nnet-train-multistream-perutt.cc
12.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
// nnetbin/nnet-train-multistream-perutt.cc
// Copyright 2016 Brno University of Technology (author: Karel Vesely)
// Copyright 2015 Chongjia Ni
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "nnet/nnet-trnopts.h"
#include "nnet/nnet-nnet.h"
#include "nnet/nnet-loss.h"
#include "nnet/nnet-matrix-buffer.h"
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "base/timer.h"
#include "cudamatrix/cu-device.h"
#include <numeric>
#include <algorithm>
int main(int argc, char *argv[]) {
using namespace kaldi;
using namespace kaldi::nnet1;
typedef kaldi::int32 int32;
try {
const char *usage =
"Perform one iteration of Multi-stream training, per-utterance BPTT for (B)LSTMs.\n"
"The updates are done per-utterance, while several utterances are \n"
"processed at the same time.\n"
"\n"
"Usage: nnet-train-multistream-perutt [options] <feature-rspecifier> <labels-rspecifier> <model-in> [<model-out>]\n"
"e.g.: nnet-train-blstm-streams scp:feats.scp ark:targets.ark nnet.init nnet.iter1\n";
ParseOptions po(usage);
// training options,
NnetTrainOptions trn_opts;
trn_opts.Register(&po);
LossOptions loss_opts;
loss_opts.Register(&po);
bool binary = true;
po.Register("binary", &binary, "Write model in binary mode");
bool crossvalidate = false;
po.Register("cross-validate", &crossvalidate,
"Perform cross-validation (no backpropagation)");
std::string feature_transform;
po.Register("feature-transform", &feature_transform,
"Feature transform in Nnet format");
int32 length_tolerance = 5;
po.Register("length-tolerance", &length_tolerance,
"Allowed length difference of features/targets (frames)");
std::string frame_weights;
po.Register("frame-weights", &frame_weights,
"Per-frame weights to scale gradients (frame selection/weighting).");
int32 num_streams = 20;
po.Register("num-streams", &num_streams,
"Number of sentences processed in parallel (can be lower if sentences are long)");
double max_frames = 8000;
po.Register("max-frames", &max_frames,
"Max number of frames to be processed");
bool dummy = false;
po.Register("randomize", &dummy, "Dummy option.");
std::string use_gpu = "yes";
po.Register("use-gpu", &use_gpu,
"yes|no|optional, only has effect if compiled with CUDA");
po.Read(argc, argv);
if (po.NumArgs() != 3 + (crossvalidate ? 0 : 1)) {
po.PrintUsage();
exit(1);
}
std::string feature_rspecifier = po.GetArg(1),
targets_rspecifier = po.GetArg(2),
model_filename = po.GetArg(3);
std::string target_model_filename;
if (!crossvalidate) {
target_model_filename = po.GetArg(4);
}
using namespace kaldi;
using namespace kaldi::nnet1;
typedef kaldi::int32 int32;
#if HAVE_CUDA == 1
CuDevice::Instantiate().SelectGpuId(use_gpu);
#endif
Nnet nnet_transf;
if ( feature_transform != "" ) {
nnet_transf.Read(feature_transform);
}
Nnet nnet;
nnet.Read(model_filename);
nnet.SetTrainOptions(trn_opts);
if (crossvalidate) {
nnet_transf.SetDropoutRate(0.0);
nnet.SetDropoutRate(0.0);
}
kaldi::int64 total_frames = 0;
// Initialize feature and target readers,
SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
RandomAccessPosteriorReader targets_reader(targets_rspecifier);
RandomAccessBaseFloatVectorReader weights_reader;
if (frame_weights != "") {
weights_reader.Open(frame_weights);
}
Xent xent(loss_opts);
CuMatrix<BaseFloat> feats_transf, nnet_out, obj_diff;
Timer time;
KALDI_LOG << (crossvalidate ? "CROSS-VALIDATION" : "TRAINING")
<< " STARTED";
// Buffer for input features, used for choosing utt's with similar length,
MatrixBuffer matrix_buffer;
matrix_buffer.Init(&feature_reader);
int32 num_done = 0,
num_no_tgt_mat = 0,
num_other_error = 0;
while (!matrix_buffer.Done()) {
// Fill the parallel data into 'std::vector',
std::vector<Matrix<BaseFloat> > feats_utt;
std::vector<Posterior> labels_utt;
std::vector<Vector<BaseFloat> > weights_utt;
std::vector<int32> frame_num_utt;
{
matrix_buffer.ResetLength(); ///< reset the 'preferred' length,
for (matrix_buffer.Next(); !matrix_buffer.Done(); matrix_buffer.Next()) {
std::string utt = matrix_buffer.Key();
// Check that we have targets,
if (!targets_reader.HasKey(utt)) {
KALDI_WARN << utt << ", missing targets";
num_no_tgt_mat++;
continue;
}
// Do we have frame-weights?
if (frame_weights != "" && !weights_reader.HasKey(utt)) {
KALDI_WARN << utt << ", missing frame-weights";
num_other_error++;
continue;
}
// Get feature / target pair,
Matrix<BaseFloat> mat = matrix_buffer.Value();
Posterior targets = targets_reader.Value(utt);
// Skip too long sentences,
if (mat.NumRows() > max_frames) continue;
Vector<BaseFloat> weights;
if (frame_weights != "") {
weights = weights_reader.Value(utt);
} else { // all per-frame weights are 1.0
weights.Resize(mat.NumRows());
weights.Set(1.0);
}
// correct small length mismatch ... or drop sentence
{
// add lengths to vector
std::vector<int32> length;
length.push_back(mat.NumRows());
length.push_back(targets.size());
length.push_back(weights.Dim());
// find min, max
int32 min = *std::min_element(length.begin(), length.end());
int32 max = *std::max_element(length.begin(), length.end());
// fix or drop ?
if (max - min < length_tolerance) {
if (mat.NumRows() != min) mat.Resize(min, mat.NumCols(), kCopyData);
if (targets.size() != min) targets.resize(min);
if (weights.Dim() != min) weights.Resize(min, kCopyData);
} else {
KALDI_WARN << "Length mismatch! Targets " << targets.size()
<< ", features " << mat.NumRows() << ", " << utt;
num_other_error++;
continue;
}
}
// input transform may contain splicing,
nnet_transf.Feedforward(CuMatrix<BaseFloat>(mat), &feats_transf);
// store,
feats_utt.push_back(Matrix<BaseFloat>(feats_transf));
labels_utt.push_back(targets);
weights_utt.push_back(weights);
frame_num_utt.push_back(feats_transf.NumRows());
if (frame_num_utt.size() == num_streams) break;
// See how many frames we'd have (after padding), if we add one more utterance,
int32 max = (*std::max_element(frame_num_utt.begin(), frame_num_utt.end()));
if (max * (frame_num_utt.size() + 1) > max_frames) break;
}
}
// Having no data? Skip the cycle...
if (frame_num_utt.size() == 0) continue;
// Pack the parallel data,
Matrix<BaseFloat> feat_mat_host;
Posterior target_host;
Vector<BaseFloat> weight_host;
{
// Number of sequences,
int32 n_streams = frame_num_utt.size();
int32 frame_num_padded = (*std::max_element(frame_num_utt.begin(), frame_num_utt.end()));
int32 feat_dim = feats_utt.front().NumCols();
// Create the final feature matrix. Every utterance is padded to the max
// length within this group of utterances,
feat_mat_host.Resize(n_streams * frame_num_padded, feat_dim, kSetZero);
target_host.resize(n_streams * frame_num_padded);
weight_host.Resize(n_streams * frame_num_padded, kSetZero);
for (int32 s = 0; s < n_streams; s++) {
const Matrix<BaseFloat>& mat_tmp = feats_utt[s];
for (int32 r = 0; r < frame_num_utt[s]; r++) {
feat_mat_host.Row(r*n_streams + s).CopyFromVec(mat_tmp.Row(r));
}
}
for (int32 s = 0; s < n_streams; s++) {
const Posterior& target_tmp = labels_utt[s];
for (int32 r = 0; r < frame_num_utt[s]; r++) {
target_host[r*n_streams + s] = target_tmp[r];
}
}
// padded frames will keep initial zero-weight,
for (int32 s = 0; s < n_streams; s++) {
const Vector<BaseFloat>& weight_tmp = weights_utt[s];
for (int32 r = 0; r < frame_num_utt[s]; r++) {
weight_host(r*n_streams + s) = weight_tmp(r);
}
}
}
// Set the original lengths of utterances before padding,
nnet.SetSeqLengths(frame_num_utt);
// Show the 'utt' lengths in the VLOG[2],
if (GetVerboseLevel() >= 2) {
std::ostringstream os;
os << "[ ";
for (size_t i = 0; i < frame_num_utt.size(); i++) {
os << frame_num_utt[i] << " ";
}
os << "]";
KALDI_LOG << "frame_num_utt[" << frame_num_utt.size() << "]" << os.str();
}
// Reset all the streams (we have new sentences),
nnet.ResetStreams(std::vector<int32>(frame_num_utt.size(), 1));
// Propagation,
nnet.Propagate(CuMatrix<BaseFloat>(feat_mat_host), &nnet_out);
// Per-frame cross-entropy, gradients get re-scaled by weights,
xent.Eval(weight_host, nnet_out, target_host, &obj_diff);
// Backward pass
if (!crossvalidate) {
nnet.Backpropagate(obj_diff, NULL);
}
// 1st model update : show what happens in network,
if (total_frames == 0) {
KALDI_LOG << "### After " << total_frames << " frames,";
KALDI_LOG << nnet.Info();
KALDI_LOG << nnet.InfoPropagate();
if (!crossvalidate) {
KALDI_LOG << nnet.InfoBackPropagate();
KALDI_LOG << nnet.InfoGradient();
}
}
kaldi::int64 tmp_frames = total_frames;
num_done += frame_num_utt.size();
total_frames += std::accumulate(frame_num_utt.begin(), frame_num_utt.end(), 0);
// monitor the NN training (--verbose=2),
int32 F = 25000;
if (GetVerboseLevel() >= 3) {
// print every 25k frames,
if (tmp_frames / F != total_frames / F) {
KALDI_VLOG(2) << "### After " << total_frames << " frames,";
KALDI_VLOG(2) << nnet.Info();
KALDI_VLOG(2) << nnet.InfoPropagate();
if (!crossvalidate) {
KALDI_VLOG(2) << nnet.InfoBackPropagate();
KALDI_VLOG(2) << nnet.InfoGradient();
}
}
}
}
// after last model update : show what happens in network,
KALDI_LOG << "### After " << total_frames << " frames,";
KALDI_LOG << nnet.Info();
KALDI_LOG << nnet.InfoPropagate();
if (!crossvalidate) {
KALDI_LOG << nnet.InfoBackPropagate();
KALDI_LOG << nnet.InfoGradient();
}
if (!crossvalidate) {
nnet.Write(target_model_filename, binary);
}
KALDI_LOG << xent.ReportPerClass();
KALDI_LOG << "Done " << num_done << " files, " << num_no_tgt_mat
<< " with no tgt_mats, " << num_other_error
<< " with other errors. "
<< "[" << (crossvalidate ? "CROSS-VALIDATION" : "TRAINING")
<< ", " << time.Elapsed() / 60 << " min, "
<< "fps" << total_frames / time.Elapsed() << "]";
KALDI_LOG << xent.Report();
#if HAVE_CUDA == 1
CuDevice::Instantiate().PrintProfile();
#endif
return 0;
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}