nnet3-compute-batch.cc
6.82 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
// nnet3bin/nnet3-compute-batch.cc
// Copyright 2012-2018 Johns Hopkins University (author: Daniel Povey)
// 2018 Hang Lyu
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "nnet3/nnet-batch-compute.h"
#include "base/timer.h"
#include "nnet3/nnet-utils.h"
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
using namespace kaldi::nnet3;
typedef kaldi::int32 int32;
typedef kaldi::int64 int64;
const char *usage =
"Propagate the features through raw neural network model "
"and write the output. This version is optimized for GPU use. "
"If --apply-exp=true, apply the Exp() function to the output "
"before writing it out.\n"
"\n"
"Usage: nnet3-compute-batch [options] <nnet-in> <features-rspecifier> "
"<matrix-wspecifier>\n"
" e.g.: nnet3-compute-batch final.raw scp:feats.scp "
"ark:nnet_prediction.ark\n";
ParseOptions po(usage);
Timer timer;
NnetBatchComputerOptions opts;
opts.acoustic_scale = 1.0; // by default do no scaling
bool apply_exp = false, use_priors = false;
std::string use_gpu = "yes";
std::string word_syms_filename;
std::string ivector_rspecifier,
online_ivector_rspecifier,
utt2spk_rspecifier;
int32 online_ivector_period = 0;
opts.Register(&po);
po.Register("ivectors", &ivector_rspecifier, "Rspecifier for "
"iVectors as vectors (i.e. not estimated online); per "
"utterance by default, or per speaker if you provide the "
"--utt2spk option.");
po.Register("utt2spk", &utt2spk_rspecifier, "Rspecifier for "
"utt2spk option used to get ivectors per speaker");
po.Register("online-ivectors", &online_ivector_rspecifier, "Rspecifier for "
"iVectors estimated online, as matrices. If you supply this,"
" you must set the --online-ivector-period option.");
po.Register("online-ivector-period", &online_ivector_period, "Number of "
"frames between iVectors in matrices supplied to the "
"--online-ivectors option");
po.Register("apply-exp", &apply_exp, "If true, apply exp function to "
"output");
po.Register("use-gpu", &use_gpu,
"yes|no|optional|wait, only has effect if compiled with CUDA");
po.Register("use-priors", &use_priors, "If true, subtract the logs of the "
"priors stored with the model (in this case, "
"a .mdl file is expected as input).");
#if HAVE_CUDA==1
CuDevice::RegisterDeviceOptions(&po);
#endif
po.Read(argc, argv);
if (po.NumArgs() != 3) {
po.PrintUsage();
exit(1);
}
#if HAVE_CUDA==1
CuDevice::Instantiate().AllowMultithreading();
CuDevice::Instantiate().SelectGpuId(use_gpu);
#endif
std::string nnet_rxfilename = po.GetArg(1),
feature_rspecifier = po.GetArg(2),
matrix_wspecifier = po.GetArg(3);
Nnet raw_nnet;
AmNnetSimple am_nnet;
if (use_priors) {
bool binary;
TransitionModel trans_model;
Input ki(nnet_rxfilename, &binary);
trans_model.Read(ki.Stream(), binary);
am_nnet.Read(ki.Stream(), binary);
} else {
ReadKaldiObject(nnet_rxfilename, &raw_nnet);
}
Nnet &nnet = (use_priors ? am_nnet.GetNnet() : raw_nnet);
SetBatchnormTestMode(true, &nnet);
SetDropoutTestMode(true, &nnet);
CollapseModel(CollapseModelConfig(), &nnet);
Vector<BaseFloat> priors;
if (use_priors)
priors = am_nnet.Priors();
RandomAccessBaseFloatMatrixReader online_ivector_reader(
online_ivector_rspecifier);
RandomAccessBaseFloatVectorReaderMapped ivector_reader(
ivector_rspecifier, utt2spk_rspecifier);
BaseFloatMatrixWriter matrix_writer(matrix_wspecifier);
int32 num_success = 0, num_fail = 0;
std::string output_uttid;
Matrix<BaseFloat> output_matrix;
NnetBatchInference inference(opts, nnet, priors);
SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
for (; !feature_reader.Done(); feature_reader.Next()) {
std::string utt = feature_reader.Key();
const Matrix<BaseFloat> &features = feature_reader.Value();
if (features.NumRows() == 0) {
KALDI_WARN << "Zero-length utterance: " << utt;
num_fail++;
continue;
}
const Matrix<BaseFloat> *online_ivectors = NULL;
const Vector<BaseFloat> *ivector = NULL;
if (!ivector_rspecifier.empty()) {
if (!ivector_reader.HasKey(utt)) {
KALDI_WARN << "No iVector available for utterance " << utt;
num_fail++;
continue;
} else {
ivector = new Vector<BaseFloat>(ivector_reader.Value(utt));
}
}
if (!online_ivector_rspecifier.empty()) {
if (!online_ivector_reader.HasKey(utt)) {
KALDI_WARN << "No online iVector available for utterance " << utt;
num_fail++;
continue;
} else {
online_ivectors = new Matrix<BaseFloat>(
online_ivector_reader.Value(utt));
}
}
inference.AcceptInput(utt, features, ivector, online_ivectors,
online_ivector_period);
std::string output_key;
Matrix<BaseFloat> output;
while (inference.GetOutput(&output_key, &output)) {
if (apply_exp)
output.ApplyExp();
matrix_writer.Write(output_key, output);
num_success++;
}
}
inference.Finished();
std::string output_key;
Matrix<BaseFloat> output;
while (inference.GetOutput(&output_key, &output)) {
if (apply_exp)
output.ApplyExp();
matrix_writer.Write(output_key, output);
num_success++;
}
#if HAVE_CUDA==1
CuDevice::Instantiate().PrintProfile();
#endif
double elapsed = timer.Elapsed();
KALDI_LOG << "Time taken "<< elapsed << "s";
KALDI_LOG << "Done " << num_success << " utterances, failed for "
<< num_fail;
if (num_success != 0) {
return 0;
} else {
return 1;
}
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}