nnet-train-perutt.cc
10.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
// nnetbin/nnet-train-perutt.cc
// Copyright 2011-2014 Brno University of Technology (Author: Karel Vesely)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "nnet/nnet-trnopts.h"
#include "nnet/nnet-nnet.h"
#include "nnet/nnet-loss.h"
#include "nnet/nnet-randomizer.h"
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "base/timer.h"
#include "cudamatrix/cu-device.h"
int main(int argc, char *argv[]) {
using namespace kaldi;
using namespace kaldi::nnet1;
typedef kaldi::int32 int32;
try {
const char *usage =
"Perform one iteration of NN training by SGD with per-utterance updates.\n"
"The training targets are represented as pdf-posteriors, usually prepared "
"by ali-to-post.\n"
"Usage: nnet-train-perutt [options] "
"<feature-rspecifier> <targets-rspecifier> <model-in> [<model-out>]\n"
"e.g.: nnet-train-perutt scp:feature.scp ark:posterior.ark nnet.init nnet.iter1\n";
ParseOptions po(usage);
NnetTrainOptions trn_opts;
trn_opts.Register(&po);
LossOptions loss_opts;
loss_opts.Register(&po);
bool binary = true;
po.Register("binary", &binary, "Write output in binary mode");
bool crossvalidate = false;
po.Register("cross-validate", &crossvalidate,
"Perform cross-validation (don't backpropagate)");
std::string feature_transform;
po.Register("feature-transform", &feature_transform,
"Feature transform in Nnet format");
std::string objective_function = "xent";
po.Register("objective-function", &objective_function,
"Objective function : xent|mse");
int32 length_tolerance = 5;
po.Register("length-tolerance", &length_tolerance,
"Allowed length difference of features/targets (frames)");
std::string frame_weights;
po.Register("frame-weights", &frame_weights,
"Per-frame weights to scale gradients (frame selection/weighting).");
kaldi::int32 max_frames = 6000; // Allow segments maximum of one minute by default
po.Register("max-frames",&max_frames, "Maximum number of frames a segment can have to be processed");
std::string use_gpu="yes";
po.Register("use-gpu", &use_gpu,
"yes|no|optional, only has effect if compiled with CUDA");
//// Add dummy option for compatibility with default scheduler,
bool randomize = false;
po.Register("randomize", &randomize,
"Dummy, for compatibility with 'steps/nnet/train_scheduler.sh'");
////
po.Read(argc, argv);
if (po.NumArgs() != 3 + (crossvalidate ? 0 : 1)) {
po.PrintUsage();
exit(1);
}
std::string feature_rspecifier = po.GetArg(1),
targets_rspecifier = po.GetArg(2),
model_filename = po.GetArg(3);
std::string target_model_filename;
if (!crossvalidate) {
target_model_filename = po.GetArg(4);
}
using namespace kaldi;
using namespace kaldi::nnet1;
typedef kaldi::int32 int32;
#if HAVE_CUDA == 1
CuDevice::Instantiate().SelectGpuId(use_gpu);
#endif
Nnet nnet_transf;
if (feature_transform != "") {
nnet_transf.Read(feature_transform);
}
Nnet nnet;
nnet.Read(model_filename);
nnet.SetTrainOptions(trn_opts);
if (crossvalidate) {
nnet_transf.SetDropoutRate(0.0);
nnet.SetDropoutRate(0.0);
}
kaldi::int64 total_frames = 0;
SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
RandomAccessPosteriorReader targets_reader(targets_rspecifier);
RandomAccessBaseFloatVectorReader weights_reader;
if (frame_weights != "") {
weights_reader.Open(frame_weights);
}
Xent xent(loss_opts);
Mse mse(loss_opts);
MultiTaskLoss multitask(loss_opts);
if (0 == objective_function.compare(0, 9, "multitask")) {
// objective_function contains something like :
// 'multitask,xent,2456,1.0,mse,440,0.001'
//
// the meaning is following:
// 'multitask,<type1>,<dim1>,<weight1>,...,<typeN>,<dimN>,<weightN>'
multitask.InitFromString(objective_function);
}
CuMatrix<BaseFloat> feats, feats_transf, nnet_out, obj_diff;
Timer time;
KALDI_LOG << (crossvalidate?"CROSS-VALIDATION":"TRAINING") << " STARTED";
int32 num_done = 0,
num_no_tgt_mat = 0,
num_other_error = 0;
// main loop,
for ( ; !feature_reader.Done(); feature_reader.Next()) {
std::string utt = feature_reader.Key();
KALDI_VLOG(3) << "Reading " << utt;
// check that we have targets
if (!targets_reader.HasKey(utt)) {
KALDI_WARN << utt << ", missing targets";
num_no_tgt_mat++;
continue;
}
// check we have per-frame weights
if (frame_weights != "" && !weights_reader.HasKey(utt)) {
KALDI_WARN << utt << ", missing per-frame weights";
num_other_error++;
feature_reader.Next();
continue;
}
// get feature / target pair
Matrix<BaseFloat> mat = feature_reader.Value();
Posterior nnet_tgt = targets_reader.Value(utt);
// skip the sentence if it is too long,
if (mat.NumRows() > max_frames) {
KALDI_WARN << "Skipping " << utt
<< " that has " << mat.NumRows() << " frames,"
<< " it is longer than '--max-frames'" << max_frames;
num_other_error++;
continue;
}
// get per-frame weights
Vector<BaseFloat> frm_weights;
if (frame_weights != "") {
frm_weights = weights_reader.Value(utt);
} else { // all per-frame weights are 1.0
frm_weights.Resize(mat.NumRows());
frm_weights.Set(1.0);
}
// correct small length mismatch ... or drop sentence
{
// add lengths to vector
std::vector<int32> length;
length.push_back(mat.NumRows());
length.push_back(nnet_tgt.size());
length.push_back(frm_weights.Dim());
// find min, max
int32 min = *std::min_element(length.begin(), length.end());
int32 max = *std::max_element(length.begin(), length.end());
// fix or drop ?
if (max - min < length_tolerance) {
if (mat.NumRows() != min) mat.Resize(min, mat.NumCols(), kCopyData);
if (nnet_tgt.size() != min) nnet_tgt.resize(min);
if (frm_weights.Dim() != min) frm_weights.Resize(min, kCopyData);
} else {
KALDI_WARN << utt << ", length mismatch of targets " << nnet_tgt.size()
<< " and features " << mat.NumRows();
num_other_error++;
continue;
}
}
// apply optional feature transform
nnet_transf.Feedforward(CuMatrix<BaseFloat>(mat), &feats_transf);
// forward pass
nnet.Propagate(feats_transf, &nnet_out);
// evaluate objective function we've chosen,
if (objective_function == "xent") {
// gradients are re-scaled by weights inside Eval,
xent.Eval(frm_weights, nnet_out, nnet_tgt, &obj_diff);
} else if (objective_function == "mse") {
// gradients are re-scaled by weights inside Eval,
mse.Eval(frm_weights, nnet_out, nnet_tgt, &obj_diff);
} else if (0 == objective_function.compare(0, 9, "multitask")) {
// gradients re-scaled by weights in Eval,
multitask.Eval(frm_weights, nnet_out, nnet_tgt, &obj_diff);
} else {
KALDI_ERR << "Unknown objective function code : "
<< objective_function;
}
if (!crossvalidate) {
// backpropagate and update,
nnet.Backpropagate(obj_diff, NULL);
}
// 1st minibatch : show what happens in network,
if (total_frames == 0) {
KALDI_LOG << "### After " << total_frames << " frames,";
KALDI_LOG << nnet.InfoPropagate();
if (!crossvalidate) {
KALDI_LOG << nnet.InfoBackPropagate();
KALDI_LOG << nnet.InfoGradient();
}
}
// VERBOSE LOG
// monitor the NN training (--verbose=2),
if (GetVerboseLevel() >= 2) {
static int32 counter = 0;
counter += mat.NumRows();
// print every 25k frames,
if (counter >= 25000) {
KALDI_VLOG(2) << "### After " << total_frames << " frames,";
KALDI_VLOG(2) << nnet.InfoPropagate();
if (!crossvalidate) {
KALDI_VLOG(2) << nnet.InfoBackPropagate();
KALDI_VLOG(2) << nnet.InfoGradient();
}
counter = 0;
}
}
num_done++;
total_frames += frm_weights.Sum();
} // main loop,
// after last minibatch : show what happens in network,
KALDI_LOG << "### After " << total_frames << " frames,";
KALDI_LOG << nnet.InfoPropagate();
if (!crossvalidate) {
KALDI_LOG << nnet.InfoBackPropagate();
KALDI_LOG << nnet.InfoGradient();
}
if (!crossvalidate) {
nnet.Write(target_model_filename, binary);
}
KALDI_LOG << "Done " << num_done << " files, "
<< num_no_tgt_mat << " with no tgt_mats, "
<< num_other_error << " with other errors. "
<< "[" << (crossvalidate ? "CROSS-VALIDATION" : "TRAINING")
<< ", " << (randomize ? "RANDOMIZED" : "NOT-RANDOMIZED")
<< ", " << time.Elapsed() / 60 << " min, processing "
<< total_frames / time.Elapsed() << " frames per sec.]";
if (objective_function == "xent") {
KALDI_LOG << xent.ReportPerClass();
KALDI_LOG << xent.Report();
} else if (objective_function == "mse") {
KALDI_LOG << mse.Report();
} else if (0 == objective_function.compare(0, 9, "multitask")) {
KALDI_LOG << multitask.Report();
} else {
KALDI_ERR << "Unknown objective function code : " << objective_function;
}
#if HAVE_CUDA == 1
CuDevice::Instantiate().PrintProfile();
#endif
return 0;
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}