nnet-training.h
12.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
// nnet3/nnet-training.h
// Copyright 2015 Johns Hopkins University (author: Daniel Povey)
// 2016 Xiaohui Zhang
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_NNET3_NNET_TRAINING_H_
#define KALDI_NNET3_NNET_TRAINING_H_
#include "nnet3/nnet-example.h"
#include "nnet3/nnet-computation.h"
#include "nnet3/nnet-compute.h"
#include "nnet3/nnet-optimize.h"
#include "nnet3/nnet-example-utils.h"
#include "nnet3/nnet-utils.h"
namespace kaldi {
namespace nnet3 {
struct NnetTrainerOptions {
bool zero_component_stats;
bool store_component_stats;
int32 print_interval;
bool debug_computation;
BaseFloat momentum;
BaseFloat l2_regularize_factor;
BaseFloat backstitch_training_scale;
int32 backstitch_training_interval;
BaseFloat batchnorm_stats_scale;
std::string read_cache;
std::string write_cache;
bool binary_write_cache;
BaseFloat max_param_change;
NnetOptimizeOptions optimize_config;
NnetComputeOptions compute_config;
CachingOptimizingCompilerOptions compiler_config;
NnetTrainerOptions():
zero_component_stats(true),
store_component_stats(true),
print_interval(100),
debug_computation(false),
momentum(0.0),
l2_regularize_factor(1.0),
backstitch_training_scale(0.0),
backstitch_training_interval(1),
batchnorm_stats_scale(0.8),
binary_write_cache(true),
max_param_change(2.0) { }
void Register(OptionsItf *opts) {
opts->Register("store-component-stats", &store_component_stats,
"If true, store activations and derivatives for nonlinear "
"components during training.");
opts->Register("zero-component-stats", &zero_component_stats,
"If both this and --store-component-stats are true, then "
"the component stats are zeroed before training.");
opts->Register("print-interval", &print_interval, "Interval (measured in "
"minibatches) after which we print out objective function "
"during training\n");
opts->Register("max-param-change", &max_param_change, "The maximum change in "
"parameters allowed per minibatch, measured in Euclidean norm "
"over the entire model (change will be clipped to this value)");
opts->Register("momentum", &momentum, "Momentum constant to apply during "
"training (help stabilize update). e.g. 0.9. Note: we "
"automatically multiply the learning rate by (1-momenum) "
"so that the 'effective' learning rate is the same as "
"before (because momentum would normally increase the "
"effective learning rate by 1/(1-momentum))");
opts->Register("l2-regularize-factor", &l2_regularize_factor, "Factor that "
"affects the strength of l2 regularization on model "
"parameters. The primary way to specify this type of "
"l2 regularization is via the 'l2-regularize'"
"configuration value at the config-file level. "
" --l2-regularize-factor will be multiplied by the component-level "
"l2-regularize values and can be used to correct for effects "
"related to parallelization by model averaging.");
opts->Register("batchnorm-stats-scale", &batchnorm_stats_scale,
"Factor by which we scale down the accumulated stats of batchnorm "
"layers after processing each minibatch. Ensure that the final "
"model we write out has batchnorm stats that are fairly fresh.");
opts->Register("backstitch-training-scale", &backstitch_training_scale,
"backstitch training factor. "
"if 0 then in the normal training mode. It is referred as "
"'\\alpha' in our publications.");
opts->Register("backstitch-training-interval",
&backstitch_training_interval,
"do backstitch training with the specified interval of "
"minibatches. It is referred as 'n' in our publications.");
opts->Register("read-cache", &read_cache, "The location from which to read "
"the cached computation.");
opts->Register("write-cache", &write_cache, "The location to which to write "
"the cached computation.");
opts->Register("binary-write-cache", &binary_write_cache, "Write "
"computation cache in binary mode");
// register the optimization options with the prefix "optimization".
ParseOptions optimization_opts("optimization", opts);
optimize_config.Register(&optimization_opts);
ParseOptions compiler_opts("compiler", opts);
compiler_config.Register(&compiler_opts);
// register the compute options with the prefix "computation".
ParseOptions compute_opts("computation", opts);
compute_config.Register(&compute_opts);
}
};
// This struct is used in multiple nnet training classes for keeping
// track of objective function values.
// Also see struct AccuracyInfo, in nnet-diagnostics.h.
struct ObjectiveFunctionInfo {
int32 current_phase;
int32 minibatches_this_phase; // The number of minibatches' worth of stats that
// we accumulated in the phase numbered
// 'current_phase'.
double tot_weight;
double tot_objf;
double tot_aux_objf; // An 'auxiliary' objective function that is optional-
// may be used when things like regularization are being
// used.
double tot_weight_this_phase;
double tot_objf_this_phase;
double tot_aux_objf_this_phase;
ObjectiveFunctionInfo():
current_phase(0),
minibatches_this_phase(0),
tot_weight(0.0), tot_objf(0.0), tot_aux_objf(0.0),
tot_weight_this_phase(0.0), tot_objf_this_phase(0.0),
tot_aux_objf_this_phase(0.0) { }
// This function updates the stats and, if the phase has just changed,
// prints a message indicating progress. The phase equals
// minibatch_counter / minibatches_per_phase. Its only function is to
// control how frequently we print logging messages.
void UpdateStats(const std::string &output_name,
int32 minibatches_per_phase,
int32 minibatch_counter,
BaseFloat this_minibatch_weight,
BaseFloat this_minibatch_tot_objf,
BaseFloat this_minibatch_tot_aux_objf = 0.0);
// Prints stats for the current phase.
// Note: 'phase' will normally be this->current_phase + 1, but may under
// unusual circumstances (e.g. multilingual training, where not all outputs
// are seen on all minibatches) be larger than that.
void PrintStatsForThisPhase(const std::string &output_name,
int32 minibatches_per_phase,
int32 phase) const;
// Prints total stats, and returns true if total stats' weight was nonzero.
bool PrintTotalStats(const std::string &output_name) const;
};
/** This class is for single-threaded training of neural nets using
standard objective functions such as cross-entropy (implemented with
logsoftmax nonlinearity and a linear objective function) and quadratic loss.
Something that we should do in the future is to make it possible to have
two different threads, one for the compilation, and one for the computation.
This would only improve efficiency in the cases where the structure of the
input example was different each time, which isn't what we expect to see in
speech-recognition training. (If the structure is the same each time,
the CachingOptimizingCompiler notices this and uses the computation from
last time).
*/
class NnetTrainer {
public:
NnetTrainer(const NnetTrainerOptions &config,
Nnet *nnet);
// train on one minibatch.
void Train(const NnetExample &eg);
// Prints out the final stats, and return true if there was a nonzero count.
bool PrintTotalStats() const;
~NnetTrainer();
private:
// The internal function for doing one step of conventional SGD training.
void TrainInternal(const NnetExample &eg,
const NnetComputation &computation);
// The internal function for doing one step of backstitch training. Depending
// on whether is_backstitch_step1 is true, It could be either the first
// (backward) step, or the second (forward) step of backstitch.
void TrainInternalBackstitch(const NnetExample &eg,
const NnetComputation &computation,
bool is_backstitch_step1);
void ProcessOutputs(bool is_backstitch_step2, const NnetExample &eg,
NnetComputer *computer);
const NnetTrainerOptions config_;
Nnet *nnet_;
Nnet *delta_nnet_; // nnet representing parameter-change for this minibatch
// (or, when using momentum, the moving weighted average
// of this).
CachingOptimizingCompiler compiler_;
// This code supports multiple output layers, even though in the
// normal case there will be just one output layer named "output".
// So we store the objective functions per output layer.
int32 num_minibatches_processed_;
// stats for max-change.
MaxChangeStats max_change_stats_;
unordered_map<std::string, ObjectiveFunctionInfo, StringHasher> objf_info_;
// This value is used in backstitch training when we need to ensure
// consistent dropout masks. It's set to a value derived from rand()
// when the class is initialized.
int32 srand_seed_;
};
/**
This function computes the objective function, and if supply_deriv = true,
supplies its derivative to the NnetComputation object.
See also the function ComputeAccuracy(), declared in nnet-diagnostics.h.
@param [in] supervision A GeneralMatrix, typically derived from a NnetExample,
containing the supervision posteriors or features.
@param [in] objective_type The objective function type: kLinear = output *
supervision, or kQuadratic = -0.5 * (output -
supervision)^2. kLinear is used for softmax
objectives; the network contains a LogSoftmax
layer which correctly normalizes its output.
@param [in] output_name The name of the output node (e.g. "output"), used to
look up the output in the NnetComputer object.
@param [in] supply_deriv If this is true, this function will compute the
derivative of the objective function and supply it
to the network using the function
NnetComputer::AcceptOutputDeriv
@param [in,out] computer The NnetComputer object, from which we get the
output using GetOutput and to which we may supply
the derivatives using AcceptOutputDeriv.
@param [out] tot_weight The total weight of the training examples. In the
kLinear case, this is the sum of the supervision
matrix; in the kQuadratic case, it is the number of
rows of the supervision matrix. In order to make
it possible to weight samples with quadratic
objective functions, we may at some point make it
possible for the supervision matrix to have an
extra column containing weights. At the moment,
this is not supported.
@param [out] tot_objf The total objective function; divide this by the
tot_weight to get the normalized objective function.
*/
void ComputeObjectiveFunction(const GeneralMatrix &supervision,
ObjectiveType objective_type,
const std::string &output_name,
bool supply_deriv,
NnetComputer *computer,
BaseFloat *tot_weight,
BaseFloat *tot_objf);
} // namespace nnet3
} // namespace kaldi
#endif // KALDI_NNET3_NNET_TRAINING_H_