nnet-train-multistream.cc
15.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
// nnetbin/nnet-train-multistream.cc
// Copyright 2015-2016 Brno University of Technology (Author: Karel Vesely)
// 2014 Jiayu DU (Jerry), Wei Li
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <numeric>
#include "nnet/nnet-trnopts.h"
#include "nnet/nnet-nnet.h"
#include "nnet/nnet-loss.h"
#include "nnet/nnet-randomizer.h"
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "base/timer.h"
#include "cudamatrix/cu-device.h"
namespace kaldi {
bool ReadData(SequentialBaseFloatMatrixReader& feature_reader,
RandomAccessPosteriorReader& target_reader,
RandomAccessBaseFloatVectorReader& weights_reader,
int32 length_tolerance,
Matrix<BaseFloat>* feats,
Posterior* targets,
Vector<BaseFloat>* weights,
int32* num_no_tgt_mat,
int32* num_other_error) {
// We're looking for the 1st valid utterance...
for ( ; !feature_reader.Done(); feature_reader.Next()) {
// Do we have targets?
const std::string& utt = feature_reader.Key();
KALDI_VLOG(3) << "Reading: " << utt;
if (!target_reader.HasKey(utt)) {
KALDI_WARN << utt << ", missing targets";
(*num_no_tgt_mat)++;
continue;
}
// Do we have frame-weights?
if (weights_reader.IsOpen() && !weights_reader.HasKey(utt)) {
KALDI_WARN << utt << ", missing frame-weights";
(*num_other_error)++;
continue;
}
// get the (feature,target) pair,
(*feats) = feature_reader.Value();
(*targets) = target_reader.Value(utt);
// getting per-frame weights,
if (weights_reader.IsOpen()) {
(*weights) = weights_reader.Value(utt);
} else { // all per-frame weights are 1.0
weights->Resize(feats->NumRows());
weights->Set(1.0);
}
// correct small length mismatch ... or drop sentence
{
// add lengths to vector
std::vector<int32> length;
length.push_back(feats->NumRows());
length.push_back(targets->size());
length.push_back(weights->Dim());
// find min, max
int32 min = *std::min_element(length.begin(), length.end());
int32 max = *std::max_element(length.begin(), length.end());
// fix or drop ?
if (max - min < length_tolerance) {
if (feats->NumRows() != min) feats->Resize(min, feats->NumCols(), kCopyData);
if (targets->size() != min) targets->resize(min);
if (weights->Dim() != min) weights->Resize(min, kCopyData);
} else {
KALDI_WARN << "Length mismatch! Targets " << targets->size()
<< ", features " << feats->NumRows() << ", " << utt;
num_other_error++;
continue;
}
}
// By getting here we got a valid utterance,
feature_reader.Next();
return true;
}
// No more data,
return false;
}
} // namespace kaldi
int main(int argc, char *argv[]) {
using namespace kaldi;
using namespace kaldi::nnet1;
typedef kaldi::int32 int32;
try {
const char *usage =
"Perform one iteration of Multi-stream training, truncated BPTT for LSTMs.\n"
"The training targets are pdf-posteriors, usually prepared by ali-to-post.\n"
"The updates are per-utterance.\n"
"\n"
"Usage: nnet-train-multistream [options] "
"<feature-rspecifier> <targets-rspecifier> <model-in> [<model-out>]\n"
"e.g.: nnet-train-lstm-streams scp:feature.scp ark:posterior.ark nnet.init nnet.iter1\n";
ParseOptions po(usage);
NnetTrainOptions trn_opts;
trn_opts.Register(&po);
LossOptions loss_opts;
loss_opts.Register(&po);
bool binary = true;
po.Register("binary", &binary, "Write output in binary mode");
bool crossvalidate = false;
po.Register("cross-validate", &crossvalidate,
"Perform cross-validation (don't back-propagate)");
std::string feature_transform;
po.Register("feature-transform", &feature_transform,
"Feature transform in Nnet format");
std::string objective_function = "xent";
po.Register("objective-function", &objective_function,
"Objective function : xent|mse");
int32 length_tolerance = 5;
po.Register("length-tolerance", &length_tolerance,
"Allowed length difference of features/targets (frames)");
std::string frame_weights;
po.Register("frame-weights", &frame_weights,
"Per-frame weights to scale gradients (frame selection/weighting).");
int32 batch_size = 20;
po.Register("batch-size", &batch_size,
"Length of 'one stream' in the Multi-stream training");
int32 num_streams = 4;
po.Register("num-streams", &num_streams,
"Number of streams in the Multi-stream training");
bool dummy = false;
po.Register("randomize", &dummy, "Dummy option.");
std::string use_gpu="yes";
po.Register("use-gpu", &use_gpu,
"yes|no|optional, only has effect if compiled with CUDA");
po.Read(argc, argv);
if (po.NumArgs() != 3 + (crossvalidate ? 0 : 1)) {
po.PrintUsage();
exit(1);
}
std::string feature_rspecifier = po.GetArg(1),
targets_rspecifier = po.GetArg(2),
model_filename = po.GetArg(3);
std::string target_model_filename;
if (!crossvalidate) {
target_model_filename = po.GetArg(4);
}
using namespace kaldi;
using namespace kaldi::nnet1;
typedef kaldi::int32 int32;
#if HAVE_CUDA == 1
CuDevice::Instantiate().SelectGpuId(use_gpu);
#endif
Nnet nnet_transf;
if (feature_transform != "") {
nnet_transf.Read(feature_transform);
}
Nnet nnet;
nnet.Read(model_filename);
nnet.SetTrainOptions(trn_opts);
if (crossvalidate) {
nnet_transf.SetDropoutRate(0.0);
nnet.SetDropoutRate(0.0);
}
kaldi::int64 total_frames = 0;
SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
RandomAccessPosteriorReader target_reader(targets_rspecifier);
RandomAccessBaseFloatVectorReader weights_reader;
if (frame_weights != "") {
weights_reader.Open(frame_weights);
}
Xent xent(loss_opts);
Mse mse(loss_opts);
Timer time;
double time_gpu = 0;
KALDI_LOG << (crossvalidate ? "CROSS-VALIDATION" : "TRAINING")
<< " STARTED";
int32 num_done = 0,
num_no_tgt_mat = 0,
num_other_error = 0;
// book-keeping for multi-stream training,
std::vector<Matrix<BaseFloat> > feats_utt(num_streams);
std::vector<Posterior> labels_utt(num_streams);
std::vector<Vector<BaseFloat> > weights_utt(num_streams);
std::vector<int32> cursor_utt(num_streams); // 0 initialized,
std::vector<int32> new_utt_flags(num_streams);
CuMatrix<BaseFloat> feats_transf, nnet_out, obj_diff;
// MAIN LOOP,
while (1) {
// Re-fill the streams, if needed,
new_utt_flags.assign(num_streams, 0); // set new-utterance flags to zero,
for (int s = 0; s < num_streams; s++) {
// Need a new utterance for stream 's'?
if (cursor_utt[s] >= feats_utt[s].NumRows()) {
Matrix<BaseFloat> feats;
Posterior targets;
Vector<BaseFloat> weights;
// get the data from readers,
if (ReadData(feature_reader, target_reader, weights_reader,
length_tolerance,
&feats, &targets, &weights,
&num_no_tgt_mat, &num_other_error)) {
// input transform may contain splicing,
Timer t;
nnet_transf.Feedforward(CuMatrix<BaseFloat>(feats), &feats_transf);
time_gpu += t.Elapsed();
/* Here we could do the 'targets_delay', BUT...
* It is better to do it by a <Splice> component!
*
* The prototype would look like this (6th frame becomes 1st frame, etc.):
* '<Splice> <InputDim> dim1 <OutputDim> dim1 <BuildVector> 5 </BuildVector>'
*/
// store,
feats_utt[s] = Matrix<BaseFloat>(feats_transf);
labels_utt[s] = targets;
weights_utt[s] = weights;
cursor_utt[s] = 0;
new_utt_flags[s] = 1;
}
}
}
// End the training when 1st stream is empty
// (this avoids over-adaptation to last utterances),
size_t inactive_streams = 0;
for (int32 s = 0; s < num_streams; s++) {
if (feats_utt[s].NumRows() - cursor_utt[s] <= 0) {
inactive_streams += 1;
}
}
if (inactive_streams >= 1) {
KALDI_LOG << "No more data to re-fill one of the streams, end of the training!";
KALDI_LOG << "(remaining stubs of data are discarded, don't overtrain on them)";
break;
}
// number of frames we'll pack as the streams,
std::vector<int32> frame_num_utt;
// pack the parallel data,
Matrix<BaseFloat> feat_mat_host;
Posterior target_host;
Vector<BaseFloat> weight_host;
{
// Number of sequences (can have zero length),
int32 n_streams = num_streams;
// Create the final feature matrix with 'interleaved feature-lines',
feat_mat_host.Resize(n_streams * batch_size, nnet.InputDim(), kSetZero);
target_host.resize(n_streams * batch_size);
weight_host.Resize(n_streams * batch_size, kSetZero);
frame_num_utt.resize(n_streams, 0);
// we slice at the 'cursor' at most 'batch_size' frames,
for (int32 s = 0; s < n_streams; s++) {
int32 num_rows = std::max(0, feats_utt[s].NumRows() - cursor_utt[s]);
frame_num_utt[s] = std::min(batch_size, num_rows);
}
// pack the data,
{
for (int32 s = 0; s < n_streams; s++) {
if (frame_num_utt[s] > 0) {
auto mat_tmp = feats_utt[s].RowRange(cursor_utt[s], frame_num_utt[s]);
for (int32 r = 0; r < frame_num_utt[s]; r++) {
feat_mat_host.Row(r*n_streams + s).CopyFromVec(mat_tmp.Row(r));
}
}
}
for (int32 s = 0; s < n_streams; s++) {
for (int32 r = 0; r < frame_num_utt[s]; r++) {
target_host[r*n_streams + s] = labels_utt[s][cursor_utt[s] + r];
}
}
// padded frames will keep initial zero-weight,
for (int32 s = 0; s < n_streams; s++) {
if (frame_num_utt[s] > 0) {
auto weight_tmp = weights_utt[s].Range(cursor_utt[s], frame_num_utt[s]);
for (int32 r = 0; r < frame_num_utt[s]; r++) {
weight_host(r*n_streams + s) = weight_tmp(r);
}
}
}
}
// advance the cursors,
for (int32 s = 0; s < n_streams; s++) {
cursor_utt[s] += frame_num_utt[s];
}
}
// pass the info about padding,
nnet.SetSeqLengths(frame_num_utt);
// Show debug info,
if (GetVerboseLevel() >= 4) {
// cursors in the feature_matrices,
{
std::ostringstream os;
os << "[ ";
for (size_t i = 0; i < cursor_utt.size(); i++) {
os << cursor_utt[i] << " ";
}
os << "]";
KALDI_LOG << "cursor_utt[" << cursor_utt.size() << "]" << os.str();
}
// frames in the mini-batch,
{
std::ostringstream os;
os << "[ ";
for (size_t i = 0; i < frame_num_utt.size(); i++) {
os << frame_num_utt[i] << " ";
}
os << "]";
KALDI_LOG << "frame_num_utt[" << frame_num_utt.size() << "]" << os.str();
}
}
Timer t;
// with new utterance we reset the history,
nnet.ResetStreams(new_utt_flags);
// forward pass,
nnet.Propagate(CuMatrix<BaseFloat>(feat_mat_host), &nnet_out);
// evaluate objective function we've chosen,
if (objective_function == "xent") {
xent.Eval(weight_host, nnet_out, target_host, &obj_diff);
} else if (objective_function == "mse") {
mse.Eval(weight_host, nnet_out, target_host, &obj_diff);
} else {
KALDI_ERR << "Unknown objective function code : "
<< objective_function;
}
if (!crossvalidate) {
// back-propagate, and do the update,
nnet.Backpropagate(obj_diff, NULL);
}
time_gpu += t.Elapsed();
// 1st minibatch : show what happens in network,
if (total_frames == 0) {
KALDI_LOG << "### After " << total_frames << " frames,";
KALDI_LOG << nnet.Info();
KALDI_LOG << nnet.InfoPropagate();
if (!crossvalidate) {
KALDI_LOG << nnet.InfoBackPropagate();
KALDI_LOG << nnet.InfoGradient();
}
}
kaldi::int64 tmp_frames = total_frames;
num_done += std::accumulate(new_utt_flags.begin(), new_utt_flags.end(), 0);
total_frames += std::accumulate(frame_num_utt.begin(), frame_num_utt.end(), 0);
// monitor the NN training (--verbose=2),
int32 F = 25000;
if (GetVerboseLevel() >= 2) {
// print every 25k frames,
if (tmp_frames / F != total_frames / F) {
KALDI_VLOG(2) << "### After " << total_frames << " frames,";
KALDI_VLOG(2) << nnet.Info();
KALDI_VLOG(2) << nnet.InfoPropagate();
if (!crossvalidate) {
KALDI_VLOG(2) << nnet.InfoBackPropagate();
KALDI_VLOG(2) << nnet.InfoGradient();
}
}
}
}
// after last minibatch : show what happens in network,
KALDI_LOG << "### After " << total_frames << " frames,";
KALDI_LOG << nnet.Info();
KALDI_LOG << nnet.InfoPropagate();
if (!crossvalidate) {
KALDI_LOG << nnet.InfoBackPropagate();
KALDI_LOG << nnet.InfoGradient();
}
if (!crossvalidate) {
nnet.Write(target_model_filename, binary);
}
if (objective_function == "xent") {
KALDI_LOG << xent.ReportPerClass();
}
KALDI_LOG << "Done " << num_done << " files, "
<< num_no_tgt_mat << " with no tgt_mats, "
<< num_other_error << " with other errors. "
<< "[" << (crossvalidate ? "CROSS-VALIDATION" : "TRAINING")
<< ", " << time.Elapsed() / 60 << " min, processing "
<< total_frames / time.Elapsed() << " frames per sec, "
<< "GPU_time " << 100.*time_gpu/time.Elapsed() << "% ]";
if (objective_function == "xent") {
KALDI_LOG << xent.Report();
} else if (objective_function == "mse") {
KALDI_LOG << mse.Report();
} else {
KALDI_ERR << "Unknown objective function code : " << objective_function;
}
#if HAVE_CUDA == 1
CuDevice::Instantiate().PrintProfile();
#endif
return 0;
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}