nnet-training.cc
16.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
// nnet3/nnet-training.cc
// Copyright 2015 Johns Hopkins University (author: Daniel Povey)
// 2015 Xiaohui Zhang
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "nnet3/nnet-training.h"
#include "nnet3/nnet-utils.h"
namespace kaldi {
namespace nnet3 {
NnetTrainer::NnetTrainer(const NnetTrainerOptions &config,
Nnet *nnet):
config_(config),
nnet_(nnet),
compiler_(*nnet, config_.optimize_config, config_.compiler_config),
num_minibatches_processed_(0),
max_change_stats_(*nnet),
srand_seed_(RandInt(0, 100000)) {
if (config.zero_component_stats)
ZeroComponentStats(nnet);
KALDI_ASSERT(config.momentum >= 0.0 &&
config.max_param_change >= 0.0 &&
config.backstitch_training_interval > 0);
delta_nnet_ = nnet_->Copy();
ScaleNnet(0.0, delta_nnet_);
if (config_.read_cache != "") {
bool binary;
Input ki;
if (ki.Open(config_.read_cache, &binary)) {
compiler_.ReadCache(ki.Stream(), binary);
KALDI_LOG << "Read computation cache from " << config_.read_cache;
} else {
KALDI_WARN << "Could not open cached computation. "
"Probably this is the first training iteration.";
}
}
}
void NnetTrainer::Train(const NnetExample &eg) {
bool need_model_derivative = true;
ComputationRequest request;
GetComputationRequest(*nnet_, eg, need_model_derivative,
config_.store_component_stats,
&request);
std::shared_ptr<const NnetComputation> computation = compiler_.Compile(request);
if (config_.backstitch_training_scale > 0.0 &&
num_minibatches_processed_ % config_.backstitch_training_interval ==
srand_seed_ % config_.backstitch_training_interval) {
// backstitch training is incompatible with momentum > 0
KALDI_ASSERT(config_.momentum == 0.0);
FreezeNaturalGradient(true, delta_nnet_);
bool is_backstitch_step1 = true;
srand(srand_seed_ + num_minibatches_processed_);
ResetGenerators(nnet_);
TrainInternalBackstitch(eg, *computation, is_backstitch_step1);
FreezeNaturalGradient(false, delta_nnet_); // un-freeze natural gradient
is_backstitch_step1 = false;
srand(srand_seed_ + num_minibatches_processed_);
ResetGenerators(nnet_);
TrainInternalBackstitch(eg, *computation, is_backstitch_step1);
} else { // conventional training
TrainInternal(eg, *computation);
}
if (num_minibatches_processed_ == 0) {
ConsolidateMemory(nnet_);
ConsolidateMemory(delta_nnet_);
}
num_minibatches_processed_++;
}
void NnetTrainer::TrainInternal(const NnetExample &eg,
const NnetComputation &computation) {
// note: because we give the 1st arg (nnet_) as a pointer to the
// constructor of 'computer', it will use that copy of the nnet to
// store stats.
NnetComputer computer(config_.compute_config, computation,
nnet_, delta_nnet_);
// give the inputs to the computer object.
computer.AcceptInputs(*nnet_, eg.io);
computer.Run();
this->ProcessOutputs(false, eg, &computer);
computer.Run();
// If relevant, add in the part of the gradient that comes from L2
// regularization.
ApplyL2Regularization(*nnet_,
GetNumNvalues(eg.io, false) * config_.l2_regularize_factor,
delta_nnet_);
// Update the parameters of nnet
bool success = UpdateNnetWithMaxChange(
*delta_nnet_, config_.max_param_change,
1.0, 1.0 - config_.momentum, nnet_, &max_change_stats_);
// Scale down the batchnorm stats (keeps them fresh... this affects what
// happens when we use the model with batchnorm test-mode set).
ScaleBatchnormStats(config_.batchnorm_stats_scale, nnet_);
// The following will only do something if we have a LinearComponent
// or AffineComponent with orthonormal-constraint set to a nonzero value.
ConstrainOrthonormal(nnet_);
// Scale deta_nnet
if (success)
ScaleNnet(config_.momentum, delta_nnet_);
else
ScaleNnet(0.0, delta_nnet_);
}
void NnetTrainer::TrainInternalBackstitch(const NnetExample &eg,
const NnetComputation &computation,
bool is_backstitch_step1) {
// note: because we give the 1st arg (nnet_) as a pointer to the
// constructor of 'computer', it will use that copy of the nnet to
// store stats.
NnetComputer computer(config_.compute_config, computation,
nnet_, delta_nnet_);
// give the inputs to the computer object.
computer.AcceptInputs(*nnet_, eg.io);
computer.Run();
bool is_backstitch_step2 = !is_backstitch_step1;
this->ProcessOutputs(is_backstitch_step2, eg, &computer);
computer.Run();
BaseFloat max_change_scale, scale_adding;
if (is_backstitch_step1) {
// max-change is scaled by backstitch_training_scale;
// delta_nnet is scaled by -backstitch_training_scale when added to nnet;
max_change_scale = config_.backstitch_training_scale;
scale_adding = -config_.backstitch_training_scale;
} else {
// max-change is scaled by 1 + backstitch_training_scale;
// delta_nnet is scaled by 1 + backstitch_training_scale when added to nnet;
max_change_scale = 1.0 + config_.backstitch_training_scale;
scale_adding = 1.0 + config_.backstitch_training_scale;
// If relevant, add in the part of the gradient that comes from L2
// regularization. It may not be optimally inefficient to do it on both
// passes of the backstitch, like we do here, but it probably minimizes
// any harmful interactions with the max-change.
ApplyL2Regularization(*nnet_,
1.0 / scale_adding * GetNumNvalues(eg.io, false) *
config_.l2_regularize_factor, delta_nnet_);
}
// Updates the parameters of nnet
UpdateNnetWithMaxChange(
*delta_nnet_, config_.max_param_change,
max_change_scale, scale_adding, nnet_,
&max_change_stats_);
if (is_backstitch_step1) {
// The following will only do something if we have a LinearComponent or
// AffineComponent with orthonormal-constraint set to a nonzero value. We
// choose to do this only on the 1st backstitch step, for efficiency.
ConstrainOrthonormal(nnet_);
}
if (!is_backstitch_step1) {
// Scale down the batchnorm stats (keeps them fresh... this affects what
// happens when we use the model with batchnorm test-mode set). Do this
// after backstitch step 2 so that the stats are scaled down before we start
// the next minibatch.
ScaleBatchnormStats(config_.batchnorm_stats_scale, nnet_);
}
ScaleNnet(0.0, delta_nnet_);
}
void NnetTrainer::ProcessOutputs(bool is_backstitch_step2,
const NnetExample &eg,
NnetComputer *computer) {
// normally the eg will have just one output named 'output', but
// we don't assume this.
// In backstitch training, the output-name with the "_backstitch" suffix is
// the one computed after the first, backward step of backstitch.
const std::string suffix = (is_backstitch_step2 ? "_backstitch" : "");
std::vector<NnetIo>::const_iterator iter = eg.io.begin(),
end = eg.io.end();
for (; iter != end; ++iter) {
const NnetIo &io = *iter;
int32 node_index = nnet_->GetNodeIndex(io.name);
KALDI_ASSERT(node_index >= 0);
if (nnet_->IsOutputNode(node_index)) {
ObjectiveType obj_type = nnet_->GetNode(node_index).u.objective_type;
BaseFloat tot_weight, tot_objf;
bool supply_deriv = true;
ComputeObjectiveFunction(io.features, obj_type, io.name,
supply_deriv, computer,
&tot_weight, &tot_objf);
objf_info_[io.name + suffix].UpdateStats(io.name + suffix,
config_.print_interval,
num_minibatches_processed_,
tot_weight, tot_objf);
}
}
}
bool NnetTrainer::PrintTotalStats() const {
unordered_map<std::string, ObjectiveFunctionInfo, StringHasher>::const_iterator
iter = objf_info_.begin(),
end = objf_info_.end();
std::vector<std::pair<std::string, const ObjectiveFunctionInfo*> > all_pairs;
for (; iter != end; ++iter)
all_pairs.push_back(std::pair<std::string, const ObjectiveFunctionInfo*>(
iter->first, &(iter->second)));
// ensure deterministic order of these names (this will matter in situations
// where a script greps for the objective from the log).
std::sort(all_pairs.begin(), all_pairs.end());
bool ans = false;
for (size_t i = 0; i < all_pairs.size(); i++) {
const std::string &name = all_pairs[i].first;
const ObjectiveFunctionInfo &info = *(all_pairs[i].second);
bool ok = info.PrintTotalStats(name);
ans = ans || ok;
}
max_change_stats_.Print(*nnet_);
return ans;
}
void ObjectiveFunctionInfo::UpdateStats(
const std::string &output_name,
int32 minibatches_per_phase,
int32 minibatch_counter,
BaseFloat this_minibatch_weight,
BaseFloat this_minibatch_tot_objf,
BaseFloat this_minibatch_tot_aux_objf) {
int32 phase = minibatch_counter / minibatches_per_phase;
if (phase != current_phase) {
KALDI_ASSERT(phase > current_phase);
PrintStatsForThisPhase(output_name, minibatches_per_phase,
phase);
current_phase = phase;
tot_weight_this_phase = 0.0;
tot_objf_this_phase = 0.0;
tot_aux_objf_this_phase = 0.0;
minibatches_this_phase = 0;
}
minibatches_this_phase++;
tot_weight_this_phase += this_minibatch_weight;
tot_objf_this_phase += this_minibatch_tot_objf;
tot_aux_objf_this_phase += this_minibatch_tot_aux_objf;
tot_weight += this_minibatch_weight;
tot_objf += this_minibatch_tot_objf;
tot_aux_objf += this_minibatch_tot_aux_objf;
}
void ObjectiveFunctionInfo::PrintStatsForThisPhase(
const std::string &output_name,
int32 minibatches_per_phase,
int32 phase) const {
int32 start_minibatch = current_phase * minibatches_per_phase,
end_minibatch = phase * minibatches_per_phase - 1;
if (tot_aux_objf_this_phase == 0.0) {
if (minibatches_per_phase == minibatches_this_phase) {
KALDI_LOG << "Average objective function for '" << output_name
<< "' for minibatches " << start_minibatch
<< '-' << end_minibatch << " is "
<< (tot_objf_this_phase / tot_weight_this_phase) << " over "
<< tot_weight_this_phase << " frames.";
} else {
KALDI_LOG << "Average objective function for '" << output_name
<< " using " << minibatches_this_phase
<< " minibatches in minibatch range " << start_minibatch
<< '-' << end_minibatch << " is "
<< (tot_objf_this_phase / tot_weight_this_phase) << " over "
<< tot_weight_this_phase << " frames.";
}
} else {
BaseFloat objf = (tot_objf_this_phase / tot_weight_this_phase),
aux_objf = (tot_aux_objf_this_phase / tot_weight_this_phase),
sum_objf = objf + aux_objf;
if (minibatches_per_phase == minibatches_this_phase) {
KALDI_LOG << "Average objective function for '" << output_name
<< "' for minibatches " << start_minibatch
<< '-' << end_minibatch << " is "
<< objf << " + " << aux_objf << " = " << sum_objf
<< " over " << tot_weight_this_phase << " frames.";
} else {
KALDI_LOG << "Average objective function for '" << output_name
<< "' using " << minibatches_this_phase
<< " minibatches in minibatch range " << start_minibatch
<< '-' << end_minibatch << " is "
<< objf << " + " << aux_objf << " = " << sum_objf
<< " over " << tot_weight_this_phase << " frames.";
}
}
}
bool ObjectiveFunctionInfo::PrintTotalStats(const std::string &name) const {
BaseFloat objf = (tot_objf / tot_weight),
aux_objf = (tot_aux_objf / tot_weight),
sum_objf = objf + aux_objf;
if (tot_aux_objf == 0.0) {
KALDI_LOG << "Overall average objective function for '" << name << "' is "
<< (tot_objf / tot_weight) << " over " << tot_weight << " frames.";
} else {
KALDI_LOG << "Overall average objective function for '" << name << "' is "
<< objf << " + " << aux_objf << " = " << sum_objf
<< " over " << tot_weight << " frames.";
}
KALDI_LOG << "[this line is to be parsed by a script:] "
<< "log-prob-per-frame="
<< objf;
return (tot_weight != 0.0);
}
NnetTrainer::~NnetTrainer() {
if (config_.write_cache != "") {
Output ko(config_.write_cache, config_.binary_write_cache);
compiler_.WriteCache(ko.Stream(), config_.binary_write_cache);
KALDI_LOG << "Wrote computation cache to " << config_.write_cache;
}
delete delta_nnet_;
}
void ComputeObjectiveFunction(const GeneralMatrix &supervision,
ObjectiveType objective_type,
const std::string &output_name,
bool supply_deriv,
NnetComputer *computer,
BaseFloat *tot_weight,
BaseFloat *tot_objf) {
const CuMatrixBase<BaseFloat> &output = computer->GetOutput(output_name);
if (output.NumCols() != supervision.NumCols())
KALDI_ERR << "Nnet versus example output dimension (num-classes) "
<< "mismatch for '" << output_name << "': " << output.NumCols()
<< " (nnet) vs. " << supervision.NumCols() << " (egs)\n";
switch (objective_type) {
case kLinear: {
// objective is x * y.
switch (supervision.Type()) {
case kSparseMatrix: {
const SparseMatrix<BaseFloat> &post = supervision.GetSparseMatrix();
CuSparseMatrix<BaseFloat> cu_post(post);
// The cross-entropy objective is computed by a simple dot product,
// because after the LogSoftmaxLayer, the output is already in the form
// of log-likelihoods that are normalized to sum to one.
*tot_weight = cu_post.Sum();
*tot_objf = TraceMatSmat(output, cu_post, kTrans);
if (supply_deriv) {
CuMatrix<BaseFloat> output_deriv(output.NumRows(), output.NumCols(),
kUndefined);
cu_post.CopyToMat(&output_deriv);
computer->AcceptInput(output_name, &output_deriv);
}
break;
}
case kFullMatrix: {
// there is a redundant matrix copy in here if we're not using a GPU
// but we don't anticipate this code branch being used in many cases.
CuMatrix<BaseFloat> cu_post(supervision.GetFullMatrix());
*tot_weight = cu_post.Sum();
*tot_objf = TraceMatMat(output, cu_post, kTrans);
if (supply_deriv)
computer->AcceptInput(output_name, &cu_post);
break;
}
case kCompressedMatrix: {
Matrix<BaseFloat> post;
supervision.GetMatrix(&post);
CuMatrix<BaseFloat> cu_post;
cu_post.Swap(&post);
*tot_weight = cu_post.Sum();
*tot_objf = TraceMatMat(output, cu_post, kTrans);
if (supply_deriv)
computer->AcceptInput(output_name, &cu_post);
break;
}
}
break;
}
case kQuadratic: {
// objective is -0.5 (x - y)^2
CuMatrix<BaseFloat> diff(supervision.NumRows(),
supervision.NumCols(),
kUndefined);
diff.CopyFromGeneralMat(supervision);
diff.AddMat(-1.0, output);
*tot_weight = diff.NumRows();
*tot_objf = -0.5 * TraceMatMat(diff, diff, kTrans);
if (supply_deriv)
computer->AcceptInput(output_name, &diff);
break;
}
default:
KALDI_ERR << "Objective function type " << objective_type
<< " not handled.";
}
}
} // namespace nnet3
} // namespace kaldi