(new_commands);
}
/** This function, called from ConsolidateModelUpdate, is passed a list of
commands that are all backprops for the same component, and it consolidates
them into a single model-update command. */
void ModelUpdateConsolidator::ConsolidateUpdateForComponent(
int32 component_index,
const std::vector<int32> &backprop_commands) {
const Component *component = nnet_.GetComponent(component_index);
int32 num_backprop_commands = backprop_commands.size();
bool need_input = (component->Properties() & kBackpropNeedsInput) != 0,
need_output = (component->Properties() & kBackpropNeedsOutput) != 0;
std::vector<int32> input_submatrices(num_backprop_commands),
output_submatrices(num_backprop_commands),
output_deriv_submatrices(num_backprop_commands);
for (int32 i = 0; i < num_backprop_commands; i++) {
int32 command_index = backprop_commands[i];
NnetComputation::Command &command =
computation_->commands[command_index];
// arg2 must be 0 because simple components don't use precomputed indexes.
KALDI_ASSERT(command.command_type == kBackprop && command.arg2 == 0);
command.command_type = kBackpropNoModelUpdate;
int32 input_submatrix = command.arg3,
output_submatrix = command.arg4,
output_deriv_submatrix = command.arg5;
KALDI_ASSERT((input_submatrix != 0) == need_input &&
(output_submatrix != 0) == need_output);
input_submatrices[i] = input_submatrix;
output_submatrices[i] = output_submatrix;
output_deriv_submatrices[i] = output_deriv_submatrix;
}
// Get the sub-matrix indexes of whichever of the consolidated matrices we
// need (will usually be input_submatrix and output_deriv_submatrix).
int32 input_submatrix = (need_input ?
ConsolidateSubmatrices(backprop_commands,
input_submatrices) : 0),
output_submatrix = (need_output ?
ConsolidateSubmatrices(backprop_commands,
output_submatrices) : 0),
output_deriv_submatrix = ConsolidateSubmatrices(backprop_commands,
output_deriv_submatrices);
int32 precomputed_indexes_index = 0, // unused since simple component
input_deriv_submatrix = 0, // we don't need the input-deriv.
memo_index = 0; // we checked that no memos were used.
NnetComputation::Command c(kBackprop, component_index, precomputed_indexes_index,
input_submatrix, output_submatrix,
output_deriv_submatrix, input_deriv_submatrix,
memo_index);
final_commands_.push_back(c);
}
ModelUpdateConsolidator::ModelUpdateConsolidator(
const Nnet &nnet,
NnetComputation *computation):
nnet_(nnet), computation_(computation),
extra_commands_(computation->commands.size()) { }
void ModelUpdateConsolidator::ConsolidateModelUpdate() {
int32 num_components = nnet_.NumComponents(),
num_commands = computation_->commands.size();
// 'backprop_commands' is a list, for each component (but nonempty only for
// updatable simple components), of the command indexes for the backprop
// commands.
std::vector<std::vector<int32> > backprop_commands(num_components);
for (int32 command_index = 0;
command_index < num_commands; command_index++) {
const NnetComputation::Command &c = computation_->commands[command_index];
if (c.command_type == kBackprop) {
int32 component_index = c.arg1;
const Component *component = nnet_.GetComponent(component_index);
int32 properties = component->Properties();
if ((properties & kUpdatableComponent) &&
(properties & kSimpleComponent) &&
!(properties & kUsesMemo))
backprop_commands[component_index].push_back(command_index);
}
}
bool consolidated = false;
for (int32 component = 0; component < num_components; component++) {
if (backprop_commands[component].size() > 1) {
ConsolidateUpdateForComponent(component,
backprop_commands[component]);
consolidated = true;
}
}
if (!consolidated) // This is an optimization to avoid redundant computation
return; // if there is nothing to do.
// the following function call commits all the commands we stored in member
// variables, to computation_->commands.
AddCommandsToComputation();
}
void ConsolidateModelUpdate(const Nnet &nnet,
NnetComputation *computation) {
// This following if-statement is an optimization: if the computation
// request(s) had need_model_derivative == false, there would be nothing to
// optimize, so don't bother trying.
if (!computation->need_model_derivative)
return;
ModelUpdateConsolidator consolidator(nnet, computation);
consolidator.ConsolidateModelUpdate();
}
// inline
void DerivativeTimeLimiter::GetPruneValues(int32 initial_submatrix,
int32 new_submatrix,
int32 *left_prune,
int32 *right_prune) const {
KALDI_ASSERT(initial_submatrix > 0 && new_submatrix > 0);
const NnetComputation::SubMatrixInfo
initial_info = computation_->submatrices[initial_submatrix],
new_info = computation_->submatrices[new_submatrix];
KALDI_ASSERT(initial_info.matrix_index == new_info.matrix_index);
*left_prune = new_info.row_offset - initial_info.row_offset;
if (right_prune != NULL) {
*right_prune = initial_info.num_rows - new_info.num_rows - *left_prune;
KALDI_ASSERT(*left_prune >= 0 && *right_prune >= 0);
}
}
bool DerivativeTimeLimiter::RowIsKept(
int32 submatrix,
int32 row_index) const {
KALDI_ASSERT(submatrix > 0 && submatrix < computation_->submatrices.size());
const NnetComputation::SubMatrixInfo &info =
computation_->submatrices[submatrix];
KALDI_ASSERT(row_index >= 0 &&
row_index < computation_->submatrices[submatrix].num_rows);
int32 matrix_index = info.matrix_index;
const NnetComputation::MatrixDebugInfo
&debug_info = computation_->matrix_debug_info[matrix_index];
if (!debug_info.is_deriv) {
// the derivative time limitation doesn't apply to things that aren't
// derivatives.
return true;
}
int32 t = debug_info.cindexes[row_index + info.row_offset].second.t;
return (t >= min_deriv_time_ && t <= max_deriv_time_);
}
// modify commands to take into account the fact that some matrices are zero or
// partially zero. Allocation commands and sizes of underlying matrices are not
// affected-- we'll work out later on, what to do with them.
void DerivativeTimeLimiter::ModifyCommand(NnetComputation::Command *command) {
CommandType command_type = command->command_type;
switch (command_type) {
case kAllocMatrix:
case kDeallocMatrix:
case kSetConst:
case kSwapMatrix:
break; // we'll deal with allocation and deallocation later on.
case kPropagate:
// Propagate commands are unchanged, except that if the output of the
// propagate is completely outside the accepted time-range (only likely if
// we're inside a recurrency), then we don't store stats; this is not
// really important, and is mostly done to minimize the difference from an
// older version of the code, to reduce the need for testing.
if (submatrix_map_[command->arg4] == 0)
command->arg6 = 0;
break;
case kBackpropNoModelUpdate: // we actually don't expect to encounter this,
// but it's trivial to support as it's the
// same as backprop.
case kBackprop: {
const Component *component = nnet_.GetComponent(command->arg1);
int32 properties = component->Properties();
if (!(properties & kSimpleComponent)) {
// we don't (yet) do this optimization for non-simple Components...
// it would be a bit more complicated as we'd have to recompute the
// PrecomputedIndexes.
break;
}
int32 input_submatrix = command->arg3,
output_submatrix = command->arg4,
output_deriv_submatrix = command->arg5,
input_deriv_submatrix = command->arg6;
int32 mapped_input_submatrix = submatrix_map_[input_submatrix],
mapped_output_submatrix = submatrix_map_[output_submatrix],
mapped_output_deriv_submatrix = submatrix_map_[output_deriv_submatrix],
mapped_input_deriv_submatrix = submatrix_map_[input_deriv_submatrix];
if (mapped_output_deriv_submatrix == 0) {
// completely outside range..
KALDI_ASSERT(mapped_input_deriv_submatrix == 0 &&
mapped_input_submatrix == 0 &&
mapped_output_submatrix == 0);
// just delete the command.
command->command_type = kNoOperation;
if (command->arg7 > 0)
memos_to_delete_.insert(command->arg7);
} else if (mapped_output_deriv_submatrix !=
output_deriv_submatrix &&
!(properties & kUsesMemo)) {
// we're operating on a range of the input or output.
// we can't do this type of mapping of the component uses
// a memo, though.
command->arg3 = mapped_input_submatrix;
command->arg4 = mapped_output_submatrix;
command->arg5 = mapped_output_deriv_submatrix;
command->arg6 = mapped_input_deriv_submatrix;
}
break;
}
case kMatrixCopy: case kMatrixAdd:
MapSimpleMatrixCommand(command);
break;
case kCopyRows: case kAddRows:
MapIndexesCommand(command);
break;
case kCopyRowsMulti: case kCopyToRowsMulti:
case kAddRowsMulti: case kAddToRowsMulti:
MapIndexesMultiCommand(command);
break;
case kAddRowRanges: {
MapAddRowRangesCommand(command);
break;
}
case kAcceptInput: case kProvideOutput:
case kNoOperation: case kNoOperationPermanent: case kNoOperationMarker:
break;
default:
KALDI_ERR << "Un-handled command type.";
}
}
void DerivativeTimeLimiter::MapSimpleMatrixCommand(NnetComputation::Command *c) {
int32 submatrix1 = c->arg1,
submatrix2 = c->arg2;
int32 submatrix1_mapped = submatrix_map_if_deriv_[submatrix1],
submatrix2_mapped = submatrix_map_if_deriv_[submatrix2];
if (submatrix1_mapped == submatrix1 &&
submatrix2_mapped == submatrix2) {
// nothing to do.
return;
}
if (submatrix1_mapped == 0 || submatrix2_mapped == 0) {
// remove the operation-- it has nothing to do.
c->command_type = kNoOperation;
return;
}
// left_prune1 is the number of rows pruned away on the left for submatrix1.
int32 orig_num_rows = computation_->submatrices[submatrix1].num_rows,
left_prune1, left_prune2, right_prune1, right_prune2;
GetPruneValues(submatrix1, submatrix1_mapped, &left_prune1, &right_prune1);
GetPruneValues(submatrix2, submatrix2_mapped, &left_prune2, &right_prune2);
if (left_prune1 == left_prune2 && right_prune1 == right_prune2) {
// we took the same number of rows away from the left and right for
// both arguments; the normal mapped values will work in this case
c->arg1 = submatrix1_mapped;
c->arg2 = submatrix2_mapped;
} else {
// there is some kind of mismatch- we'll prune back to what remains
// after applying the maximum pruning on the left and right.
int32 left_prune = std::max(left_prune1, left_prune2),
right_prune = std::max(right_prune1, right_prune2);
if (left_prune + right_prune >= orig_num_rows) {
// everything was pruned away; remove the operation.
c->command_type = kNoOperation;
return;
} else {
int32 num_rows = orig_num_rows - left_prune - right_prune;
// note: the call NewSubMatrix effectively gives us a sub-matrix of a
// sub-matrix.
c->arg1 = computation_->NewSubMatrix(submatrix1,
left_prune, num_rows, 0, -1);
c->arg2 = computation_->NewSubMatrix(submatrix2,
left_prune, num_rows, 0, -1);
}
}
}
// does the processing for a command of type kCopyRows or kAddRows, where
// 1st and 2nd args are submatrix indexes and the 3rd arg is a vector of
// row-indexes.
void DerivativeTimeLimiter::MapIndexesCommand(NnetComputation::Command *c) {
int32 output_submatrix = c->arg1,
input_submatrix = c->arg2;
int32 input_submatrix_mapped = submatrix_map_if_deriv_[input_submatrix],
output_submatrix_mapped = submatrix_map_if_deriv_[output_submatrix];
// input_submatrix_mapped and output_submatrix_mapped map both submatrices to
// just the portion that we are treating as nonzero.
if (input_submatrix_mapped == 0 ||
output_submatrix_mapped == 0) {
// Either input or output is all zeros; make the command a no-op.
// It may not be obvious that in the case of kCopyRows it would
// be valid to make this a no-op (because what if the existing
// contents were nonzero?), but we insist that this optimization
// come before optimizations, and we know that the originally
// generated computation would not overwrite a nonzero value
// (and there are no undefined values because we make sure to
// initialize everything with zeros; ununitialized values are
// allowed only at a later optimization stage.
c->command_type = kNoOperation;
return;
}
const std::vector<int32> &old_indexes = computation_->indexes[c->arg3];
int32 left_prune_input, left_prune_output;
GetPruneValues(input_submatrix, input_submatrix_mapped,
&left_prune_input, NULL);
GetPruneValues(output_submatrix, output_submatrix_mapped,
&left_prune_output, NULL);
int32 new_num_input_rows =
computation_->submatrices[input_submatrix_mapped].num_rows,
new_num_output_rows =
computation_->submatrices[output_submatrix_mapped].num_rows;
std::vector<int32> new_indexes(new_num_output_rows);
bool must_keep_command = false;
for (int32 i = 0; i < new_num_output_rows; i++) {
// the index into the 'new_indexes' vector is the row of the output
// submatrix; the value is the row of the input submatrix.
int32 orig_index = old_indexes[i + left_prune_output];
if (orig_index == -1 ||
!RowIsKept(input_submatrix, orig_index) ||
!RowIsKept(output_submatrix_mapped, i)) {
new_indexes[i] = -1;
} else {
int32 mapped_index = orig_index - left_prune_input;
// we can do the following assert because the RowIsKept command
// would have turned it into a -1 if not.
KALDI_ASSERT(mapped_index >= 0 && mapped_index < new_num_input_rows);
new_indexes[i] = mapped_index;
must_keep_command = true;
}
}
if (!must_keep_command) {
c->command_type = kNoOperation;
return;
}
int32 new_indexes_index = computation_->indexes.size();
computation_->indexes.push_back(new_indexes);
c->arg1 = output_submatrix_mapped;
c->arg2 = input_submatrix_mapped;
c->arg3 = new_indexes_index;
}
void DerivativeTimeLimiter::MapIndexesMultiCommand(NnetComputation::Command *c) {
int32 dest_submatrix = c->arg1,
indexes_multi_arg = c->arg2;
int32 dest_submatrix_mapped = submatrix_map_if_deriv_[dest_submatrix];
if (dest_submatrix_mapped == 0) {
// The destination matrix is completely outside the allowed time range.
c->command_type = kNoOperation;
return;
}
int32 left_prune;
GetPruneValues(dest_submatrix, dest_submatrix_mapped, &left_prune, NULL);
int32 new_num_rows = computation_->submatrices[dest_submatrix_mapped].num_rows;
const std::vector<std::pair<int32, int32> > &old_indexes_multi(
computation_->indexes_multi[indexes_multi_arg]);
std::vector<std::pair<int32, int32> > new_indexes_multi(new_num_rows);
bool must_keep_command = false;
for (int32 i = 0; i < new_num_rows; i++) {
std::pair<int32,int32> &this_pair = new_indexes_multi[i];
this_pair = old_indexes_multi[i + left_prune];
// note: 'this_submatrix' is the source submatrix, from where we copy or add
// the the data; 'this_row' is the source row.
int32 this_submatrix = this_pair.first,
this_row = this_pair.second;
if (this_submatrix == -1) // don't map the (-1, -1) pairs.
continue;
if (!RowIsKept(this_submatrix, this_row) ||
!RowIsKept(dest_submatrix_mapped, i)) {
this_pair.first = -1;
this_pair.second = -1;
continue;
}
int32 this_submatrix_mapped = submatrix_map_if_deriv_[this_submatrix];
// Reason for the assert below: if this_submatrix_mapped was 0, then all the
// values in it should be not-kept, but RowIsKept above returned true, so
// this would be a code error.
KALDI_ASSERT(this_submatrix_mapped != 0);
int32 this_left_prune, this_num_rows =
computation_->submatrices[this_submatrix_mapped].num_rows;
GetPruneValues(this_submatrix, this_submatrix_mapped,
&this_left_prune, NULL);
int32 this_row_mapped = this_row - this_left_prune;
// the above assert is there because if it was going to be outside the
// kept range, RowIsKept should have returned false above.
KALDI_ASSERT(this_row_mapped >= 0 && this_row_mapped < this_num_rows);
this_pair.first = this_submatrix_mapped;
this_pair.second = this_row_mapped;
must_keep_command = true;
}
if (!must_keep_command) {
c->command_type = kNoOperation;
return;
}
if (dest_submatrix_mapped == dest_submatrix &&
new_indexes_multi == old_indexes_multi) // nothing changed.
return;
c->arg1 = dest_submatrix_mapped;
c->arg2 = computation_->indexes_multi.size();
computation_->indexes_multi.push_back(new_indexes_multi);
}
void DerivativeTimeLimiter::MapAddRowRangesCommand(
NnetComputation::Command *c) {
int32 dest_submatrix = c->arg1,
src_submatrix = c->arg2,
indexes_ranges_index = c->arg3;
int32 dest_submatrix_mapped = submatrix_map_if_deriv_[dest_submatrix],
src_submatrix_mapped = submatrix_map_if_deriv_[src_submatrix];
if (dest_submatrix_mapped == dest_submatrix &&
src_submatrix_mapped == src_submatrix)
return;
if (dest_submatrix_mapped == 0 || src_submatrix_mapped == 0) {
c->command_type = kNoOperation;
return;
}
int32 dest_num_rows = computation_->submatrices[dest_submatrix_mapped].num_rows,
src_num_rows = computation_->submatrices[src_submatrix_mapped].num_rows,
src_left_prune, dest_left_prune;
GetPruneValues(dest_submatrix, dest_submatrix_mapped,
&dest_left_prune, NULL);
GetPruneValues(src_submatrix, src_submatrix_mapped,
&src_left_prune, NULL);
const std::vector<std::pair<int32,int32> > &old_indexes_ranges(
computation_->indexes_ranges[indexes_ranges_index]);
std::vector<std::pair<int32,int32> > new_indexes_ranges(dest_num_rows);
bool must_keep_command = false;
for (int32 i = 0; i < dest_num_rows; i++) {
std::pair<int32, int32> &this_pair = new_indexes_ranges[i];
this_pair = old_indexes_ranges[i + dest_left_prune];
int32 start = this_pair.first, end = this_pair.second;
if (!RowIsKept(dest_submatrix_mapped, i)) {
start = -1;
end = -1;
} else if (start >= 0) {
// no need to change start, end if they are (-1, -1).
// Note: this code is not optimally efficient, as RowIsKept
// has a bunch of statements that we could cache some variables
// for, but this command is pretty rare so not worth to optimize
// at this point.
while (start < end && !RowIsKept(src_submatrix, start))
start++;
while (end > start && !RowIsKept(src_submatrix, end - 1))
end--;
if (start == end) {
start = -1;
end = -1;
} else {
start -= src_left_prune;
end -= src_left_prune;
must_keep_command = true;
// the next assert is because if we were outside the 'kept' part of the
// submatrix, RowIsKept() should have instructed us to modify the value.
KALDI_ASSERT(start >= 0 && end <= src_num_rows && start < end);
}
}
this_pair.first = start;
this_pair.second = end;
}
if (must_keep_command) {
c->arg1 = dest_submatrix_mapped;
c->arg2 = src_submatrix_mapped;
c->arg3 = computation_->indexes_ranges.size();
computation_->indexes_ranges.push_back(new_indexes_ranges);
} else {
c->command_type = kNoOperation;
}
}
DerivativeTimeLimiter::DerivativeTimeLimiter(const Nnet &nnet,
int32 min_deriv_time,
int32 max_deriv_time,
NnetComputation *computation):
nnet_(nnet),
min_deriv_time_(min_deriv_time),
max_deriv_time_(max_deriv_time),
computation_(computation) { }
void DerivativeTimeLimiter::LimitDerivTimes() {
KALDI_ASSERT(max_deriv_time_ >= min_deriv_time_);
if (min_deriv_time_ == std::numeric_limits<int32>::min() &&
max_deriv_time_ == std::numeric_limits<int32>::max())
return; // nothing to do.
computation_->GetWholeSubmatrices(&whole_submatrices_);
ComputeMatrixPruneInfo();
ComputeSubmatrixMaps();
ModifyCommands();
PruneMatrices();
RemoveNoOps(computation_);
RemoveUnusedMemos();
RenumberComputation(computation_);
}
void DerivativeTimeLimiter::RemoveUnusedMemos() {
if (memos_to_delete_.empty())
return;
size_t num_commands = computation_->commands.size(),
num_memos_removed = 0;
for (size_t command_index = 0; command_index < num_commands;
command_index++) {
NnetComputation::Command &c = computation_->commands[command_index];
if (c.command_type == kPropagate &&
memos_to_delete_.count(c.arg5) != 0) {
c.arg5 = 0;
num_memos_removed++;
}
}
KALDI_ASSERT(num_memos_removed == memos_to_delete_.size());
}
void DerivativeTimeLimiter::ComputeMatrixPruneInfo() {
KALDI_ASSERT(computation_->matrix_debug_info.size() ==
computation_->matrices.size() &&
"Limiting derivative times requires debug info.");
const int32 num_matrices = computation_->matrices.size(),
min_deriv_time = min_deriv_time_,
max_deriv_time = max_deriv_time_;
matrix_prune_info_.resize(num_matrices);
// matrix_prune_info_[0] will remain undefined.
for (int32 matrix_index = 1; matrix_index < num_matrices; matrix_index++) {
NnetComputation::MatrixDebugInfo &debug_info =
computation_->matrix_debug_info[matrix_index];
MatrixPruneInfo &prune_info = matrix_prune_info_[matrix_index];
const std::vector<Cindex> &cindexes = debug_info.cindexes;
int32 num_rows = computation_->matrices[matrix_index].num_rows;
KALDI_ASSERT(num_rows == static_cast<int32>(cindexes.size()));
int32 first_row_within_range = num_rows,
last_row_within_range = -1;
for (int32 i = 0; i < num_rows; i++) {
int32 t = cindexes[i].second.t;
if (t >= min_deriv_time && t <= max_deriv_time) {
if (i < first_row_within_range) first_row_within_range = i;
if (i > last_row_within_range) last_row_within_range = i;
}
}
if (last_row_within_range == -1) {
prune_info.fully_inside_range = false;
prune_info.partly_inside_range = false;
} else if (last_row_within_range == num_rows - 1 &&
first_row_within_range == 0) {
prune_info.fully_inside_range = true;
prune_info.partly_inside_range = false;
} else {
prune_info.fully_inside_range = false;
prune_info.partly_inside_range = true;
prune_info.row_begin = first_row_within_range;
prune_info.row_end = last_row_within_range + 1;
}
}
}
void DerivativeTimeLimiter::ComputeSubmatrixMaps() {
int32 num_submatrices = computation_->submatrices.size();
submatrix_map_.resize(num_submatrices);
submatrix_map_if_deriv_.resize(num_submatrices);
// index zero is for the empty submatrix.
submatrix_map_[0] = 0;
submatrix_map_if_deriv_[0] = 0;
for (int32 s = 1; s < num_submatrices; s++) {
NnetComputation::SubMatrixInfo &submatrix_info(computation_->submatrices[s]);
int32 matrix_index = submatrix_info.matrix_index;
int32 row_offset = submatrix_info.row_offset,
num_rows = submatrix_info.num_rows;
const MatrixPruneInfo &matrix_prune_info = matrix_prune_info_[matrix_index];
if (matrix_prune_info.fully_inside_range) {
submatrix_map_[s] = s;
} else if (!matrix_prune_info.partly_inside_range) {
// completely outside time range.
submatrix_map_[s] = 0;
} else {
// the matrix is partly inside the time range.
int32 pruned_row_begin = std::max(matrix_prune_info.row_begin,
row_offset),
pruned_row_end = std::min(matrix_prune_info.row_end,
row_offset + num_rows);
if (pruned_row_end <= pruned_row_begin) {
// there was no overlap between the submatrix and the part
// of the matrix that was inside the time range.
submatrix_map_[s] = 0;
} else {
// caution: this invalidates the reference 'submatrix_info'.
int32 row_offset_within_submatrix =
pruned_row_begin - row_offset,
new_num_rows = pruned_row_end - pruned_row_begin;
submatrix_map_[s] =
computation_->NewSubMatrix(s, row_offset_within_submatrix,
new_num_rows, 0, -1);
}
}
bool is_deriv = computation_->matrix_debug_info[matrix_index].is_deriv;
submatrix_map_if_deriv_[s] = (is_deriv ?
submatrix_map_[s] : s);
}
}
void DerivativeTimeLimiter::ModifyCommands() {
std::vector<NnetComputation::Command>::iterator
iter = computation_->commands.begin(),
end = computation_->commands.end();
for (; iter != end; ++iter)
ModifyCommand(&(*iter));
}
// called from PruneMatrices only for matrices that are derivatives,
// not inputs or outputs of the computation, and which are partly
// inside the time range, this function returns true if we can
// limit the size of the matrix (because variables outside the
// desired range are never accessed), and false otherwise.
bool DerivativeTimeLimiter::CanLimitMatrix(const Analyzer &analyzer,
int32 m) const {
int32 s_whole = whole_submatrices_[m]; // submatrix consisting of
// all of the matrix m
int32 s_mapped = submatrix_map_[s_whole]; // submatrix consisting of the time
// range of the matrix m that we
// plan to limit it to.
KALDI_ASSERT(s_mapped != 0 && s_mapped != s_whole);
std::vector<int32> whole_variables, mapped_variables;
analyzer.variables.AppendVariablesForSubmatrix(s_whole,
&whole_variables);
analyzer.variables.AppendVariablesForSubmatrix(s_mapped,
&mapped_variables);
KALDI_ASSERT(whole_variables.size() > mapped_variables.size());
std::vector<int32> excluded_variables(whole_variables.size() -
mapped_variables.size());
std::vector<int32>::iterator end_iter =
std::set_difference(whole_variables.begin(), whole_variables.end(),
mapped_variables.begin(), mapped_variables.end(),
excluded_variables.begin());
KALDI_ASSERT(end_iter == excluded_variables.end());
// We want to make sure that none of the excluded variables are ever accessed,
// except possibly for zeroing or setting to other constant value. If they
// are, we cannot prune the matrix.
for (std::vector<int32>::iterator iter = excluded_variables.begin();
iter != end_iter; ++iter) {
int32 variable_index = *iter;
const std::vector<Access> &variable_accesses =
analyzer.variable_accesses[variable_index];
std::vector<Access>::const_iterator viter = variable_accesses.begin(),
vend = variable_accesses.end();
for (; viter != vend; ++viter) {
// if a variable outside the pruned range of the matrix is ever accessed
// apart from on allocation, we cannot prune.
int32 command_index = viter->command_index;
NnetComputation::Command &command = computation_->commands[command_index];
if (command.command_type != kSetConst) {
// we may one day want to look at this.. it's not really expected.
KALDI_VLOG(3) << "Cannot prune matrix " << m;
return false;
}
}
}
return true;
}
void DerivativeTimeLimiter::LimitMatrices(const std::vector<bool> &will_limit) {
// first modify 'submatrices'.
int32 num_submatrices = computation_->submatrices.size(),
num_matrices = computation_->matrices.size();
for (int32 s = 1; s < num_submatrices; s++) {
NnetComputation::SubMatrixInfo &submat_info = computation_->submatrices[s];
int32 m = submat_info.matrix_index;
if (will_limit[m]) {
// we need to do something...
const MatrixPruneInfo &prune_info = matrix_prune_info_[m];
int32 matrix_num_rows = prune_info.row_end - prune_info.row_begin;
KALDI_ASSERT(matrix_num_rows > 0 &&
matrix_num_rows < computation_->matrices[m].num_rows);
KALDI_ASSERT(prune_info.partly_inside_range);
int32 new_row_begin = submat_info.row_offset - prune_info.row_begin;
if (new_row_begin >= 0 &&
submat_info.num_rows + new_row_begin <= matrix_num_rows) {
// If this submatrix is entirely inside the limited range of the matrix,
// then we modify its row_offset to account for the truncation of
// rows to the left.
submat_info.row_offset = new_row_begin;
} else {
// This submatrix is not entirely inside the kept range of the matrix.
// We assume that this submatrix is never accessed directly except (if
// it was the whole matrix) for in allocation and deallocation commands,
// since when we modified the computation we ensured this.
if (computation_->IsWholeMatrix(s)) {
// If it was the whole matrix then it may be used in allocation and
// deallocation commands, so we should modify it to be the whole of the
// new matrix, which will have fewer rows than before.
submat_info.num_rows = matrix_num_rows;
} else {
// We believe this matrix should never be used. We give it a valid
// but stupid size of num-rows=1, num-cols=1, so that if it ever does
// get accessed it should produce an error.
submat_info.row_offset = 0;
submat_info.num_rows = 1;
submat_info.col_offset = 0;
submat_info.num_cols = 1;
}
}
}
}
// next modify 'matrices'
for (int32 m = 1; m < num_matrices; m++) {
if (will_limit[m]) {
const MatrixPruneInfo &prune_info = matrix_prune_info_[m];
NnetComputation::MatrixInfo &matrix_info = computation_->matrices[m];
if (!computation_->matrix_debug_info.empty()) {
NnetComputation::MatrixDebugInfo &debug_info =
computation_->matrix_debug_info[m];
std::vector<Cindex> &cindexes = debug_info.cindexes;
KALDI_ASSERT(cindexes.size() == static_cast<size_t>(matrix_info.num_rows));
cindexes.erase(cindexes.begin() + prune_info.row_end, cindexes.end());
cindexes.erase(cindexes.begin(),
cindexes.begin() + prune_info.row_begin);
}
matrix_info.num_rows = prune_info.row_end - prune_info.row_begin;
// num_cols stays the same.
}
}
}
void DerivativeTimeLimiter::PruneMatrices() {
Analyzer analyzer;
analyzer.Init(nnet_, *computation_);
KALDI_ASSERT(computation_->matrices.size() == whole_submatrices_.size());
int32 num_matrices = computation_->matrices.size();
std::vector<bool> will_limit(num_matrices, false);
bool will_limit_at_least_one = false;
for (int32 m = 1; m < num_matrices; m++) {
const MatrixAccesses &accesses = analyzer.matrix_accesses[m];
const MatrixPruneInfo &matrix_prune_info = matrix_prune_info_[m];
if (matrix_prune_info.fully_inside_range ||
accesses.is_input || accesses.is_output ||
!computation_->matrix_debug_info[m].is_deriv)
continue; // nothing to do: it's inside the time-range or not a
// derivative.
// if we got here it's not completely inside the time range, not an input or
// an output, and it's a derivative.
if (!matrix_prune_info.partly_inside_range) {
// completely outside time range. we can prune the matrix if it is not an
// input or output, and is never accessed apart from allocation.
if (MatrixIsUnused(analyzer, *computation_, m))
RemoveCommandsForUnusedMatrix(analyzer, m, computation_);
} else {
// the matrix is partly inside the time range, it's a derivative, and not
// an input or an output.
if (CanLimitMatrix(analyzer, m)) {
will_limit[m] = true;
will_limit_at_least_one = true;
}
}
}
if (will_limit_at_least_one)
LimitMatrices(will_limit);
}
void LimitDerivativeTimes(const Nnet &nnet,
int32 min_deriv_time,
int32 max_deriv_time,
NnetComputation *computation) {
DerivativeTimeLimiter limiter(nnet, min_deriv_time, max_deriv_time,
computation);
limiter.LimitDerivTimes();
}
/*
This helper function, used in ReplaceRowWithMatrixOps, detects
when the vector 'indexes' has a 'special structure'. The special structure
is:
zero or more -1's, then
a consecutive nonempty sequence of nonnegative numbers, e.g. 6 7 8 9 10, then
zero or more -1's.
Note: this function assumes that any negative elements of 'indexes' are -1.
If there are elements less than -1, then it is an error, but this function
does not thoroughly check for that. 'indexes' is required to be a nonempty
vector.
If 'indexes' has the special structure then this function returns true
and sets the following values, which will explain with the following
example in mind: 'indexes = [ -1, -1, 5 6 7 8, -1 ]'.
- '*first_nonnegative_pos' is set to the number of initial -1's (and also
the location of the first nonnegative element): 2 in this case.
- '*first_nonnegative_value' is set to the value of the first nonnegative
element (5 in this case)
- '*num_nonnegative_values' is set to the number of nonnegative values in
the sequence (4 in this case).
If 'indexes' does not have this special structure, then this function returns
false, and the values of '*first_nonnegative_pos',
'*first_nonnegative_value' and '*num_nonnegative_indexes' on exit are
undefined.
*/
static bool IndexesHaveSpecialStructure(const std::vector<int32> &indexes,
int32 *first_nonnegative_pos,
int32 *first_nonnegative_value,
int32 *num_nonnegative_indexes) {
KALDI_ASSERT(!indexes.empty());
const int32 *indexes_ptr = &(indexes[0]);
size_t pos = 0, size = indexes.size();
// Find the first nonnegative element of 'indexes'.
for (; pos < size; ++pos)
if (indexes_ptr[pos] >= 0)
break;
if (pos == size)
return false; // all -1's... should not happen, but not our problem.
*first_nonnegative_pos = static_cast<int32>(pos);
int32 n = indexes_ptr[pos];
*first_nonnegative_value = n;
// Find the first element after '*first_nonnegative_index' that isn't
// consecutive.
for (; pos < size; ++pos,++n)
if (indexes_ptr[pos] != n)
break;
*num_nonnegative_indexes = n - *first_nonnegative_value;
// Check that the remaining values are all <0 (assumed equal to -1, but
// checking <0 may be faster as just one instruction).
for (; pos < size; ++pos)
if (indexes_ptr[pos] >= 0)
return false; // does not have the special structure.
return true;
}
bool ReplaceRowWithMatrixOps(NnetComputation *computation) {
bool ans = false;
int32 num_commands = computation->commands.size(),
num_indexes = computation->indexes.size();
for (int32 command_index = 0; command_index < num_commands;
command_index++) {
// non-const because we'll be changing it.
NnetComputation::Command &c = computation->commands[command_index];
int32 first_nonnegative_pos,
first_nonnegative_value,
num_nonnegative_indexes;
switch (c.command_type) {
case kCopyRows: case kAddRows: {
int32 indexes_index = c.arg3;
KALDI_ASSERT(indexes_index < num_indexes);
const std::vector<int32> &indexes = computation->indexes[indexes_index];
if (IndexesHaveSpecialStructure(indexes,
&first_nonnegative_pos,
&first_nonnegative_value,
&num_nonnegative_indexes)) {
ans = true;
c.arg1 = computation->NewSubMatrix(c.arg1, first_nonnegative_pos,
num_nonnegative_indexes,
0, -1);
c.arg2 = computation->NewSubMatrix(c.arg2, first_nonnegative_value,
num_nonnegative_indexes,
0, -1);
c.command_type = (c.command_type == kCopyRows ? kMatrixCopy :
kMatrixAdd);
}
break;
}
default:
break;
}
}
return ans;
}
/*
This function, used in SnipSingleRowOp(),
finds the number of leading, and trailing, negative numbers
in a vector of integers. For instance, if vec is
[ -1 -1 2 3 -1 4 5 -1 ]
then '*num_leading_negatives' will be set to 2 and '*num_trailing_negatives'
will be set to 1. If all the numbers in 'vec' are all negative, or 'vec' is
empty, it is an error and this function will invoke KALDI_ERR.
*/
static void FindNumLeadingAndTrailingNegatives(const std::vector<int32> &vec,
int32 *num_leading_negatives,
int32 *num_trailing_negatives) {
KALDI_ASSERT(!vec.empty());
const int32 *begin = &(vec[0]), *ptr = begin, *end = ptr + vec.size();
while (ptr != end && *ptr < 0)
ptr++;
// note regarding error message: we assume all negative numbers are -1, due to
// the way this is called, but it only affects how we describe the error.
KALDI_ASSERT(ptr != end && "Vector consists entirely of -1's.");
*num_leading_negatives = ptr - begin;
const int32 *ptr2 = end - 1;
// the following while loop should terminate before falling off the vector,
// because we've established above (in the assertion) that the vector contains
// at least one nonnegative number.
while (*ptr2 < 0)
ptr2--;
KALDI_ASSERT(ptr2 >= begin); // or would be code error.
*num_trailing_negatives = end - 1 - ptr2;
}
// This function, called from SnipRowOps, is called when it encounters commands
// of type kAddRows; it modifies such commands when the indexes have leading or
// trailing -1's,h, to make them operate on a smaller submatrix. It returns
// true if it made a change, and false otherwise.
static bool SnipSingleRowOp(NnetComputation *computation,
int32 command_index) {
NnetComputation::Command &c = computation->commands[command_index];
KALDI_ASSERT(static_cast<size_t>(c.arg3) < computation->indexes.size());
const std::vector<int32> &indexes = computation->indexes[c.arg3];
int32 num_leading_negatives, num_trailing_negatives;
FindNumLeadingAndTrailingNegatives(indexes,
&num_leading_negatives,
&num_trailing_negatives);
if (num_leading_negatives == 0 && num_trailing_negatives == 0)
return false;
int32 new_num_rows = static_cast<int32>(indexes.size()) -
num_leading_negatives - num_trailing_negatives;
KALDI_ASSERT(new_num_rows > 0);
std::vector<int32> new_indexes(indexes.begin() + num_leading_negatives,
indexes.begin() + num_leading_negatives +
new_num_rows);
c.arg3 = computation->indexes.size();
computation->indexes.push_back(std::vector<int32>());
computation->indexes.back().swap(new_indexes);
c.arg1 = computation->NewSubMatrix(c.arg1,
num_leading_negatives, new_num_rows,
0, -1);
return true; // made a change.
}
/*
This function, used in SnipSingleRowOp(), finds the number of leading, and
trailing, negative values in a vector of pairs of integers. In particular,
it finds the number of leading and trailing pairs whose .first value is negative
(in practice we'll only encounter either (-1,-1) pairs, or pairs of both
nonnegative values).
For instance, if vec is
[ (-1,-1) (-1,-1) (80,2) (81,3) (-1,-1) (80,4) (81,5) (-1,-1) ]
then '*num_leading_negatives' will be set to 2 and '*num_trailing_negatives'
will be set to 1. If all the .first numbers in 'vec' are all negative, or
'vec' is empty, it is an error and this function will invoke KALDI_ERR.
*/
static void FindNumLeadingAndTrailingNegatives(
const std::vector<std::pair<int32, int32> > &vec,
int32 *num_leading_negatives,
int32 *num_trailing_negatives) {
KALDI_ASSERT(!vec.empty());
const std::pair<int32, int32> *begin = &(vec[0]), *ptr = begin,
*end = ptr + vec.size();
while (ptr != end && ptr->first < 0)
ptr++;
// note regarding error message: we assume all negative numbers are -1, due to
// the way this is called, but it only affects how we describe the error.
KALDI_ASSERT(ptr != end && "Vector consists entirely of -1's.");
*num_leading_negatives = ptr - begin;
const std::pair<int32, int32> *ptr2 = end - 1;
// the following while loop should terminate before falling off the vector,
// because we've established above (in the assertion) that the vector contains
// at least one nonnegative number.
while (ptr2->first < 0)
ptr2--;
KALDI_ASSERT(ptr2 >= begin); // would be code error.
*num_trailing_negatives = end - 1 - ptr2;
}
// This function, called from SnipRowOps, is called when it encounters commands
// of type kAddRowsMulti, kAddToRowsMulti, or kCopyToRowsMulti; have leading or
// trailing (-1,-1) pairs, to make them operate on a smaller submatrix. It
// returns true if it made a change, and false otherwise.
static bool SnipMultiRowOp(NnetComputation *computation,
int32 command_index) {
NnetComputation::Command &c = computation->commands[command_index];
KALDI_ASSERT(static_cast<size_t>(c.arg2) < computation->indexes_multi.size());
const std::vector<std::pair<int32, int32> > &indexes_multi =
computation->indexes_multi[c.arg2];
int32 num_leading_negatives, num_trailing_negatives;
FindNumLeadingAndTrailingNegatives(indexes_multi,
&num_leading_negatives,
&num_trailing_negatives);
if (num_leading_negatives == 0 && num_trailing_negatives == 0)
return false;
int32 new_num_rows = static_cast<int32>(indexes_multi.size()) -
num_leading_negatives - num_trailing_negatives;
KALDI_ASSERT(new_num_rows > 0);
std::vector<std::pair<int32, int32> > new_indexes_multi(
indexes_multi.begin() + num_leading_negatives,
indexes_multi.begin() + num_leading_negatives + new_num_rows);
c.arg2 = computation->indexes_multi.size();
computation->indexes_multi.push_back(std::vector<std::pair<int32, int32> >());
computation->indexes_multi.back().swap(new_indexes_multi);
c.arg1 = computation->NewSubMatrix(c.arg1,
num_leading_negatives, new_num_rows,
0, -1);
return true; // made a change.
}
/*
This function, used in SnipRangeRowOp(), finds the number of leading and
trailing values in a vector of pairs of integers, that are the same (i.e.
pairs of the form (x, x) for any x. [This is how we represent an empty
range, which is a kind of no-op, in commands of kCopyRowRanges or
kAddRowRanges.
For instance, if vec is
[ (0,0) (0,0) (4,5) (6,8) (0,0) (10,12) (14,20) (0,0) ]
then '*num_leading_identicals' will be set to 2 and '*num_trailing_identicals'
will be set to 1. If all pairs in 'vec' are identical, or 'vec' is empty, it
is an error and this function will invoke KALDI_ERR.
*/
static void FindNumLeadingAndTrailingIdenticals(
const std::vector<std::pair<int32, int32> > &vec,
int32 *num_leading_identicals,
int32 *num_trailing_identicals) {
KALDI_ASSERT(!vec.empty());
const std::pair<int32, int32> *begin = &(vec[0]), *ptr = begin,
*end = ptr + vec.size();
while (ptr != end && ptr->first == ptr->second)
ptr++;
// note regarding error message: we assume all pairs of identical numbers are
// -1, due to the way this is called, but it only affects how we describe the
// error.
KALDI_ASSERT(ptr != end && "Vector consists entirely of -1's.");
*num_leading_identicals = ptr - begin;
const std::pair<int32, int32> *ptr2 = end - 1;
// the following while loop should terminate before falling off the vector,
// because we've established above (in the assertion) that the vector contains
// at least one nonnegative number.
while (ptr2->first == ptr2->second)
ptr2--;
KALDI_ASSERT(ptr2 >= begin); // would be code error.
*num_trailing_identicals = end - 1 - ptr2;
}
// This function, called from SnipRowOps, is called when it encounters commands
// of type kAddRowRanges that have leading or trailing (x, x) pairs [i.e. pairs
// of identical values; these are how we represent empty ranges], to make them
// operate on a smaller submatrix. It returns true if it made a change, and
// false otherwise.
static bool SnipRangesRowOp(NnetComputation *computation,
int32 command_index) {
NnetComputation::Command &c = computation->commands[command_index];
KALDI_ASSERT(static_cast<size_t>(c.arg3) < computation->indexes_ranges.size());
const std::vector<std::pair<int32, int32> > &indexes_ranges =
computation->indexes_ranges[c.arg3];
int32 num_leading_identicals, num_trailing_identicals;
FindNumLeadingAndTrailingIdenticals(indexes_ranges,
&num_leading_identicals,
&num_trailing_identicals);
if (num_leading_identicals == 0 && num_trailing_identicals == 0)
return false;
int32 new_num_rows = static_cast<int32>(indexes_ranges.size()) -
num_leading_identicals - num_trailing_identicals;
KALDI_ASSERT(new_num_rows > 0);
std::vector<std::pair<int32, int32> > new_indexes_ranges(
indexes_ranges.begin() + num_leading_identicals,
indexes_ranges.begin() + num_leading_identicals + new_num_rows);
c.arg3 = computation->indexes_ranges.size();
computation->indexes_ranges.push_back(std::vector<std::pair<int32, int32> >());
computation->indexes_ranges.back().swap(new_indexes_ranges);
c.arg1 = computation->NewSubMatrix(c.arg1,
num_leading_identicals, new_num_rows,
0, -1);
return true; // made a change.
}
bool SnipRowOps(NnetComputation *computation) {
bool ans = false;
int32 num_commands = computation->commands.size();
for (int32 command_index = 0; command_index < num_commands;
command_index++) {
// non-const because we'll be changing it.
NnetComputation::Command &c = computation->commands[command_index];
// note: we can't do the snipping for commands of type case kCopyRows and case
// kCopyRowsMulti, because the -1's aren't a pure no-op; they have the
// meaning of setting the destination value to zero, so we can't prune
// them away.
switch (c.command_type) {
case kAddRows: {
if (SnipSingleRowOp(computation, command_index))
ans = true;
break;
}
case kAddRowsMulti: case kAddToRowsMulti:
case kCopyToRowsMulti: {
if (SnipMultiRowOp(computation, command_index))
ans = true;
break;
}
case kAddRowRanges: {
if (SnipRangesRowOp(computation, command_index))
ans = true;
break;
}
default:
break;
}
}
return ans;
}
// This class implements the internals of the function SplitRowOps() which is
// declared in nnet-optimize-utils.h.
class RowOpsSplitter {
public:
RowOpsSplitter(NnetComputation *computation): computation_(computation) { }
// Attempts to perform the optimization. Returns true if it made any change
// to the computation.
bool Split() {
return SplitIndexes() && SplitCommands();
}
private:
// This function sets up split_info_, which describes how we can split up
// the vectors that are elements of computation_->indexes_multi.
// It will return true if it successfully split at least one of those
// vectors, and false otherwise.
bool SplitIndexes();
// This function modifies the commands in the computation. It returns
// true if it made any change.
bool SplitCommands();
// This function attempts to optimize the command in
// computation_->commands[command_index]. It returns true if it made any
// change. If we are going to have to insert an extra command into the
// computation, this function will append an element to new_commands_.
bool SplitCommand(int32 command_index);
// Below, define a multi-index as an element of NnetComputation::indexes_multi,
// for example,
// const std::vector<std::pair<int32,int32> > &multi_index = computation_->indexes_multi[1];
// It is a list of pairs.
// This struct appears as an element of the list inside MultiIndexSplitInfo.
// It helps us describe how we can split up a multi-index (a list of pairs)
// into a sequence of ranges where the .first value is constant across the
// range.
struct SingleSplitInfo {
// 'offset' is the index into the vector of pairs that forms the
// start of this range. In the example where we are splitting up
// ((10,2), (10,3), (10,4), (15,3), (15,5), (15,7))
// there would be two instances of struct SingleSplitInfo, with
// offset = 0 and offset = 3.
int32 offset;
// 'size' is the number of pairs in this range; in the example
// above, both 'size' elements would be 3.
int32 size;
// first_value is the value of the .first index throughout this range; in
// the example above, it would be 10 and 15 respectively. It represents a
// submatrix index.
int32 first_value;
// initial_second_value is the minimum value of .second for any element in
// this range: it would be 2 and 3 respectively in the example above.
int32 min_second_value;
// second_value_range is the highest value of .second for any element in
// this range, plus one, minus min_second_value. (It's the number of rows
// in the other submatrix of the operation).
int32 second_value_range;
// If the .second values in the range are consecutive then
// 'second_value_offsets' will be empty. Otherwise it will
// be a vector of size 'size', containing numbers in the
// range 0 ... second_value_range - 1, such that
// min_second_value + second_value_offsets[i] gives
// the .second value at the corresponding position in the range.
// In the second range of the example above, the range
// consisting of ((15,3), (15,5), (15,7)), 'second_value_offsets
// would be the vector (0, 2, 4).
std::vector<int32> second_value_offsets;
};
// An instance of the struct MultiIndexSplitInfo will be created for each multi-index,
// i.e. for each element of NnetComputation::indexes_multi.
struct MultiIndexSplitInfo {
// If we can split this multi-index into at most two ranges, this
// vector will be nonempty; otherwise it will be empty.
std::vector<SingleSplitInfo> splits;
};
// GetSplitInfo() attempts to take a range of a
// std::vector<std::pair<int32, int32> >, as represented by begin and end
// iterators, and to extract its information into an object of type
// SingleSplitInfo. (all except for the .offset member, which will have
// been set by calling code).
// It return true if successful, and false otherwise. The only reasons that
// it might return false are that the range contains -1's or does not contain
// all-identical .first members).
bool GetSplitInfo(std::vector<std::pair<int32, int32> >::const_iterator begin,
std::vector<std::pair<int32, int32> >::const_iterator end,
SingleSplitInfo *info);
// computation_ is the computation that we are modifying.
NnetComputation *computation_;
// split_info_ will contain information about how we can split up the members
// of computation_->indexes_multi into ranges.
std::vector<MultiIndexSplitInfo> split_info_;
// The following is a list of additional commands that we are going to insert
// into computation_, of the form (command-index, command) where command-index
// is a command index just before which we will insert the new command.
// (this is the format accepted by the function InsertCommands()).
std::vector<std::pair<int32, NnetComputation::Command> > new_commands_;
};
bool RowOpsSplitter::GetSplitInfo(
std::vector<std::pair<int32, int32> >::const_iterator begin,
std::vector<std::pair<int32, int32> >::const_iterator end,
SingleSplitInfo *info) {
// max_size_ratio must be > 1.0, and could in principle be a float. It is
// there to prevent us from making changes to the computation which would end
// up wastefully launching too many kernels that would do nothing.
const int32 max_size_ratio = 2;
int32 size = end - begin;
KALDI_ASSERT(size != 0);
int32 first = begin->first;
if (first < 0)
return false;
info->size = size;
info->first_value = first;
int32 initial_second_value = begin->second,
min_second_value = initial_second_value,
max_second_value = initial_second_value;
info->second_value_offsets.resize(size);
bool is_consecutive = true;
for (int32 i = 0; i < size; i++) {
int32 second = begin[i].second;
if (begin[i].first != first || second < 0) return false;
info->second_value_offsets[i] = second;
if (second != initial_second_value + i)
is_consecutive = false;
if (second < min_second_value) min_second_value = second;
if (second > max_second_value) max_second_value = second;
}
info->min_second_value = min_second_value;
info->second_value_range = max_second_value + 1 - min_second_value;
if (info->second_value_range > size * max_size_ratio)
return false;
if (is_consecutive) {
info->second_value_offsets.clear();
} else {
for (int32 i = 0; i < size; i++)
info->second_value_offsets[i] -= min_second_value;
}
return true;
}
bool RowOpsSplitter::SplitIndexes() {
bool ans = false;
int32 num_indexes_multi = computation_->indexes_multi.size();
split_info_.resize(num_indexes_multi);
for (int32 i = 0; i < num_indexes_multi; i++) {
const std::vector<std::pair<int32,int32> > &multi_index =
computation_->indexes_multi[i];
MultiIndexSplitInfo &split_info = split_info_[i];
int32 num_pairs = multi_index.size();
KALDI_ASSERT(num_pairs > 0);
// 'split_point' will be set to the first index j for which
// multi_index[j-1].first != multi_index[j].first, or -1
// if no such j exists.
int32 split_point = -1, initial_first = multi_index[0].first;
for (int32 j = 1; j < num_pairs; j++) {
if (multi_index[j].first != initial_first) {
split_point = j;
break;
}
}
if (split_point == -1) {
split_info.splits.resize(1);
split_info.splits[0].offset = 0;
if (!GetSplitInfo(multi_index.begin(), multi_index.end(),
&(split_info.splits[0]))) {
split_info.splits.clear();
} else {
ans = true;
}
} else {
split_info.splits.resize(2);
split_info.splits[0].offset = 0;
split_info.splits[1].offset = split_point;
std::vector<std::pair<int32,int32> >::const_iterator mid_iter =
multi_index.begin() + split_point;
if (!GetSplitInfo(multi_index.begin(), mid_iter,
&(split_info.splits[0])) ||
!GetSplitInfo(mid_iter, multi_index.end(),
&(split_info.splits[1]))) {
split_info.splits.clear();
} else {
ans = true;
}
}
}
return ans;
}
bool RowOpsSplitter::SplitCommand(int32 c) {
NnetComputation::Command &command = computation_->commands[c];
CommandType command_type = command.command_type;
// For commands that are not of the following four types, return false: we
// won't be changing these commands.
switch (command_type) {
case kAddRowsMulti: case kCopyRowsMulti:
case kAddToRowsMulti: case kCopyToRowsMulti: break;
default: return false;
}
int32 indexes_multi_index = command.arg2;
KALDI_ASSERT(indexes_multi_index <
static_cast<int32>(split_info_.size()));
const MultiIndexSplitInfo &split_info = split_info_[indexes_multi_index];
if (split_info.splits.empty())
return false; // these indexes couldn't be split: e.g. they contained more
// than two distinct .first elements, or there were other
// reasons.
// we'll be splitting the command into either one or two pieces.
std::vector<NnetComputation::Command> split_commands(
split_info.splits.size());
for (size_t i = 0; i < split_info.splits.size(); i++) {
const SingleSplitInfo &split = split_info.splits[i];
NnetComputation::Command &command_out = split_commands[i];
command_out.alpha = command.alpha;
command_out.arg1 = computation_->NewSubMatrix(
command.arg1, split.offset, split.size, 0, -1);
command_out.arg2 = computation_->NewSubMatrix(
split.first_value, split.min_second_value,
split.second_value_range, 0, -1);
if (split.second_value_offsets.empty()) {
// The .second elements are consecutive.
switch (command_type) {
case kAddRowsMulti:
command_out.command_type = kMatrixAdd;
break;
case kCopyRowsMulti:
command_out.command_type = kMatrixCopy;
break;
case kAddToRowsMulti:
command_out.command_type = kMatrixAdd;
std::swap(command_out.arg1, command_out.arg2);
break;
case kCopyToRowsMulti:
command_out.command_type = kMatrixCopy;
std::swap(command_out.arg1, command_out.arg2);
break;
default: // will never be reached.
break;
}
} else {
// Indexes are not consecutive: it needs to be a kAddRows or kCopyRows
// command.
command_out.arg3 = computation_->indexes.size();
switch (command_type) {
case kAddRowsMulti: case kCopyRowsMulti: {
command_out.command_type = (command_type == kAddRowsMulti ?
kAddRows : kCopyRows);
computation_->indexes.push_back(split.second_value_offsets);
break;
}
case kCopyToRowsMulti: {
// We can't operate on this command because of what would happen
// with values of 'indexes' (see the variable in the block for
// kAddToRowsMulti) which were -1. Rows of the output would be
// set to zero, which is not the behavior we want here; we'd want
// them to be unaffected.
return false;
}
case kAddToRowsMulti: {
command_out.command_type = kAddRows;
std::swap(command_out.arg1, command_out.arg2);
// invert the indexes.
std::vector<int32> indexes(split.second_value_range, -1);
for (int32 i = 0; i < split.size; i++) {
// the following assert should always succeed because the
// AddToRowsMulti and CopyToRowsMulti should never have
// duplicate destinations in their indexes.
KALDI_ASSERT(indexes[split.second_value_offsets[i]] >= 0);
indexes[split.second_value_offsets[i]] = i;
}
computation_->indexes.push_back(indexes);
break;
}
default:
KALDI_ERR << "Code error: un-handled case.";
}
}
}
command = split_commands[0];
// note: for now, split_commands.size() will be 1 or 2.
for (size_t i = 1; i < split_commands.size(); i++) {
new_commands_.resize(new_commands_.size() + 1);
// we'll want to insert this command right after command c,
// which is the same as just before command c + 1.
new_commands_.back().first = c + 1;
new_commands_.back().second = split_commands[i];
}
return true; // We made a change.
}
bool RowOpsSplitter::SplitCommands() {
bool ans = false;
int32 num_commands = computation_->commands.size();
for (int32 c = 0; c < num_commands; c++)
if (SplitCommand(c))
ans = true;
if (!new_commands_.empty())
InsertCommands(&new_commands_, computation_);
return ans;
}
bool SplitRowOps(NnetComputation *computation) {
RowOpsSplitter splitter(computation);
return splitter.Split();
}
/*
This function finds and returns the 'n-stride' of the vector of Indexes, or
returns 0 if it does not exist because the Indexes lack the required regular
structure. This function relates to 'shortcut' compilation and is used in
class IoSpecificationIsDecomposable(). There is an overloaded version of
this function that works with Cindex input, that has almost exactly
the same code.
It is used to discover regular structure in vectors of indexes. We are
interested in the structure on the 'n' index; in particular, the stride on
the 'n' index. We expect the vector 'indexes' to contain 'n' values of the
form 0, 1, ... N-1 (where the value of N can be obtained easily by looking at
the .n value of the last element of 'indexes'). And we expect the 'n' values
of Indexes that are otherwise the same to be separated by a fixed stride,
which we will return.
If the stride is inconsistent or one of our other requirements (see below) is
not fulfilled, we will return 0. If it's always consistent and our
requirements are fulfilled we'll return the stride. If 'full_check' is true
we do an exhaustive check for consistency; otherwise we do a randomized
check.
The full definition of 'consistency' is as follows:
For some n_stride >= 1 (which we'll return), and with N as the number of
'n' values (which should be numbered 0, 1, ... N-1):
- For any Index with n < N-1 located at position i, an Index with one
greater 'n' but otherwise the same must exist at position i + n_stride
- For any Index with n > 0 located at position i, an Index with one
smaller 'n' but otherwise the same must exist at position i - n_stride.
- The input must be arranged in blocks of size block_size = n_stride * N,
which these strides never cross. "Strides never cross" is an informal
definition: we can formalize this by saying that for an Index with n == 0
at position i, we must have (i / block_size) == ((i + n_stride*(N-1)) /
block_size), with integer division.
The above conditions imply that the size of the input must be a multiple
of the n-stride.
Reminder: we return 0 if the regular structure is not found, and the n-stride
if the regular structure is found.
*/
static int32 FindNStride(const std::vector<Index> &indexes,
bool full_check) {
// First find candidate stride. Later we'll check for consistency.
int32 size = indexes.size();
KALDI_ASSERT(size > 0);
int32 N = indexes[size-1].n + 1,
n_stride = -1;
if (N <= 1) {
// we wouldn't be able to determine the stride if N <= 1.
return 0;
}
Index index(indexes[0]);
if (index.n != 0 || size % N != 0) {
// for the n stride to be positive, we must start with an index with n == 0.
// if indexes.size() is not divisible by N, we have no hope of finding the
// regular structure.
return 0;
}
index.n = 1;
// First check the two most common strides, which are 1
// and size / N.
if (indexes[1] == index) {
n_stride = 1;
} else if (indexes[size / N] == index) {
n_stride = size / N;
} else {
int32 stride;
// try the other possible strides one by one (for subsampling
// layers of convnets, we might see strides of 2, for instance).
for (stride = 2; stride < size / N; stride++) {
if (size % stride == 0 && indexes[stride] == index) {
n_stride = stride;
break;
}
}
if (n_stride == -1) {
// if we fell off the loop then we found no candidates, which is strange
// and means we did not find the expected structure; we'll return 0 as we
// failed.
return 0;
}
}
// Now is the checking phase.
// to understand block_size, see the comment above this functcion.
int32 block_size = n_stride * N;
std::vector<int32> indexes_to_check;
if (full_check) {
indexes_to_check.resize(size);
for (int32 i = 0; i < size; i++)
indexes_to_check[i] = i;
} else {
int32 num_to_check = std::min<int32>(5, size);
indexes_to_check.resize(num_to_check);
for (int32 j = 0; j < num_to_check; j++)
indexes_to_check[j] = RandInt(0, size - 1);
SortAndUniq(&indexes_to_check);
}
for (std::vector<int32>::iterator iter = indexes_to_check.begin();
iter != indexes_to_check.end(); ++iter) {
int32 i = *iter;
Index index = indexes[i];
int32 n = index.n;
if (n < N - 1) {
index.n = n + 1;
if (i + n_stride >= size || indexes[i + n_stride] != index)
return 0;
}
if (n == 0) {
if (i / block_size != (i + n_stride * (N-1)) / block_size) {
// this is a check that the input divides into blocks of size n_stride *
// N and the N different versions of the same Index are always within a
// block (i.e. that the n stride never crosses over the block; having
// the same Index repeated within different blocks actually would not
// matter).
return 0;
}
} else { // n > 0
index.n = n - 1;
if (i - n_stride < 0 || indexes[i - n_stride] != index)
return 0;
}
}
return n_stride;
}
// This is almost exactly the same as the version of FindNStride declared above
// that takes a vector of Indexes as input. Comments have been removed from
// this version; see the other version for documentation.
static int32 FindNStride(const std::vector<Cindex> &cindexes,
bool full_check) {
int32 size = cindexes.size();
KALDI_ASSERT(size > 0);
int32 N = cindexes[size-1].second.n + 1,
n_stride = 0;
if (N <= 1)
return 0;
Cindex cindex(cindexes[0]);
if (cindex.second.n != 0 || size % N != 0)
return 0;
cindex.second.n = 1;
if (cindexes[1] == cindex) {
n_stride = 1;
} else if (cindexes[size / N] == cindex) {
n_stride = size / N;
} else {
int32 stride;
for (stride = 2; stride < size / N; stride++) {
if (size % stride == 0 && cindexes[stride] == cindex) {
n_stride = stride;
break;
}
}
if (stride == size / N)
return 0;
}
int32 block_size = n_stride * N;
std::vector<int32> indexes_to_check;
if (full_check) {
indexes_to_check.resize(size);
for (int32 i = 0; i < size; i++)
indexes_to_check[i] = i;
} else {
int32 num_to_check = std::min<int32>(5, size);
indexes_to_check.resize(num_to_check);
for (int32 j = 0; j < num_to_check; j++)
indexes_to_check[j] = RandInt(0, size - 1);
SortAndUniq(&indexes_to_check);
}
for (std::vector<int32>::iterator iter = indexes_to_check.begin();
iter != indexes_to_check.end(); ++iter) {
int32 i = *iter;
Cindex cindex = cindexes[i];
int32 n = cindex.second.n;
if (n < N - 1) {
cindex.second.n = n + 1;
if (i + n_stride >= size || cindexes[i + n_stride] != cindex)
return 0;
}
if (n == 0) {
if (i / block_size != (i + n_stride * (N-1)) / block_size)
return 0;
} else {
cindex.second.n = n - 1;
if (i - n_stride < 0 || cindexes[i - n_stride] != cindex)
return 0;
}
}
return n_stride;
}
/*
This function, used in shortcut compilation, converts a vector of Indexes
having a range of 'n' values (0, 1, ... old_N - 1), to a vector of
Indexes that's otherwise the same, but has a different range of 'n' values
(0, 1, ... new_N - 1).
The input vector is expected to have a stride 'n_stride > 0', as
would be returned by FindNStride, and the output vector will be given the
same n-stride.
*/
static void ConvertNumNValues(int32 n_stride, int32 old_N, int32 new_N,
const std::vector<Index> &indexes_in,
std::vector<Index> *indexes_out) {
int32 size_in = indexes_in.size();
KALDI_ASSERT(size_in > 0 && indexes_in[size_in - 1].n == old_N - 1);
int32 block_size_in = n_stride * old_N,
block_size_out = n_stride * new_N;
indexes_out->resize((size_in / old_N) * new_N);
for (int32 i_in = 0; i_in < size_in; i_in++) {
if (indexes_in[i_in].n != 0)
continue;
Index index(indexes_in[i_in]);
int32 block_index = i_in / block_size_in,
offset_within_block = i_in % block_size_in;
int32 i_out = block_index * block_size_out +
offset_within_block;
for (int32 n = 0; n < new_N; n++, i_out += n_stride) {
index.n = n;
(*indexes_out)[i_out] = index;
}
}
}
// This class implements the internals of the ExpandComputation() function (used
// in shortcut compilation); see comment by the declaration of
// ExpandComputation() in nnet-optimize-utils.h for overview. (It relates to
// shortcut compilation).
class ComputationExpander {
public:
ComputationExpander(const Nnet &nnet,
const MiscComputationInfo &misc_info,
const NnetComputation &computation,
bool need_debug_info,
int32 num_n_values,
NnetComputation *expanded_computation):
nnet_(nnet), misc_info_(misc_info),
computation_(computation),
need_debug_info_(need_debug_info),
num_n_values_(num_n_values),
expanded_computation_(expanded_computation) {
KALDI_ASSERT(num_n_values > 2);
}
// This function call implements the functionality of the class,
// expanding the computation.
void Expand();
private:
// This function sets up and computes the 'n_stride_' vector (see comment
// by the declaration of 'n_stride_' for what this is.
void InitStrideInfo();
// This function sets up the 'matrices' vector in 'expanded_computation_'.
// It's quite simple: it just multiplies all the num-rows by num_n_values_ and
// divides by 2, and leaves the num-cols the same.
void ComputeMatrixInfo();
// This function, only called if need_debug_info_ is true, sets up
// the 'matrix_debug_info' vector in 'expanded_computation_'.
void ComputeDebugInfo();
// This function sets up the 'submatrices' vector in 'expanded_computation_'.
// Column ranges always stay the same, but for row ranges it's a little
// more complicated.
void ComputeSubmatrixInfo();
// Expands a command of type kCopyRows or kAddRows; involves adding a new
// element of 'indexes' to expanded_computation_.
void ExpandRowsCommand(const NnetComputation::Command &c_in,
NnetComputation::Command *c_out);
// Expands a command of type kCopyRowsMulti or kAddRowsMulti, kCopyToRowsMulti
// or kAddToRowsMulti; involves adding a new element of 'indexes_multi' to
// expanded_computation_.
void ExpandRowsMultiCommand(const NnetComputation::Command &c_in,
NnetComputation::Command *c_out);
// Expands a command of type kAddRowRanges; involves adding a new element of
// 'indexes_ranges' to expanded_computation_.
void ExpandRowRangesCommand(const NnetComputation::Command &c_in,
NnetComputation::Command *c_out);
// This function computes all the PrecomputedIndexes in the
// 'component_precomputed_indexes' member of 'expanded_computation_'.
// They are all generated from scratch, by using the Component::PrecomputedIndexes()
// member function. The 'input_indexes' and 'output_indexes' arguments are worked
// out from the 'debug_info' [if we're not generating debug_info we specially generate
// it for the specific matrices in question], and the 'need_backprop'
// argument is worked out by seeing whether there is a call to Backprop() with
// the same precomputed-indexes element.
void ComputePrecomputedIndexes();
// Computes the 'commands' member of the output. This function also adds as
// needed to 'indexes', 'indexes_multi' and 'indexes_ranges' in the output.
// Later on we can call RenumberComputation() to remove any duplicates that
// might result from this.
void ComputeCommands();
// This command ensure that the debug-info in expanded_computation_ for the
// matrix underlying the submatrix with index 'submatrix_index', exists and is
// set up. In some cases we need the debug info for some matrices in order to
// do the expansion, even if debug info is not requested for the output; in
// those cases we set it up temporarily and clear it before we finish.
void EnsureDebugInfoExists(int32 submatrix_index);
// This function is used in mapping row-indexes into sub-matrices from the
// old to the new computation. It is mostly a wrapper for
// GetNewMatrixLocationInfo, but designed to give row indexes into
// submatrices rather than matrices; see the documentation for
// GetNewMatrixLocationinfo() for details and an explanation of the
// interface.
// This function assumes that ComputeSubmatrixInfo() has already
// been called.
// Note: it returns true if the index 'old_row_index' into submatrix
// indexed 'submat_index' corresponds to an Index with n=0; otherwise
// it returns false and does not set the output values.
// If it returns true, it will set '*new_row_index' to be the row-index
// into the new submatrix, that corresponds to the same Cindex that
// 'old_row_index' points to in the old computation; and it will set
// '*n_stride' to the n stride of the corresponding matrix (this is the
// same in the old and new computations).
bool GetNewSubmatLocationInfo(int32 submat_index,
int32 old_row_index,
int32 *new_row_index,
int32 *n_stride) const;
/// This function is used in mapping row-indexes into matrices, from the
/// old to the new computation.
/// @param [in] matrix_index The matrix-index > 0, for which we
/// are mapping row-indexes. The
/// matrix-indexes are the same in the old
/// and new computations.
/// @param [in] old_row_index The old row-index into the matrix.
/// @return This function returns the row-index where the
/// cindex referred to in 'old_matrix_index' will
/// reside in the new, expanded computation, WITH
/// THE CAVEAT THAT if the old cindex had n == 1,
/// we'll output the location of the cindex with n
/// == num_n_values_ - 1. This happens to be what
/// we want (it maps the last n value on the input
/// to the last n value on the output.
int32 GetNewMatrixLocationInfo(int32 old_matrix_index,
int32 old_row_index) const;
// This function 'expands' a set of indexes; it's called from
// ComputePrecomputedIndexes(). The indexes are expected to
// have the normal kind of regularity.
void ExpandIndexes(const std::vector<Index> &indexes,
std::vector<Index> *indexes_expanded) const;
// This 'n_stride_' vector is indexed by the matrix-index in the computation,
// i.e. the same value that you would use to index computation_.matrix_info and
// expanded_computation_->matrix_info. For each matrix-index m > 0 it
// contains the stride of the 'n' values in the Indexes. This is worked out
// from the debug_info of the input computation. For example, if
// the n stride is 3, and we have an Index (n, t, x) = (0, 50, 88) at the
// 11'th row of the matrix, then we would expect to have an Index
// (n, t, x) = (1, 50, 88) at the 11 + 3 = 14'th row of the matrix.
// The input and output computations will always have the same n-stride, so
// there is only one variable.
//
// Let's define num-n-in = 2, and num-n-out = num_n_values_, and suppose
// we're dealing with a matrix that has an n stride of "n-stride".
// We expect the (input, output) matrices to be arranged in blocks of num-rows
// (n-stride * num-n-in), (n-stride * num-n-out) respectively, where
// the n-stride never crosses the block boundaries. We check this.
std::vector<int32> n_stride_;
const Nnet &nnet_;
const MiscComputationInfo &misc_info_;
const NnetComputation &computation_;
bool need_debug_info_;
int32 num_n_values_;
NnetComputation *expanded_computation_;
};
void ComputationExpander::ExpandRowsCommand(
const NnetComputation::Command &c_in,
NnetComputation::Command *c_out) {
// we need to expand the row-indexes in c_in.arg3, and put the index of the
// resulting vector<int> in expanded_computation_->indexes, in 'c_out->arg3'.
int32 s1 = c_in.arg1, s2 = c_in.arg2;
// The command that gets called is something like
// submat1.AddRows(submat2, indexes) if submat1 is the submatrix referred to in
// 's1' and submat2 is the submatrix referred to in 's2'.
// 'indexes' has the same size as the num-rows of submat1, and the values
// in the vector are row-indexes into s2.
int32 old_arg3 = c_out->arg3;
c_out->arg3 = expanded_computation_->indexes.size();
c_out->alpha = c_in.alpha;
expanded_computation_->indexes.push_back(std::vector<int32>());
std::vector<int32> &new_indexes = expanded_computation_->indexes.back();
const std::vector<int32> &old_indexes = computation_.indexes[old_arg3];
int32 old_size = old_indexes.size(),
num_n_values = num_n_values_,
new_s1_size = expanded_computation_->submatrices[s1].num_rows,
new_s2_size = expanded_computation_->submatrices[s2].num_rows;
KALDI_ASSERT(old_size == computation_.submatrices[s1].num_rows);
new_indexes.resize(new_s1_size, -1);
// A note on the variable names: i1 and i2 are indexes into the destination
// submatrix and the source submatrix respectively, of the CopyRows or AddRows
// command.
// "n0" in the variable name means that this corresponds to an Index with n==0.
// things without "new" in the name refer to the old computation; things with
// "new" in the name refer to the computation that we are generating.
for (int32 i1 = 0; i1 < old_size; i1++) {
int32 new_i1_n0, n_stride1;
if (GetNewSubmatLocationInfo(s1, i1, &new_i1_n0, &n_stride1)) {
// GetNewSubmatLocationInfo() returns true if this corresponds to
// a Cindex with n == 0.
int32 i2 = old_indexes[i1]; // note: i2 is the row index into submatrix s2.
int32 new_i2_n0, n_stride2;
if (i2 < 0) { // if i2 is -1, we'll just leave any relevant positions in
// 'new_indexes' with -1's in them.
continue;
} else {
bool ans = GetNewSubmatLocationInfo(s2, i2, &new_i2_n0, &n_stride2);
KALDI_ASSERT(ans); // source should also be for n==0, because we don't
// (or at least shouldn't) create computations that
// mix up the 'n' values
int32 new_i1 = new_i1_n0, new_i2 = new_i2_n0;
for (int32 n = 0; n < num_n_values;
++n, new_i1 += n_stride1, new_i2 += n_stride2) {
KALDI_ASSERT(new_i1 < new_s1_size && new_i2 < new_s2_size);
new_indexes[new_i1] = new_i2;
}
}
}
}
}
void ComputationExpander::ExpandRowsMultiCommand(
const NnetComputation::Command &c_in,
NnetComputation::Command *c_out) {
// we need to expand the (submatrix,row)-index pairs in c_in.arg2, and put the
// index of the resulting vector<int> in expanded_computation_->indexes_multi,
// in 'c_out->arg2'.
int32 s1 = c_in.arg1,
num_rows_old = computation_.submatrices[s1].num_rows,
num_rows_new = expanded_computation_->submatrices[s1].num_rows;
KALDI_ASSERT(num_rows_old % 2 == 0);
int32 num_n_values = num_n_values_;
int32 old_arg2 = c_out->arg2;
c_out->arg2 = expanded_computation_->indexes_multi.size();
expanded_computation_->indexes_multi.push_back(
std::vector<std::pair<int32, int32> >());
std::vector<std::pair<int32, int32> > &new_indexes_multi =
expanded_computation_->indexes_multi.back();
const std::vector<std::pair<int32, int32> > &old_indexes_multi =
computation_.indexes_multi[old_arg2];
// old_indexes_multi is a vector that has the same size as the num-rows
// of submatrix s1. It contains pairs that are either (-1, -1), or
// pairs (submatrix-index, row-index) referring to other submatrices
// in the computation.
KALDI_ASSERT(static_cast<int32>(old_indexes_multi.size()) == num_rows_old);
new_indexes_multi.resize(num_rows_new,
std::pair<int32,int32>(-1, -1));
for (int32 i1 = 0; i1 < num_rows_old; i1++) {
int32 new_i1_n0, n_stride1;
if (GetNewSubmatLocationInfo(s1, i1, &new_i1_n0, &n_stride1)) {
// GetNewSubmatLocationInfo() returns true if this corresponds to
// a Cindex with n == 0.
int32 s2 = old_indexes_multi[i1].first,
i2 = old_indexes_multi[i1].second;
int32 new_i2_n0, n_stride2;
if (s2 < 0) { // if s2 is -1, we don't have to do anything... we'd have
// to fill any relevant positions in 'new_indexes_multi'
// with (-1,-1)'s, but it's filled with that by default.
continue;
} else {
bool ans = GetNewSubmatLocationInfo(s2, i2, &new_i2_n0, &n_stride2);
KALDI_ASSERT(ans); // source should also be for n==0, because we don't
// (or at least shouldn't) create computations that
// mix up the 'n' values
int32 new_i1 = new_i1_n0, new_i2 = new_i2_n0;
for (int32 n = 0; n < num_n_values;
n++, new_i1 += n_stride1, new_i2 += n_stride2) {
new_indexes_multi[new_i1].first = s2;
new_indexes_multi[new_i1].second = new_i2;
}
}
}
}
}
void ComputationExpander::ExpandRowRangesCommand(
const NnetComputation::Command &c_in,
NnetComputation::Command *c_out) {
// we need to expand the pairs of row-indexes in c_in.arg2, and put the index
// of the resulting vector<int> in expanded_computation_->indexes_ranges, in
// 'c_out->arg2'.
int32 s1 = c_in.arg1, s2 = c_in.arg2,
num_rows_old = computation_.submatrices[s1].num_rows,
num_rows_new = expanded_computation_->submatrices[s1].num_rows;
KALDI_ASSERT(static_cast<size_t>(c_in.arg3) <
computation_.indexes_ranges.size());
int32 num_n_values = num_n_values_;
int32 old_arg3 = c_out->arg3;
c_out->arg3 = expanded_computation_->indexes_ranges.size();
expanded_computation_->indexes_ranges.push_back(
std::vector<std::pair<int32, int32> >());
std::vector<std::pair<int32, int32> > &new_indexes_ranges =
expanded_computation_->indexes_ranges.back();
const std::vector<std::pair<int32, int32> > &old_indexes_ranges =
computation_.indexes_ranges[old_arg3];
// old_indexes_ranges is a vector that has the same size as the num-rows of
// submatrix s1. It contains pairs that are either two copies of the same
// value (in practice the pair (-1, -1)), or pairs (begin-row-index,
// end-row-index) representing the (begin,end) of a range in submatrix s2.
// Note: end-row-index is one past the end of the range, as for C++ iterators.
KALDI_ASSERT(static_cast<int32>(old_indexes_ranges.size()) == num_rows_old);
new_indexes_ranges.resize(num_rows_new,
std::pair<int32,int32>(-1, -1));
for (int32 i1 = 0; i1 < num_rows_old; i1++) {
int32 new_i1_n0, n_stride1;
if (GetNewSubmatLocationInfo(s1, i1, &new_i1_n0, &n_stride1)) {
// GetNewSubmatLocationInfo() returns true if this corresponds to
// a Cindex with n == 0.
int32 i2_begin = old_indexes_ranges[i1].first,
i2_end = old_indexes_ranges[i1].second;
if (i2_end == i2_begin)
continue; // (-1, -1) pair, meaning an empty range.
// 'new_indexes_ranges' is filled with (-1, -1) pairs as a
// default so we don't have to do anything for these
// elements.
int32 i2_last = i2_end - 1;
int32 new_i2_n0_begin, new_i2_n0_last,
n_stride2; // only 1 stride variable; both calls will output
// the same value.
bool ans1 = GetNewSubmatLocationInfo(s2, i2_begin, &new_i2_n0_begin,
&n_stride2),
ans2 = GetNewSubmatLocationInfo(s2, i2_last, &new_i2_n0_last,
&n_stride2);
KALDI_ASSERT(ans1 && ans2 && new_i2_n0_last >= new_i2_n0_begin &&
new_i2_n0_begin >= 0 && n_stride1 > 0 && n_stride2 > 0);
// source should also be for n==0, because we don't (or at least
// shouldn't) create computations that mix up the 'n' values
int32 new_i1 = new_i1_n0,
new_i2_begin = new_i2_n0_begin,
new_i2_end = new_i2_n0_last + 1;
for (int32 n = 0; n < num_n_values;
n++, new_i1 += n_stride1, new_i2_begin += n_stride2,
new_i2_end += n_stride2) {
new_indexes_ranges[new_i1].first = new_i2_begin;
new_indexes_ranges[new_i1].second = new_i2_end;
}
}
}
}
void ComputationExpander::ComputeCommands() {
int32 num_commands = computation_.commands.size();
expanded_computation_->commands.resize(num_commands);
for (int32 command_index = 0; command_index < num_commands;
command_index++) {
const NnetComputation::Command &c = computation_.commands[command_index];
NnetComputation::Command &c_out =
expanded_computation_->commands[command_index];
c_out = c;
// Commands that only operate on submatrices, components and
// precomputed-indexes do not have to be changed because we'll take care of
// the expansion by suitably redefining the matrices and submatrices, and
// recreating the precomputed-indexes.
// However, commands that require, 'indexes', 'indexes_multi' or
// 'indexes_ranges' do need to be modified.
switch (c.command_type) {
case kAllocMatrix:
case kDeallocMatrix:
case kSetConst:
case kSwapMatrix:
case kPropagate: case kBackprop:
case kBackpropNoModelUpdate: case kMatrixCopy: case kMatrixAdd:
break;
case kCopyRows: case kAddRows:
ExpandRowsCommand(c, &c_out);
break;
case kCopyRowsMulti: case kAddRowsMulti:
case kCopyToRowsMulti: case kAddToRowsMulti:
ExpandRowsMultiCommand(c, &c_out);
break;
case kAddRowRanges:
ExpandRowRangesCommand(c, &c_out);
break;
case kCompressMatrix: case kDecompressMatrix:
case kAcceptInput: case kProvideOutput: case kNoOperation:
case kNoOperationPermanent: case kNoOperationMarker:
case kNoOperationLabel: case kGotoLabel:
break;
default:
KALDI_ERR << "Un-handled command type";
}
}
}
void ComputationExpander::InitStrideInfo() {
// note: the zeroth matrix is not a real matrix, it's the empty matrix.
int32 num_matrices = computation_.matrices.size();
n_stride_.resize(num_matrices);
n_stride_[0] = 0;
// the input computation to class ComputationExpander is required to
// have its debug info set up.
KALDI_ASSERT(!computation_.matrix_debug_info.empty());
for (int32 m = 1; m < num_matrices; m++) {
int32 num_rows = computation_.matrices[m].num_rows;
const NnetComputation::MatrixDebugInfo &debug_info = computation_.matrix_debug_info[m];
KALDI_ASSERT(debug_info.cindexes.size() == num_rows);
bool full_check = true; // TODO: eventually change this to false.
int32 n_stride = FindNStride(debug_info.cindexes, full_check);
if (n_stride == 0) {
KALDI_ERR << "Problem encountered in 'shortcut' compilation: the computation "
<< "does not have the expected structure. Try compiling with "
<< "--use-shortcut=false.";
}
n_stride_[m] = n_stride;
}
}
void ComputationExpander::Expand() {
InitStrideInfo();
ComputeMatrixInfo();
if (need_debug_info_)
ComputeDebugInfo();
else
expanded_computation_->matrix_debug_info.clear();
ComputeSubmatrixInfo();
ComputePrecomputedIndexes();
ComputeCommands();
expanded_computation_->need_model_derivative =
computation_.need_model_derivative;
}
void ComputationExpander::ComputeMatrixInfo() {
int32 num_matrices = computation_.matrices.size();
expanded_computation_->matrices.resize(num_matrices);
// Matrix zero is a special case; it's the empty matrix.
expanded_computation_->matrices[0] = computation_.matrices[0];
int32 old_num_n_values = 2,
new_num_n_values = num_n_values_;
for (int32 m = 1; m < num_matrices; m++) {
expanded_computation_->matrices[m] = computation_.matrices[m];
expanded_computation_->matrices[m].num_rows =
(computation_.matrices[m].num_rows / old_num_n_values) *
new_num_n_values;
}
}
void ComputationExpander::ComputeDebugInfo() {
int32 num_matrices = computation_.matrices.size();
KALDI_ASSERT(computation_.matrix_debug_info.size() == num_matrices);
expanded_computation_->matrix_debug_info.resize(num_matrices);
// Matrix zero is a special case; it's the empty matrix.
expanded_computation_->matrix_debug_info[0] =
computation_.matrix_debug_info[0];
int32 num_n_values = num_n_values_;
for (int32 m = 1; m < num_matrices; m++) {
const NnetComputation::MatrixDebugInfo &info_in =
computation_.matrix_debug_info[m];
NnetComputation::MatrixDebugInfo &info_out =
expanded_computation_->matrix_debug_info[m];
info_out.is_deriv = info_in.is_deriv;
int32 num_rows_in = computation_.matrices[m].num_rows,
num_rows_out = expanded_computation_->matrices[m].num_rows;
KALDI_ASSERT(num_rows_in == info_in.cindexes.size());
info_out.cindexes.resize(num_rows_out);
const Cindex *cindexes_in = &(info_in.cindexes[0]);
Cindex *cindexes_out = &(info_out.cindexes[0]);
for (int32 r = 0; r < num_rows_in; r++) {
if (info_in.cindexes[r].second.n == 0) {
int32 new_r = GetNewMatrixLocationInfo(m, r),
n_stride = n_stride_[m];
for (int32 n = 0; n < num_n_values; n++) {
int32 r_out = new_r + n * n_stride;
cindexes_out[r_out] = cindexes_in[r];
cindexes_out[r_out].second.n = n;
}
}
}
}
}
void ComputationExpander::ComputeSubmatrixInfo() {
int32 num_submatrices = computation_.submatrices.size();
expanded_computation_->submatrices.resize(num_submatrices);
// Sub-matrix zero is a special case; it's the empty submatrix.
expanded_computation_->submatrices[0] = computation_.submatrices[0];
for (int32 s = 1; s < num_submatrices; s++) {
const NnetComputation::SubMatrixInfo &info_in = computation_.submatrices[s];
int32 m = info_in.matrix_index;
const NnetComputation::MatrixDebugInfo &debug_info_in =
computation_.matrix_debug_info[m];
// we may need to change the row_offset and num_rows.
int32 first_row_in = info_in.row_offset,
last_row_in = first_row_in + info_in.num_rows - 1;
if (!(debug_info_in.cindexes[first_row_in].second.n == 0 &&
debug_info_in.cindexes[last_row_in].second.n == 1)) {
std::ostringstream computation_ss;
std::vector<std::string> submat_strings;
computation_.GetSubmatrixStrings(nnet_, &submat_strings);
computation_.Print(computation_ss, nnet_);
KALDI_ERR << "Submatrix s" << s << " = " << submat_strings[s]
<< " has strange dimensions. Computation is: "
<< computation_ss.str();
}
int32 first_row_out = GetNewMatrixLocationInfo(m, first_row_in),
last_row_out = GetNewMatrixLocationInfo(m, last_row_in),
new_num_rows = (last_row_out + 1 - first_row_out);
NnetComputation::SubMatrixInfo &info_out =
expanded_computation_->submatrices[s];
info_out.matrix_index = m;
info_out.row_offset = first_row_out;
info_out.num_rows = new_num_rows;
info_out.col_offset = info_in.col_offset;
info_out.num_cols = info_in.num_cols;
}
}
void ComputationExpander::ComputePrecomputedIndexes() {
// for each element of 'component_precomputed_indexes',
// we will try to work out the command-index of the associated
// Propagate() command and of the associated Backprop() command,
// if it exists.
// We expect that each such element will be associated with
// exactly one Propagate() command and at most one Backprop() command.
int32 num_commands = computation_.commands.size(),
num_precomputed_indexes = computation_.component_precomputed_indexes.size();
std::vector<bool> need_backprop(num_precomputed_indexes, false);
std::vector<int32> component_index(num_precomputed_indexes, -1);
for (int32 command_index = 0; command_index < num_commands; command_index++) {
const NnetComputation::Command &c = computation_.commands[command_index];
if (c.command_type == kPropagate && c.arg2 > 0) {
KALDI_ASSERT(c.arg2 < num_precomputed_indexes);
component_index[c.arg2] = c.arg1;
}
if ((c.command_type == kBackprop ||
c.command_type == kBackpropNoModelUpdate) && c.arg2 > 0) {
KALDI_ASSERT(c.arg2 < num_precomputed_indexes);
need_backprop[c.arg2] = true;
}
}
for (size_t p = 1;
p < expanded_computation_->component_precomputed_indexes.size();
++p)
delete expanded_computation_->component_precomputed_indexes[p].data;
expanded_computation_->component_precomputed_indexes.clear();
expanded_computation_->component_precomputed_indexes.resize(
num_precomputed_indexes);
for (int32 p = 1; p < num_precomputed_indexes; ++p) {
const NnetComputation::PrecomputedIndexesInfo &old_info =
computation_.component_precomputed_indexes[p];
NnetComputation::PrecomputedIndexesInfo &new_info =
expanded_computation_->component_precomputed_indexes[p];
KALDI_ASSERT(!old_info.input_indexes.empty() &&
!old_info.output_indexes.empty() &&
"Input/output indexes not present in precomputed info of "
"computation to be expanded.");
// note: we could place these expanded indexes into 'new_info.input_indexes'
// and 'new_info.output_indexes', but we actually don't need to keep them
// there, because they are only required to be kept in computations where
// the n indexes consist of the set (0, 1), and the computation we're
// creating has more distinct n indexes than that.
std::vector<Index> input_indexes, output_indexes;
ExpandIndexes(old_info.input_indexes, &input_indexes);
ExpandIndexes(old_info.output_indexes, &output_indexes);
KALDI_ASSERT(component_index[p] >= 0);
const Component *component = nnet_.GetComponent(component_index[p]);
ComponentPrecomputedIndexes *expanded_precomputed_indexes =
component->PrecomputeIndexes(misc_info_, input_indexes,
output_indexes, need_backprop[p]);
// this object should not be null because it was not NULL the
// last time we generated it from the same component, for the
// same computation.
KALDI_ASSERT(expanded_precomputed_indexes != NULL);
new_info.data = expanded_precomputed_indexes;
}
}
bool ComputationExpander::GetNewSubmatLocationInfo(
int32 submat_index, int32 old_row_index,
int32 *new_row_index, int32 *n_stride) const {
int32 matrix_index = computation_.submatrices[submat_index].matrix_index,
old_row_offset = computation_.submatrices[submat_index].row_offset,
new_row_offset = expanded_computation_->submatrices[submat_index].row_offset;
const NnetComputation::MatrixDebugInfo &debug_info_in =
computation_.matrix_debug_info[matrix_index];
if (debug_info_in.cindexes[old_row_index + old_row_offset].second.n != 0)
return false;
*new_row_index = (GetNewMatrixLocationInfo(matrix_index,
old_row_index + old_row_offset) -
new_row_offset);
*n_stride = n_stride_[matrix_index];
return true;
}
int32 ComputationExpander::GetNewMatrixLocationInfo(
int32 matrix_index, int32 old_row_index) const {
// to understand 'block_size', read the comment for FindNStride().
int32 n_stride = n_stride_[matrix_index],
old_num_n_values = 2, new_num_n_values = num_n_values_,
old_block_size = old_num_n_values * n_stride,
new_block_size = new_num_n_values * n_stride,
block_index = old_row_index / old_block_size,
offset_within_block = old_row_index % old_block_size;
// within each block, we can show, given our assumptions, that
// we must first have a sub-block of 'n_stride' values all with
// n == 0, then another sub-clock of 'n_stride' values all with
// n == 1, and so on. [except there is no 'and so on' for the
// input computation, where we expect the 'n' values to be the
// set {0, 1}.]
int32 old_n_value = offset_within_block / n_stride,
index_within_subblock = offset_within_block % n_stride;
const std::vector<Cindex> &cindexes =
computation_.matrix_debug_info[matrix_index].cindexes;
KALDI_ASSERT(old_n_value == cindexes[old_row_index].second.n &&
(old_n_value == 0 || old_n_value == 1));
// Search for CAVEAT in the comment for this function to see what this is
// about. Mapping old_n_value == 1 -> new_n_value == new_num_n_values - 1
// just happens to be useful for the way we use this function... it maps the
// end of an old submatrix to the end of a new submatrix.
int32 new_n_value = (old_n_value == 0 ? 0 : new_num_n_values - 1);
return block_index * new_block_size + index_within_subblock +
new_n_value * n_stride;
}
void ComputationExpander::ExpandIndexes(
const std::vector<Index> &indexes,
std::vector<Index> *indexes_expanded) const {
bool full_check = false;
int32 n_stride = FindNStride(indexes, full_check);
KALDI_ASSERT(n_stride > 0);
ConvertNumNValues(n_stride, 2, num_n_values_,
indexes, indexes_expanded);
}
void ExpandComputation(const Nnet &nnet,
const MiscComputationInfo &misc_info,
const NnetComputation &computation,
bool need_debug_info,
int32 num_n_values,
NnetComputation *expanded_computation) {
ComputationExpander expander(nnet, misc_info, computation,
need_debug_info, num_n_values,
expanded_computation);
expander.Expand();
}
// This helper function is used in RequestIsDecomposable(); you can work out
// what it does, and why, from the documentation of RequestIsDecomposable() in
// the header. This function does basically the same thing, except
// at a lower level, for an IoSpecification rather than a ComputationRequest.
static bool IoSpecificationIsDecomposable(const IoSpecification &io_spec,
IoSpecification *mini_io_spec,
int32 *num_n_values_out) {
mini_io_spec->name = io_spec.name;
mini_io_spec->has_deriv = io_spec.has_deriv;
const std::vector<Index> &indexes = io_spec.indexes;
KALDI_ASSERT(!indexes.empty() && "Empty Indexes in computation request");
bool full_check = true; // We might eventually change this to false, for
// efficiency.
int32 num_n_values = indexes.back().n + 1;
if (num_n_values <= 2) {
// Computations with 2 or fewer 'n' values are not decomposable, as there
// would be no speed benefit in shortcut compilation (which relies on
// compiling an otherwise similar computation with n == 2).
return false;
}
*num_n_values_out = num_n_values;
int32 n_stride = FindNStride(indexes, full_check);
if (n_stride == 0)
return false;
ConvertNumNValues(n_stride, num_n_values, 2,
indexes, &(mini_io_spec->indexes));
return true;
}
bool RequestIsDecomposable(const ComputationRequest &request,
ComputationRequest *mini_request,
int32 *num_n_values) {
size_t num_inputs = request.inputs.size(),
num_outputs = request.outputs.size();
mini_request->inputs.resize(num_inputs);
mini_request->outputs.resize(num_outputs);
mini_request->need_model_derivative = request.need_model_derivative;
mini_request->store_component_stats = request.store_component_stats;
mini_request->misc_info = request.misc_info;
KALDI_ASSERT(num_inputs != 0 && num_outputs != 0);
for (size_t i = 0; i < num_inputs; i++) {
int32 this_num_n_values = 0;
if (!IoSpecificationIsDecomposable(request.inputs[i],
&(mini_request->inputs[i]),
&this_num_n_values))
return false;
if (i == 0) {
*num_n_values = this_num_n_values;
} else {
if (this_num_n_values != *num_n_values)
return false; // .. which would be odd.
}
}
for (size_t i = 0; i < num_outputs; i++) {
int32 this_num_n_values = 0;
if (!IoSpecificationIsDecomposable(request.outputs[i],
&(mini_request->outputs[i]),
&this_num_n_values))
return false;
if (this_num_n_values != *num_n_values)
return false; // .. which would be odd.
}
return true;
}
class ComputationLoopedOptimizer {
public:
ComputationLoopedOptimizer(const Nnet &nnet,
NnetComputation *computation):
nnet_(nnet), computation_(computation) { }
bool Optimize();
private:
// Figures out the time shift between the successive computation requests.
static int32 FindTimeShift(const NnetComputation &computation);
// This function creates a mapping from a matrix-index > 0,
// to a pair (unique_id, time_offset) that represents the debug-info
// for that matrix-id in computation.debug_info (these terms are explained
// below).
//
// The output vector 'matrix_to_pair' is indexed by the matrix-index in the
// computation (the zeroth member is not valid).
//
// The 'time_offset' is equal to the 't' value of the first member of the
// cindexes vector for with t != kNoTime. The 'unique_id' is an integer that
// uniquely identifies what we get from subtracting the 'time_offset' from
// each 't' value of that 'cindexes' vector for which t != kNoTime, and then
// pairing it up with the 'is_deriv' value of the DebugInfo. That is, if two
// 'cindexes' vectors differ only by a time offset, and the 'is_deriv' values
// are the same they will map to the same unique_id.
static void CreateMatrixPairs(const NnetComputation &computation,
std::vector<std::pair<int32, int32> > *matrix_to_pair);
// This helper function, used in CreateMatrixPairs, find the value 't' which
// is the first (*cindexes)[i].second.t that is not kNoTime; it then subtracts
// that 't' value from all (*cindexes)[i].second.t that are not kNoTime. If
// all the 't' values are kNoTime, which we don't expect to happen, we throw
// an error.
static inline int32 NormalizeCindexes(std::vector<Cindex> *cindexes);
// This very simple helper function reverses the map 'matrix_to_pair' so we can
// do the reverse lookup. It outputs a map from pair to matrix index m, where
// 1 <= m < matrix_to_pair.size().
static void GetPairToMatrixMap(
std::vector<std::pair<int32, int32> > &matrix_to_pair,
unordered_map<std::pair<int32, int32>, int32, PairHasher<int32> > *pair_to_matrix);
// Given a vector of lists, one list for each segment, of the active matrices
// at the end of that segment, this function converts those lists into a
// different representation where each matrix is represented as a pair instead
// of as a single int32. 'active_pairs' will have the same dimensions as
// 'active_matrices'.
static void ConvertListsToPairLists(
const std::vector<std::vector<int32> > &active_matrices,
const std::vector<std::pair<int32, int32> > &matrix_to_pair,
std::vector<std::vector<std::pair<int32, int32> > > *active_pairs);
// This function, used in FindFirstRepeat, tells us whether the two lists a
// and b are the same except for a possible time-shift.
// Each element of a or b is of the form (matrix-unique-index, time-offset).
// Let's suppose we have two pairs p1=(m1, o1) and p2=(m2, o2).
// For p2 to be equal to p1 except for a possible shift of value 'shift', we
// require m2 == m1 and either o2 == o1 + 'shift' or o2 == o1.
// This function returns true if a.size() == b.size() and for each
// i, b[i].first == a[i].first and b[i].second is either
// a[i].second or a[i].second + shift.
static bool ListsAreEqualExceptForPossibleShift(
const std::vector<std::pair<int32, int32> > &a,
const std::vector<std::pair<int32, int32> > &b,
int32 shift);
// This function looks in the matrix 'active_pairs' for the first pair of
// identical values, i.e. it is looking for i < j for which
// normalized_active_pairs[i] == normalized_active_pairs[j]. (However, the
// pair i,j must satisfy an extra condition, see below). If a pair
// i,j exists satisfying these conditions, this function outputs them to *seg1
// and *seg2, and returns true; otherwise it returns false.
//
// Extra condition:
// It turns out that under some circumstances, we can
// fine repeats that were not "really" repeats (the matrices were not time
// shifted) The situation was a bit obscure (it was a non-recurrent setup with
// a lot of extra-right-context, where some inputs were never used), but to
// prevent it happening again we are now checking in addition to the above,
// that the time-shift between the segments (i.e. time_offsets[j] -
// time_offsets[i]), has the "expected value" based on the assumption that
// each segment should be shifted relative to the previous segment, by
// 'time_shift_per_segment'.
static bool FindFirstRepeat(
const std::vector<std::vector<std::pair<int32, int32> > > &active_pairs,
int32 time_shift_per_segment,
int32 *seg1, int32 *seg2);
// 'pair_list1' is the list of active (unique-id, time-offset) pairs for one
// segment of the computation and 'pair_list2' is the same list for a later
// segment. The map 'pair_to_matrix' can convert these back into matrix
// indexes. This function will output two lists of matrices. These will just
// be 'pair_list1' and 'pair_list2' converted back into matrix indexes,
// except we omit pairs which are identical (i.e. the time-offset was zero).
static void GetIdentifiedMatrices(
const std::vector<std::pair<int32, int32> > &pair_list1,
const std::vector<std::pair<int32, int32> > &pair_list2,
const unordered_map<std::pair<int32, int32>, int32, PairHasher<int32> > &pair_to_matrix,
std::vector<int32> *matrix_list1,
std::vector<int32> *matrix_list2);
// This function just does some checking (via asserts), that
// the lists of matrices 'list1' and 'list2' are of the same length,
// that time_difference > 0, that each matrix with index m = list2[i] is of the
// same dimension as the list1[i], with Cindexes that are the same except for
// the time index being greater by 'time_difference'
static void CheckIdentifiedMatrices(
const NnetComputation &computation,
const std::vector<int32> &list1,
const std::vector<int32> &list2,
int32 time_difference);
// Given two command indexes command1 < command2 pointing to commands of type
// kNoOperationMarker, this function modifies the computation by
// removing all commands after command2, replacing command2 with a kGotoLabel
// command pointing to command1 and then inserting just before command1
// a marker of type kNoOperationLabel.
static void FormInfiniteLoop(int32 command1, int32 command2,
NnetComputation *computation);
// This is to be called after FormInfiniteLoop. It inserts, just before
// the final kGotoLabel command, commands that initialize
// each of the matrices in list 'matrices1' from the corresponding
// matrix in 'matrices2', using the kAllocMatrixFromOther command.
// This effectively does, for example, matrices1[i] = matrices2[i],
// and it's implemented as a shallow swap.
// It does this in such an order that even if the two lists are
// not disjoint, the right thing happens.
static void AddMatrixSwapCommands(
const std::vector<int32> &matrices1,
const std::vector<int32> &matrices2,
NnetComputation *computation);
// Called from AddMatrixSwapCommands, this function figures out for us
// an acceptable order in which to execute the kAllocMatrixFromOther
// commands. This is easy to do if matrices1 and matrices2 are disjoint
// sets, but has to be done more carefully if they overlap.
// The output is a list of pairs where each pair (a, b) comes from
// from matrices1 and matrices2 in the same position, i.e.
// a = matrices1[i] and b = matrices2[i].
static void GetMatrixSwapOrder(
const std::vector<int32> &matrices1,
const std::vector<int32> &matrices2,
std::vector<std::pair<int32, int32> > *swaps);
/// Given a list of command indexes ('splice_point_commands') which are
/// expected to be command indexes of the kNoOperationMarker at segment
/// boundaries, this function outputs for each of these command indexes a list
/// of matrices which are 'active' at that point in time. By 'active' we mean
/// that the matrix has been written to before that time (including zeroing),
/// and will be read after that time. These is the list of matrices that
/// 'need to be in scope' at those points in time. '*active_matrices' is
/// indexed by the same index as 'splice_point_commands', and is then a list
/// of active matrices, in numerical order of matrix index. Note: for each i,
/// (*active_matrices)[i] will be sorted and unique.
static void FindActiveMatrices(const NnetComputation &computation,
const Analyzer &analyzer,
const std::vector<int32> &splice_point_commands,
std::vector<std::vector<int32> > *active_matrices);
const Nnet &nnet_;
NnetComputation *computation_;
Analyzer analyzer_;
std::vector<std::pair<int32, int32> > matrix_to_pair_;
std::vector<int32> splice_point_commands_;
};
// static
int32 ComputationLoopedOptimizer::FindTimeShift(
const NnetComputation &computation) {
std::vector<int32> segment_ends;
GetCommandsOfType(computation, kNoOperationMarker, &segment_ends);
KALDI_ASSERT(segment_ends.size() >= 3);
// Ignore the first segment as it tends to be a special case
// (it has more left context),
int32 second_segment_begin = segment_ends[0],
third_segment_begin = segment_ends[1],
fourth_segment_begin = segment_ends[2];
int32 first_output_command_seg2 = -1,
first_output_command_seg3 = -1;
for (int32 c = second_segment_begin; c < third_segment_begin; c++)
if (computation.commands[c].command_type == kProvideOutput &&
first_output_command_seg2 < 0)
first_output_command_seg2 = c;
for (int32 c = third_segment_begin; c < fourth_segment_begin; c++)
if (computation.commands[c].command_type == kProvideOutput &&
first_output_command_seg3 < 0)
first_output_command_seg3 = c;
if (first_output_command_seg2 < 0 ||
first_output_command_seg3 < 0)
KALDI_ERR << "Could not locate output commands for segments 2 and 3.";
const NnetComputation::Command
&command2 = computation.commands[first_output_command_seg2],
&command3 = computation.commands[first_output_command_seg3];
int32 seg2_node = command2.arg2, seg3_node = command3.arg2;
KALDI_ASSERT(seg2_node == seg3_node);
int32 seg2_submatrix = command2.arg1,
seg3_submatrix = command3.arg1;
KALDI_ASSERT(computation.IsWholeMatrix(seg2_submatrix) &&
computation.IsWholeMatrix(seg3_submatrix));
int32 seg2_matrix = computation.submatrices[seg2_submatrix].matrix_index,
seg3_matrix = computation.submatrices[seg3_submatrix].matrix_index;
KALDI_ASSERT(computation.matrices[seg2_matrix].num_rows ==
computation.matrices[seg3_matrix].num_rows);
KALDI_ASSERT(!computation.matrix_debug_info.empty());
const NnetComputation::MatrixDebugInfo
&debug_info2 = computation.matrix_debug_info[seg2_matrix],
&debug_info3 = computation.matrix_debug_info[seg3_matrix];
int32 t_offset = debug_info3.cindexes[0].second.t -
debug_info2.cindexes[0].second.t;
int32 num_rows = debug_info2.cindexes.size();
for (int32 r = 0; r < num_rows; r++) {
KALDI_ASSERT(debug_info3.cindexes[r].second.t ==
debug_info2.cindexes[r].second.t + t_offset);
}
return t_offset;
}
// static inline
int32 ComputationLoopedOptimizer::NormalizeCindexes(
std::vector<Cindex> *cindexes) {
std::vector<Cindex>::iterator iter = cindexes->begin(),
end = cindexes->end();
int32 ans;
for (; iter != end; iter++) {
if (iter->second.t != kNoTime) {
ans = iter->second.t;
break;
}
}
if (iter == end) {
// this should not happen.
KALDI_ERR << "All t values are kNoTime in matrix.";
}
iter = cindexes->begin();
for (; iter != end; iter++)
if (iter->second.t != kNoTime)
iter->second.t -= ans;
return ans;
}
// static
void ComputationLoopedOptimizer::CreateMatrixPairs(
const NnetComputation &computation,
std::vector<std::pair<int32, int32> > *matrix_to_pair) {
typedef unordered_map<std::vector<Cindex>, int32,
CindexVectorHasher> MapType;
int32 cur_vector_id = 1;
// Note: cindex_map just maps the vector<Cindex> to a unique value,
// and then we manually work out a unique id that takes into
// account the 'is_deriv' values.
MapType cindex_map;
int32 num_matrices = computation.matrices.size();
matrix_to_pair->resize(num_matrices);
KALDI_ASSERT(computation.matrix_debug_info.size() == num_matrices);
for (int32 m = 1; m < num_matrices; m++) {
KALDI_ASSERT(!computation.matrix_debug_info[m].cindexes.empty());
std::vector<Cindex> cindexes = computation.matrix_debug_info[m].cindexes;
int32 t_offset = NormalizeCindexes(&cindexes);
MapType::const_iterator iter = cindex_map.find(cindexes);
int32 vector_id;
if (iter != cindex_map.end()) {
vector_id = iter->second;
} else {
vector_id = cur_vector_id++;
cindex_map[cindexes] = vector_id;
}
bool is_deriv = computation.matrix_debug_info[m].is_deriv;
int32 unique_id = 2 * vector_id + (is_deriv ? 1 : 0);
(*matrix_to_pair)[m].first = unique_id;
(*matrix_to_pair)[m].second = t_offset;
}
}
// static
void ComputationLoopedOptimizer::GetPairToMatrixMap(
std::vector<std::pair<int32, int32> > &matrix_to_pair,
unordered_map<std::pair<int32, int32>, int32, PairHasher<int32> > *pair_to_matrix) {
int32 num_matrices = matrix_to_pair.size();
// actually there are one fewer matrices than num_matrices.
pair_to_matrix->clear();
for (int32 m = 1; m < num_matrices; m++)
(*pair_to_matrix)[matrix_to_pair[m]] = m;
}
// static
void ComputationLoopedOptimizer::ConvertListsToPairLists(
const std::vector<std::vector<int32> > &active_matrices,
const std::vector<std::pair<int32, int32> > &matrix_to_pair,
std::vector<std::vector<std::pair<int32, int32> > > *active_pairs) {
active_pairs->clear();
active_pairs->resize(active_matrices.size());
int32 num_matrices = matrix_to_pair.size();
for (size_t seg = 0; seg < active_matrices.size(); seg++) {
const std::vector<int32> &this_active_matrix_list = active_matrices[seg];
std::vector<std::pair<int32, int32> > &this_active_pair_list =
(*active_pairs)[seg];
this_active_pair_list.resize(this_active_matrix_list.size());
std::vector<int32>::const_iterator iter = this_active_matrix_list.begin(),
end = this_active_matrix_list.end();
std::vector<std::pair<int32, int32> >::iterator
out_iter = this_active_pair_list.begin();
for (; iter != end; ++iter, ++out_iter) {
KALDI_ASSERT(*iter > 0 && *iter < num_matrices);
*out_iter = matrix_to_pair[*iter];
}
}
}
// static
bool ComputationLoopedOptimizer::ListsAreEqualExceptForPossibleShift(
const std::vector<std::pair<int32, int32> > &a,
const std::vector<std::pair<int32, int32> > &b,
int32 shift) {
size_t size = a.size();
if (b.size() != size)
return false;
for (size_t i = 0; i < size; i++) {
const std::pair<int32, int32> &p1 = a[i],
&p2 = b[i];
if (p1.first != p2.first)
return false;
if (p2.second != p1.second + shift && p2.second != p1.second)
return false;
}
return true;
}
// static
bool ComputationLoopedOptimizer::FindFirstRepeat(
const std::vector<std::vector<std::pair<int32, int32> > > &active_pairs,
int32 time_shift_per_segment,
int32 *seg1, int32 *seg2) {
int32 num_segments = active_pairs.size();
// This algorithm may seem like it would be very slow, but the number of
// segments will normally be quite small (e.g. 10), and the comparison of
// elements of 'active_pairs' should be fast in cases where they
// differ.
KALDI_ASSERT(num_segments >= 2);
for (int32 s = 0; s < num_segments; s++) {
for (int32 t = s + 1; t < num_segments; t++) {
if (ListsAreEqualExceptForPossibleShift(active_pairs[s],
active_pairs[t],
(t - s) * time_shift_per_segment)) {
*seg1 = s;
*seg2 = t;
return true;
}
}
}
return false;
}
// static
void ComputationLoopedOptimizer::GetIdentifiedMatrices(
const std::vector<std::pair<int32, int32> > &pair_list1,
const std::vector<std::pair<int32, int32> > &pair_list2,
const unordered_map<std::pair<int32, int32>, int32, PairHasher<int32> > &pair_to_matrix,
std::vector<int32> *matrix_list1,
std::vector<int32> *matrix_list2) {
size_t size = pair_list1.size();
KALDI_ASSERT(pair_list2.size() == size);
matrix_list1->clear();
matrix_list2->clear();
matrix_list1->reserve(size);
matrix_list2->reserve(size);
std::vector<std::pair<int32, int32> >::const_iterator
iter1 = pair_list1.begin(), end1 = pair_list1.end(),
iter2 = pair_list2.begin();
for (; iter1 != end1; ++iter1, ++iter2) {
if (iter1->second == iter2->second)
continue;
// skip those that have no time shift, we won't have to do any swapping for
// those.
unordered_map<std::pair<int32, int32>, int32,
PairHasher<int32> >::const_iterator
map_iter1 = pair_to_matrix.find(*iter1),
map_iter2 = pair_to_matrix.find(*iter2);
if (map_iter1 == pair_to_matrix.end() ||
map_iter2 == pair_to_matrix.end())
KALDI_ERR << "Could not find pair in map (code error)";
matrix_list1->push_back(map_iter1->second);
matrix_list2->push_back(map_iter2->second);
}
}
// static
void ComputationLoopedOptimizer::FindActiveMatrices(
const NnetComputation &computation,
const Analyzer &analyzer,
const std::vector<int32> &splice_point_commands,
std::vector<std::vector<int32> > *active_matrices) {
int32 num_matrices = computation.matrices.size();
int32 num_splice_points = splice_point_commands.size();
active_matrices->clear();
active_matrices->resize(num_splice_points);
// this object just makes available some extra functions, vs. the Analyzer
// object.
ComputationAnalysis analysis(computation, analyzer);
KALDI_ASSERT(IsSortedAndUniq(splice_point_commands));
// the following vector gives us, for each matrix index, a submatrix index
// that covers the whole of that matrix (needed by interface of 'analysis' object).
std::vector<int32> whole_submatrices;
computation.GetWholeSubmatrices(&whole_submatrices);
for (int32 m = 1; m < num_matrices; m++) {
// the following are command indexes, comparable with the indexes
// in 'splice_point_commands'.
int32 s = whole_submatrices[m], // submatrix consisting of the whole of
// 'm'.
first_access = analysis.FirstNontrivialAccess(s),
last_access = analysis.LastAccess(s);
for (int32 i = 0; i < num_splice_points; i++) {
int32 splice_point = splice_point_commands[i];
if (first_access < splice_point && last_access > splice_point) {
// If the block of time during which the matrix is accessed, includes
// this command index, then the matrix is considered 'active' at this
// time.
(*active_matrices)[i].push_back(m);
}
}
}
}
// static
void ComputationLoopedOptimizer::CheckIdentifiedMatrices(
const NnetComputation &computation,
const std::vector<int32> &list1,
const std::vector<int32> &list2,
int32 time_difference) {
KALDI_ASSERT(time_difference > 0);
KALDI_ASSERT(list1.size() == list2.size());
KALDI_ASSERT(!computation.matrix_debug_info.empty());
for (size_t i = 0; i < list1.size(); i++) {
int32 m1 = list1[i], m2 = list2[i];
const NnetComputation::MatrixInfo
&matrix_info1 = computation.matrices[m1],
&matrix_info2 = computation.matrices[m2];
KALDI_ASSERT(matrix_info1.num_rows == matrix_info2.num_rows &&
matrix_info1.num_cols == matrix_info2.num_cols &&
matrix_info1.stride_type == matrix_info2.stride_type);
const NnetComputation::MatrixDebugInfo
&debug_info1 = computation.matrix_debug_info[m1],
&debug_info2 = computation.matrix_debug_info[m2];
KALDI_ASSERT(debug_info1.is_deriv == debug_info2.is_deriv);
KALDI_ASSERT(debug_info1.cindexes.size() == debug_info2.cindexes.size());
std::vector<Cindex>::const_iterator iter1 = debug_info1.cindexes.begin(),
end1 = debug_info1.cindexes.end(),
iter2 = debug_info2.cindexes.begin();
for (; iter1 != end1; iter1++,iter2++) {
KALDI_ASSERT(iter2->first == iter1->first &&
iter2->second.n == iter1->second.n &&
((iter1->second.t == kNoTime && iter2->second.t == kNoTime) ||
iter2->second.t == iter1->second.t + time_difference) &&
iter2->second.x == iter1->second.x);
}
}
}
// static
void ComputationLoopedOptimizer::GetMatrixSwapOrder(
const std::vector<int32> &matrices1,
const std::vector<int32> &matrices2,
std::vector<std::pair<int32, int32> > *swaps) {
KALDI_ASSERT(matrices1.size() == matrices2.size());
swaps->clear();
int32 num_matrices = matrices1.size();
std::vector<bool> processed(num_matrices, false);
std::vector<int32> queue;
// num_loops is just for infinite-loop detection.
int32 num_loops = 0;
for (; static_cast<int32>(swaps->size()) < num_matrices; num_loops++) {
for (int32 i = 0; i < num_matrices; i++) {
if (processed[i])
continue;
int32 m1 = matrices1[i], m2 = matrices2[i];
std::vector<int32>::const_iterator iter =
std::lower_bound(matrices2.begin(), matrices2.end(), m1);
if (iter == matrices2.end() || *iter != m1) {
// Matrix m1 does not appear in the list 'matrices2', so
// we are safe to process it at any time.
swaps->push_back(std::pair<int32,int32>(m1, m2));
processed[i] = true;
} else {
int32 m1_pos_in_matrices2 = iter - matrices2.begin();
if (processed[m1_pos_in_matrices2]) {
// We're safe to do this swap now, because the matrix m1 has already
// appeared on the RHS of a swap, and by this point has been
// deallocated, in effect.
swaps->push_back(std::pair<int32,int32>(m1, m2));
processed[i] = true;
}
// else do nothing, we cannot process m1 yet because
// at this point in the computation it is still allocated.
}
}
// The following assert is to check that we don't loop infinitely. We can
// prove that infinite looping won't happen, after on proving that there can
// be no cycles like (m1, m2), (m2, m3), (m3, m1) (the length of 3 is chosen
// arbitrarily as an example). If such a cycle existed, we can reach a
// contradiction based on the time-index (t) of the first cindex in m1.
// Define t1 = that time index, t2 the same for m2, t3 the same for m3. The
// existence of the three pairs [as pairs like (matrices1[i], matrices2[i])]
// implies that t2 > t1, t3 > t2, and t1 > t3 respectively, but this is
// impossible.
// This shows that all chains of dependencies must terminate.
KALDI_ASSERT(num_loops <= num_matrices);
}
}
// static
void ComputationLoopedOptimizer::AddMatrixSwapCommands(
const std::vector<int32> &matrices1,
const std::vector<int32> &matrices2,
NnetComputation *computation) {
std::vector<std::pair<int32, int32> > swaps;
// Note: in 'easy' cases where matrices1 and matrices2 are disjoint,
// 'swaps' will just be the vector { (matrices1[0],matrices2[0]),
// (matrices1[1],matrices2[1]), ... },
// but in some cases these may need to get reordered.
GetMatrixSwapOrder(matrices1, matrices2, &swaps);
NnetComputation::Command goto_label_command = computation->commands.back();
KALDI_ASSERT(goto_label_command.command_type == kGotoLabel);
computation->commands.pop_back();
// the following vector gives us, for each matrix index, a submatrix index
// that covers the whole of that matrix (needed because the commands
// require submatrix indexes)
std::vector<int32> whole_submatrices;
computation->GetWholeSubmatrices(&whole_submatrices);
size_t num_matrices = whole_submatrices.size();
for (size_t i = 0; i < swaps.size(); i++) {
int32 m1 = swaps[i].first, m2 = swaps[i].second;
KALDI_ASSERT(static_cast<size_t>(m1) < num_matrices &&
static_cast<size_t>(m2) < num_matrices);
int32 s1 = whole_submatrices[m1], s2 = whole_submatrices[m2];
computation->commands.push_back(
NnetComputation::Command(kSwapMatrix, s1, s2));
}
computation->commands.push_back(goto_label_command);
}
// static
void ComputationLoopedOptimizer::FormInfiniteLoop(
int32 command1, int32 command2,
NnetComputation *computation) {
KALDI_ASSERT(static_cast<int32>(computation->commands.size()) >=
command2 + 1 && command1 < command2);
KALDI_ASSERT(
computation->commands[command1].command_type == kNoOperationPermanent &&
computation->commands[command2].command_type == kNoOperationPermanent);
// Remove any commands after 'command2'.
computation->commands.resize(command2 + 1);
computation->commands[command2].command_type = kGotoLabel;
computation->commands[command2].arg1 = command1;
NnetComputation::Command c(kNoOperationLabel);
computation->commands.insert(computation->commands.begin() + command1,
c);
// Now the kNoOperationLabel command is at position 'command1'.
}
bool ComputationLoopedOptimizer::Optimize() {
analyzer_.Init(nnet_, *computation_);
KALDI_ASSERT(!computation_->matrix_debug_info.empty() &&
"You must request matrix debug info when compiling "
"looped computations.");
// get the indexes of potential splice points, one per segment of the
// computation. We locate the splice points where kNoOperationPermanent is.
// This is guaranteed to be after the inputs have been received, and before
// the bulk of the computation in the segment, and of course before we provide
// the output. It happens that by choosing this as the splice point we avoid
// certain problems that would arise, for instance, if we chose the segment
// boundaries (kNoOperationMarker).
std::vector<int32> splice_points;
GetCommandsOfType(*computation_, kNoOperationPermanent,
&splice_points);
int32 time_shift_per_segment = FindTimeShift(*computation_);
std::vector<std::vector<int32> > active_matrices;
// Find the list of matrices active at each of the potential splice points.
FindActiveMatrices(*computation_, analyzer_, splice_points,
&active_matrices);
// Find a representation of the matrices of the computation as pairs
// (unique_id, time_offset) that are more amenable to finding
// matrices that represet lists of Cindexes that differ only by
// a time offset.
std::vector<std::pair<int32, int32> > matrix_to_pair;
CreateMatrixPairs(*computation_, &matrix_to_pair);
// Create the reverse map from pair to matrix index; we'll need it later.
unordered_map<std::pair<int32, int32>, int32, PairHasher<int32> > pair_to_matrix;
GetPairToMatrixMap(matrix_to_pair, &pair_to_matrix);
// get lists of matrix per splice-point in the pair representation.
std::vector<std::vector<std::pair<int32, int32> > > pair_lists;
ConvertListsToPairLists(active_matrices, matrix_to_pair,
&pair_lists);
// Note: seg1 and seg2 are indexes into 'splice_points', representing
// potential splice points (located near the beginnings of segments).
int32 seg1, seg2;
if (!FindFirstRepeat(pair_lists,
time_shift_per_segment,
&seg1, &seg2)) {
KALDI_VLOG(2) << "Could not find repeats of variables.";
return false;
}
std::vector<int32> seg1_matrices, seg2_matrices;
GetIdentifiedMatrices(pair_lists[seg1], pair_lists[seg2],
pair_to_matrix,
&seg1_matrices, &seg2_matrices);
int32 time_difference = time_shift_per_segment * (seg2 - seg1);
CheckIdentifiedMatrices(*computation_, seg1_matrices, seg2_matrices,
time_difference);
FormInfiniteLoop(splice_points[seg1], splice_points[seg2], computation_);
AddMatrixSwapCommands(seg1_matrices, seg2_matrices, computation_);
RenumberComputation(computation_);
FixGotoLabel(computation_);
return true;
}
void OptimizeLoopedComputation(const Nnet &nnet,
NnetComputation *computation) {
ComputationLoopedOptimizer optimizer(nnet, computation);
optimizer.Optimize();
}
void FixGotoLabel(NnetComputation *computation) {
int32 num_commands = computation->commands.size();
if (num_commands == 0)
return;
for (int32 c = num_commands - 1; c >= 0; c--) {
if (computation->commands[c].command_type == kGotoLabel) {
int32 dest_command = computation->commands[c].arg1;
if (static_cast<size_t>(dest_command) < computation->commands.size() &&
computation->commands[dest_command].command_type == kNoOperationLabel)
return; // nothing to fix.
for (int32 d = 0; d + 1 < num_commands; d++) {
if (computation->commands[d].command_type == kNoOperationLabel) {
computation->commands[c].arg1 = d;
return;
}
}
KALDI_ERR << "Label not found.";
} else if (computation->commands[c].command_type == kProvideOutput) {
// sometimes kProvideOutput commands are temporarily ordered after
// the kGotoLabel command, and we need to work in that case.
continue;
} else {
// it loks like there is no 'goto' command in this computation-
// if there were, it would be right at the end, possibly followed by
// kProvideOutput commands.
break;
}
}
}
bool MatrixIsUnused(const Analyzer &analyzer,
const NnetComputation &computation,
int32 m) {
const MatrixAccesses &accesses = analyzer.matrix_accesses[m];
if (accesses.is_input || accesses.is_output)
return false;
for (size_t i = 0; i < accesses.accesses.size(); i++) {
int32 command_index = accesses.accesses[i].command_index;
const NnetComputation::Command &command =
computation.commands[command_index];
if (command.command_type != kNoOperation &&
command.command_type != kSetConst) {
return false;
}
}
return true;
}
void RemoveCommandsForUnusedMatrix(const Analyzer &analyzer,
int32 m,
NnetComputation *computation) {
const MatrixAccesses &accesses = analyzer.matrix_accesses[m];
if (accesses.allocate_command >= 0) {
NnetComputation::Command &command = computation->commands[
accesses.allocate_command];
KALDI_ASSERT(command.command_type == kNoOperation ||
command.command_type == kAllocMatrix);
command.command_type = kNoOperation;
}
if (accesses.deallocate_command >= 0) {
NnetComputation::Command &command = computation->commands[
accesses.deallocate_command];
KALDI_ASSERT(command.command_type == kNoOperation ||
command.command_type == kDeallocMatrix);
command.command_type = kNoOperation;
}
for (size_t i = 0; i < accesses.accesses.size(); i++) {
int32 command_index = accesses.accesses[i].command_index;
NnetComputation::Command &command = computation->commands[command_index];
KALDI_ASSERT(command.command_type == kNoOperation ||
command.command_type == kSetConst);
command.command_type = kNoOperation;
}
}
// This comparison operator is used in the function InsertCommands()
// to sort a list of these pairs by the .first element.
struct CommandPairComparator {
// operator () should be viewed as a '<' operator that only looks at
// the .first element, treating the .second elements as equal.
bool operator () (const std::pair<int32, NnetComputation::Command> &p1,
const std::pair<int32, NnetComputation::Command> &p2) const {
return p1.first < p2.first;
}
};
void InsertCommands(
std::vector<std::pair<int32, NnetComputation::Command> > *new_commands,
NnetComputation *computation) {
int32 num_new_commands = new_commands->size(),
num_old_commands = computation->commands.size();
if (num_new_commands == 0)
return;
CommandPairComparator comparison_operator;
// use std::stable_sort so that for entries in 'new_commands' that
// have the same .first value, they stay in the same order they were
// in before sorting.
std::stable_sort(new_commands->begin(), new_commands->end(),
comparison_operator);
if (RandInt(0, 3) == 0) { // check 'new_commands'
for (int32 i = 0; i + 1 < num_new_commands; i++) {
KALDI_ASSERT((*new_commands)[i].first <= (*new_commands)[i+1].first &&
(*new_commands)[i].first >= 0 &&
(*new_commands)[i+1].first <= num_old_commands);
}
}
std::vector<NnetComputation::Command> merged_commands;
merged_commands.reserve(num_old_commands + num_new_commands);
std::vector<std::pair<int32, NnetComputation::Command> >::const_iterator
new_commands_iter = new_commands->begin(),
new_commands_end = new_commands->end();
for (int32 old_command_index = 0; old_command_index <= num_old_commands;
old_command_index++) {
while (new_commands_iter != new_commands_end &&
new_commands_iter->first <= old_command_index) {
merged_commands.push_back(new_commands_iter->second);
++new_commands_iter;
}
if (old_command_index < num_old_commands)
merged_commands.push_back(computation->commands[old_command_index]);
}
KALDI_ASSERT(merged_commands.size() == num_old_commands +
num_new_commands);
// copy to 'computation->commands' via shallow swap.
computation->commands.swap(merged_commands);
FixGotoLabel(computation);
}
/**
This class is used in the function OptimizeMemoryCompression(),
once we determine that there is some potential to do memory compression
for this computation.
*/
class MemoryCompressionOptimizer {
public:
/** @param [in] nnet The neural net the computation is for.
@param [in] memory_compression_level. The level of compression:
0 = no compression (the constructor should not be called with this value).
1 = compression that doesn't affect the results (but still takes time).
2 = compression that affects the results only very slightly
3 = compression that affects the results a little more.
@param [in] middle_command Must be the command-index of the
command of type kNoOperationMarker in 'computation'.
@param [in,out] computation The computation we're optimizing.
*/
MemoryCompressionOptimizer(const Nnet &nnet,
int32 memory_compression_level,
int32 middle_command,
NnetComputation *computation):
nnet_(nnet), memory_compression_level_(memory_compression_level),
middle_command_(middle_command), computation_(computation) { }
void Optimize();
private:
// This function, called from Compress(), figures out whether we can compress
// matrix m, and if so, adds an entry to compress_info_.
void ProcessMatrix(int32 m);
// This function modifies the commands in '*computation_', taking
// as input the commands in compress_info_.
void ModifyComputation();
// While deciding what matrices to compress we will create a list of structs
// of type MatrixCompressInfo. Later we copy-and-modify the commands in the
// computation, putting the compression commands into their appropriate place.
struct MatrixCompressInfo {
// m is the matrix-index of the matrix we're going to compress.
int32 m;
// compression_command_index is the command-index of the command
// *after* which we will place the compression command. Normally
// this will be some type of propagation.
int32 compression_command_index;
// compression_command_index is the command-index of the command
// *before* which we will place the uncompression command. Normally
// this will be some type of backprop.
int32 uncompression_command_index;
// 'compression_type' (e.g. kCompressedMatrixInt8) determines the type
// we compress the BaseFloats to.
CuCompressedMatrixType compression_type;
// 'range' determines range of values that the compressed values can
// be in: for signed types they are in [-range, range], for unsigned
// types, in [0, range].
// As a special case, range = 0 means that the compression just stores the
// sign (-1, 0 or 1) of the input, and decompresses it to -1, 0 or 1; this
// is useful for ReLUs.
BaseFloat range;
// this is provided to the initializer of CuCompressedMatrix; it should
// be true if the values being compressed are potentially outside of
// the representable range.
bool truncate;
MatrixCompressInfo(int32 m, int32 forward_command_index,
int32 backward_command_index,
CuCompressedMatrixType compression_type,
BaseFloat range, bool truncate):
m(m), compression_command_index(forward_command_index),
uncompression_command_index(backward_command_index),
compression_type(compression_type), range(range),
truncate(truncate) { }
};
std::vector<MatrixCompressInfo> compress_info_;
const Nnet &nnet_;
int32 memory_compression_level_;
int32 middle_command_;
NnetComputation *computation_;
Analyzer analyzer_;
};
void MemoryCompressionOptimizer::ModifyComputation() {
// whole_submatrices[m] is the submatrix-index of the submatrix that
// represents the whole of matrix m.
std::vector<int32> whole_submatrices;
computation_->GetWholeSubmatrices(&whole_submatrices);
// 'pairs_to_insert' will be a list of pairs (command-index, command),
// meaning: (command-index just before which to insert this command; command
// to insert).
std::vector<std::pair<int32, NnetComputation::Command> >
pairs_to_insert;
pairs_to_insert.reserve(compress_info_.size() * 2);
for (size_t i = 0; i < compress_info_.size(); i++) {
const MatrixCompressInfo &info = compress_info_[i];
int32 s = whole_submatrices[info.m];
// below we use compression_command_index + 1 because we want the
// compression to go after the command in 'info.compression_command_index'
// (which might be, for instance, a forward propagation command).
std::pair<int32, NnetComputation::Command> p1(
info.compression_command_index + 1,
NnetComputation::Command(info.range, kCompressMatrix,
s, static_cast<int32>(info.compression_type),
info.truncate ? 1 : 0));
pairs_to_insert.push_back(p1);
std::pair<int32, NnetComputation::Command> p2(
info.uncompression_command_index,
NnetComputation::Command(1.0, kDecompressMatrix, s));
pairs_to_insert.push_back(p2);
}
InsertCommands(&pairs_to_insert,
computation_);
}
void MemoryCompressionOptimizer::Optimize() {
analyzer_.Init(nnet_, *computation_);
// note: matrix zero is not really a matrix.
int32 num_matrices = computation_->matrices.size();
for (int32 m = 1; m < num_matrices; m++)
ProcessMatrix(m);
if (!compress_info_.empty())
ModifyComputation();
}
void MemoryCompressionOptimizer::ProcessMatrix(int32 m) {
if (analyzer_.matrix_accesses[m].is_output) {
return; // We can't do this optimization for matrices that are going to be
// output to the user.
}
// 'accesses' list the commands that access this matrix.
const std::vector<Access> &accesses = analyzer_.matrix_accesses[m].accesses;
// the 'kReadAccess' below is actually a don't-care This is just
// to find the position in 'accesses' that corresponds to command-index
// 'middle_command'.
Access middle_access(middle_command_, kReadAccess);
std::vector<Access>::const_iterator iter = std::lower_bound(accesses.begin(),
accesses.end(),
middle_access);
// At this point, 'iter' points to the first access in 'accesses'
// whose command index is >= 'middle_command_' (which separates the forward
// and backward passes), or accesses.end() if this matrix was not
// accessed during the backward pass.
if (iter == accesses.end()) {
return; // There is nothing to do: this matrix was not accessed during the
// backward pass.
}
if (iter == accesses.begin()) {
return; // There is nothing to do: this matrix was not accessed during the
// forward pass.
}
// 'backward_access' is the first access of the matrix in the backward
// pass of the computation, and
// 'forward_access' is the last access of the matrix in the forward pass
// of the computation.
const Access &backward_access = iter[0],
&forward_access = iter[-1];
KALDI_ASSERT(forward_access.command_index < middle_command_ &&
backward_access.command_index > middle_command_);
// 'backward_access_is_last_access' is going to be set to true if
// 'backward_access' is the last command to access the matrix (apart from
// deallocation or matrix-swap commands, which don't show up in the list of
// accesses).
bool backward_access_is_last_access = (accesses.end() == iter + 1);
int32 backward_command_index = backward_access.command_index,
forward_command_index = forward_access.command_index;
NnetComputation::Command
&backward_command = computation_->commands[backward_command_index];
if (memory_compression_level_ >= 1 &&
backward_access_is_last_access &&
backward_access.access_type == kReadAccess &&
backward_command.command_type == kBackprop) {
int32 component_index = backward_command.arg1;
const Component *component = nnet_.GetComponent(component_index);
// this is potentially a candidate for our optimization for ReLU units,
// where we only need to store the sign.
if (component->Type() == "RectifiedLinearComponent") {
compress_info_.push_back(
MatrixCompressInfo(m, forward_command_index,
backward_command_index,
kCompressedMatrixUint8, 0.0,
true));
return;
}
}
// If memory_compression_level >= 2 (an "intermediate" level of compression),
// then we'll consider compressing quantities using 16 bits in the range
// [-10, 10]. Because of the way this compression works, exact zero will
// still be uncompressed as exact zero, so even if this is the output
// of a ReLU, it's OK. (Having a few derivatives zero for ReLU outputs
// that were very close to zero is OK.)
if (memory_compression_level_ >= 2) {
compress_info_.push_back(
MatrixCompressInfo(m, forward_command_index,
backward_command_index,
kCompressedMatrixInt16, 10.0,
true));
return;
}
// TODO: later maybe implement something for memory compression level = 3.
}
void OptimizeMemoryCompression(const Nnet &nnet,
int32 memory_compression_level,
NnetComputation *computation) {
if (memory_compression_level == 0 || computation->commands.empty())
return;
// don't apply this optimization to looped computations.
if (computation->commands.back().command_type == kGotoLabel)
return;
// 'middle_command' will be the index of the command of type
// 'kNoOperationMarker' that separates the forward and backward
// passes. If it doesn't exist, it means this computation doesn't
// include
int32 middle_command = -1;
for (size_t i = 0; i < computation->commands.size(); i++) {
if (computation->commands[i].command_type == kNoOperationMarker) {
if (middle_command < 0) {
middle_command = static_cast<int32>(i);
} else {
KALDI_WARN << "Found more than one command of type kNoOperationMarker "
"in non-looped computation.";
// there are more than one command of this type... this wasn't expected.
// return (i.e. do nothing).
return;
}
}
}
if (middle_command == -1) {
return; // This computation doesn't have a backprop pass.
}
if (memory_compression_level >= 1) {
int64 bytes_used_initial, bytes_used_final;
bool verbose_ge_2 = GetVerboseLevel() >= 2;
if (verbose_ge_2)
bytes_used_initial = GetMaxMemoryUse(*computation);
MemoryCompressionOptimizer opt(nnet, memory_compression_level,
middle_command, computation);
opt.Optimize();
if (verbose_ge_2) {
bytes_used_final = GetMaxMemoryUse(*computation);
if (bytes_used_final != bytes_used_initial) {
KALDI_VLOG(2) << "Memory compression reduced memory use from "
<< bytes_used_initial << " to "
<< bytes_used_final << " bytes.";
}
}
}
}
std::shared_ptr<const NnetComputation> ComputationCache::Find(
const ComputationRequest &in_request) {
std::lock_guard<std::mutex> lock(mutex_);
CacheType::iterator iter = computation_cache_.find(&in_request);
if (iter == computation_cache_.end()) {
return NULL;
} else {
std::shared_ptr<const NnetComputation> ans = iter->second.first;
// Update access record by moving the accessed request to the end of the
// access queue, which declares that it's the most recently used.
access_queue_.splice(access_queue_.end(), access_queue_,
iter->second.second);
return ans;
}
}
ComputationCache::ComputationCache(int32 cache_capacity):
cache_capacity_(cache_capacity) {
KALDI_ASSERT(cache_capacity > 0);
}
std::shared_ptr<const NnetComputation> ComputationCache::Insert(
const ComputationRequest &request_in,
const NnetComputation *computation_in) {
std::lock_guard<std::mutex> lock(mutex_);
if (static_cast<int32>(computation_cache_.size()) >= cache_capacity_) {
// Cache has reached capacity; purge the least-recently-accessed request
const CacheType::iterator iter =
computation_cache_.find(access_queue_.front());
KALDI_ASSERT(iter != computation_cache_.end());
const ComputationRequest *request = iter->first;
computation_cache_.erase(iter);
delete request;
// we don't need to delete the computation in iter->second.first, as the
// shared_ptr takes care of that automatically.
access_queue_.pop_front();
}
// Now insert the thing we need to insert. We'll own the pointer 'request' in
// 'computation_cache_', so we need to allocate our own version.
ComputationRequest *request = new ComputationRequest(request_in);
// When we construct this shared_ptr, it takes ownership of the pointer
// 'computation_in'.
std::shared_ptr<const NnetComputation> computation(computation_in);
AqType::iterator ait = access_queue_.insert(access_queue_.end(), request);
std::pair<CacheType::iterator, bool> p = computation_cache_.insert(
std::make_pair(request, std::make_pair(computation, ait)));
if (!p.second) {
// if p.second is false, this pair was not inserted because
// a computation for the same computation-request already existed in
// the map. This is possible in multi-threaded operations, if two
// threads try to compile the same computation at the same time (only
// one of them will successfully add it).
// We need to erase the access-queue element that we just added, it's
// no longer going to be needed.
access_queue_.erase(ait);
delete request;
}
return computation;
}
void ComputationCache::Read(std::istream &is, bool binary) {
// Note: the object on disk doesn't have tokens like "<ComputationCache>"
// and "</ComputationCache>" for back-compatibility reasons.
int32 computation_cache_size;
ExpectToken(is, binary, "<ComputationCacheSize>");
ReadBasicType(is, binary, &computation_cache_size);
KALDI_ASSERT(computation_cache_size >= 0);
computation_cache_.clear();
access_queue_.clear();
ExpectToken(is, binary, "<ComputationCache>");
for (size_t c = 0; c < computation_cache_size; c++) {
ComputationRequest request;
request.Read(is, binary);
NnetComputation *computation = new NnetComputation();
computation->Read(is, binary);
Insert(request, computation);
}
}
void ComputationCache::Check(const Nnet &nnet) const {
CacheType::const_iterator iter = computation_cache_.begin(),
end = computation_cache_.end();
// We only need to explicitly delete the pointer to the ComputationRequest.
// The pointers to Computation are deleted automatically by std::shared_ptr
// when the reference count goes to zero.
for (; iter != end; ++iter) {
const NnetComputation &computation = *(iter->second.first);
CheckComputationOptions check_config;
ComputationChecker checker(check_config, nnet, computation);
checker.Check();
}
}
void ComputationCache::Write(std::ostream &os, bool binary) const {
WriteToken(os, binary, "<ComputationCacheSize>");
WriteBasicType(os, binary, static_cast<int32>(computation_cache_.size()));
WriteToken(os, binary, "<ComputationCache>");
for (CacheType::const_iterator iter = computation_cache_.begin();
iter != computation_cache_.end(); ++iter) {
iter->first->Write(os, binary);
iter->second.first->Write(os, binary);
}
}
ComputationCache::~ComputationCache() {
CacheType::const_iterator iter = computation_cache_.begin(),
end = computation_cache_.end();
// We only need to explicitly delete the pointer to the ComputationRequest.
// The pointers to Computation are deleted automatically by std::shared_ptr
// when the reference count goes to zero.
for (; iter != end; ++iter)
delete iter->first;
}
} // namespace nnet3
} // namespace kaldi