online-ivector-feature.cc 27.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
// online2/online-ivector-feature.cc

// Copyright 2014  Daniel Povey

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include "online2/online-ivector-feature.h"

namespace kaldi {

OnlineIvectorExtractionInfo::OnlineIvectorExtractionInfo(
    const OnlineIvectorExtractionConfig &config) {
  Init(config);
}

void OnlineIvectorExtractionInfo::Init(
    const OnlineIvectorExtractionConfig &config) {
  ivector_period = config.ivector_period;
  num_gselect = config.num_gselect;
  min_post = config.min_post;
  posterior_scale = config.posterior_scale;
  max_count = config.max_count;
  num_cg_iters = config.num_cg_iters;
  use_most_recent_ivector = config.use_most_recent_ivector;
  greedy_ivector_extractor = config.greedy_ivector_extractor;
  if (greedy_ivector_extractor && !use_most_recent_ivector) {
    KALDI_WARN << "--greedy-ivector-extractor=true implies "
               << "--use-most-recent-ivector=true";
    use_most_recent_ivector = true;
  }
  max_remembered_frames = config.max_remembered_frames;

  std::string note = "(note: this may be needed "
      "in the file supplied to --ivector-extractor-config)";
  if (config.lda_mat_rxfilename == "")
    KALDI_ERR << "--lda-matrix option must be set " << note;
  ReadKaldiObject(config.lda_mat_rxfilename, &lda_mat);
  if (config.global_cmvn_stats_rxfilename == "")
    KALDI_ERR << "--global-cmvn-stats option must be set " << note;
  ReadKaldiObject(config.global_cmvn_stats_rxfilename, &global_cmvn_stats);
  if (config.cmvn_config_rxfilename == "")
    KALDI_ERR << "--cmvn-config option must be set " << note;
  ReadConfigFromFile(config.cmvn_config_rxfilename, &cmvn_opts);
  if (config.splice_config_rxfilename == "")
    KALDI_ERR << "--splice-config option must be set " << note;
  ReadConfigFromFile(config.splice_config_rxfilename, &splice_opts);
  if (config.diag_ubm_rxfilename == "")
    KALDI_ERR << "--diag-ubm option must be set " << note;
  ReadKaldiObject(config.diag_ubm_rxfilename, &diag_ubm);
  if (config.ivector_extractor_rxfilename == "")
    KALDI_ERR << "--ivector-extractor option must be set " << note;
  ReadKaldiObject(config.ivector_extractor_rxfilename, &extractor);
  this->Check();
}


void OnlineIvectorExtractionInfo::Check() const {
  KALDI_ASSERT(global_cmvn_stats.NumRows() == 2);
  int32 base_feat_dim = global_cmvn_stats.NumCols() - 1,
      num_splice = splice_opts.left_context + 1 + splice_opts.right_context,
      spliced_input_dim = base_feat_dim * num_splice;

  KALDI_ASSERT(lda_mat.NumCols() == spliced_input_dim ||
               lda_mat.NumCols() == spliced_input_dim + 1);
  KALDI_ASSERT(lda_mat.NumRows() == diag_ubm.Dim());
  KALDI_ASSERT(diag_ubm.Dim() == extractor.FeatDim());
  KALDI_ASSERT(ivector_period > 0);
  KALDI_ASSERT(num_gselect > 0);
  KALDI_ASSERT(min_post < 0.5);
  // posterior scale more than one does not really make sense.
  KALDI_ASSERT(posterior_scale > 0.0 && posterior_scale <= 1.0);
  KALDI_ASSERT(max_remembered_frames >= 0);
}

// The class constructed in this way should never be used.
OnlineIvectorExtractionInfo::OnlineIvectorExtractionInfo():
    ivector_period(0), num_gselect(0), min_post(0.0), posterior_scale(0.0),
    use_most_recent_ivector(true), greedy_ivector_extractor(false),
    max_remembered_frames(0) { }

OnlineIvectorExtractorAdaptationState::OnlineIvectorExtractorAdaptationState(
    const OnlineIvectorExtractorAdaptationState &other):
    cmvn_state(other.cmvn_state), ivector_stats(other.ivector_stats) { }


void OnlineIvectorExtractorAdaptationState::LimitFrames(
    BaseFloat max_remembered_frames, BaseFloat posterior_scale) {
  KALDI_ASSERT(max_remembered_frames >= 0);
  KALDI_ASSERT(cmvn_state.frozen_state.NumRows() == 0);
  if (cmvn_state.speaker_cmvn_stats.NumRows() != 0) {
    int32 feat_dim = cmvn_state.speaker_cmvn_stats.NumCols() - 1;
    BaseFloat count = cmvn_state.speaker_cmvn_stats(0, feat_dim);
    if (count > max_remembered_frames)
      cmvn_state.speaker_cmvn_stats.Scale(max_remembered_frames / count);
  }
  // the stats for the iVector have been scaled by info_.posterior_scale,
  // so we need to take this in account when setting the target count.
  BaseFloat max_remembered_frames_scaled =
      max_remembered_frames * posterior_scale;
  if (ivector_stats.Count() > max_remembered_frames_scaled) {
    ivector_stats.Scale(max_remembered_frames_scaled /
                        ivector_stats.Count());
  }
}

void OnlineIvectorExtractorAdaptationState::Write(std::ostream &os, bool binary) const {
  WriteToken(os, binary, "<OnlineIvectorExtractorAdaptationState>");  // magic string.
  WriteToken(os, binary, "<CmvnState>");
  cmvn_state.Write(os, binary);
  WriteToken(os, binary, "<IvectorStats>");
  ivector_stats.Write(os, binary);
  WriteToken(os, binary, "</OnlineIvectorExtractorAdaptationState>");
}

void OnlineIvectorExtractorAdaptationState::Read(std::istream &is, bool binary) {
  ExpectToken(is, binary, "<OnlineIvectorExtractorAdaptationState>");  // magic string.
  ExpectToken(is, binary, "<CmvnState>");
  cmvn_state.Read(is, binary);
  ExpectToken(is, binary, "<IvectorStats>");
  ivector_stats.Read(is, binary);
  ExpectToken(is, binary, "</OnlineIvectorExtractorAdaptationState>");
}

int32 OnlineIvectorFeature::Dim() const {
  return info_.extractor.IvectorDim();
}

bool OnlineIvectorFeature::IsLastFrame(int32 frame) const {
  // Note: it might be more logical to return, say, lda_->IsLastFrame()
  // since this is the feature the iVector extractor directly consumes,
  // but it will give the same answer as base_->IsLastFrame() anyway.
  // [note: the splicing component pads at begin and end so it always
  // returns the same number of frames as its input.]
  return base_->IsLastFrame(frame);
}

int32 OnlineIvectorFeature::NumFramesReady() const {
  KALDI_ASSERT(lda_ != NULL);
  return lda_->NumFramesReady();
}

BaseFloat OnlineIvectorFeature::FrameShiftInSeconds() const {
  return lda_->FrameShiftInSeconds();
}

void OnlineIvectorFeature::UpdateFrameWeights(
    const std::vector<std::pair<int32, BaseFloat> > &delta_weights) {
  // add the elements to delta_weights_, which is a priority queue.  The top
  // element of the priority queue is the lowest numbered frame (we ensured this
  // by making the comparison object std::greater instead of std::less).  Adding
  // elements from top (lower-numbered frames) to bottom (higher-numbered
  // frames) should be most efficient, assuming it's a heap internally.  So we
  // go forward not backward in delta_weights while adding.
  for (size_t i = 0; i < delta_weights.size(); i++) {
    delta_weights_.push(delta_weights[i]);
    int32 frame = delta_weights[i].first;
    KALDI_ASSERT(frame >= 0);
    if (frame > most_recent_frame_with_weight_)
      most_recent_frame_with_weight_ = frame;
  }
  delta_weights_provided_ = true;
}


BaseFloat OnlineIvectorFeature::GetMinPost(BaseFloat weight) const {
  BaseFloat min_post = info_.min_post;
  BaseFloat abs_weight = fabs(weight);
  // If we return 0.99, it will have the same effect as just picking the
  // most probable Gaussian on that frame.
  if (abs_weight == 0.0)
    return 0.99;   // I don't anticipate reaching here.
  min_post /= abs_weight;
  if (min_post > 0.99)
    min_post = 0.99;
  return min_post;
}

void OnlineIvectorFeature::UpdateStatsForFrames(
    const std::vector<std::pair<int32, BaseFloat> > &frame_weights_in) {

  std::vector<std::pair<int32, BaseFloat> > frame_weights(frame_weights_in);
  // Remove duplicates of frames.
  MergePairVectorSumming(&frame_weights);

  if (frame_weights.empty())
    return;

  int32 num_frames = static_cast<int32>(frame_weights.size());
  int32 feat_dim = lda_normalized_->Dim();
  Matrix<BaseFloat> feats(num_frames, feat_dim, kUndefined),
      log_likes;

  std::vector<int32> frames;
  frames.reserve(frame_weights.size());
  for (int32 i = 0; i < num_frames; i++)
    frames.push_back(frame_weights[i].first);
  lda_normalized_->GetFrames(frames, &feats);

  info_.diag_ubm.LogLikelihoods(feats, &log_likes);

  // "posteriors" stores, for each frame index in the range of frames, the
  // pruned posteriors for the Gaussians in the UBM.
  std::vector<std::vector<std::pair<int32, BaseFloat> > > posteriors(num_frames);
  for (int32 i = 0; i < num_frames; i++) {
    std::vector<std::pair<int32, BaseFloat> > &posterior = posteriors[i];
    BaseFloat weight = frame_weights[i].second;
    if (weight != 0.0) {
      tot_ubm_loglike_ += weight *
          VectorToPosteriorEntry(log_likes.Row(i), info_.num_gselect,
                                 GetMinPost(weight), &posterior);
      for (size_t j = 0; j < posterior.size(); j++)
        posterior[j].second *= info_.posterior_scale * weight;
    }
  }
  lda_->GetFrames(frames, &feats);  // get features without CMN.
  ivector_stats_.AccStats(info_.extractor, feats, posteriors);
}


void OnlineIvectorFeature::UpdateStatsUntilFrame(int32 frame) {
  KALDI_ASSERT(frame >= 0 && frame < this->NumFramesReady() &&
               !delta_weights_provided_);
  updated_with_no_delta_weights_ = true;

  int32 ivector_period = info_.ivector_period;
  int32 num_cg_iters = info_.num_cg_iters;

  std::vector<std::pair<int32, BaseFloat> > frame_weights;

  for (; num_frames_stats_ <= frame; num_frames_stats_++) {
    int32 t = num_frames_stats_;
    BaseFloat frame_weight = 1.0;
    frame_weights.push_back(std::pair<int32, BaseFloat>(t, frame_weight));
    if ((!info_.use_most_recent_ivector && t % ivector_period == 0) ||
        (info_.use_most_recent_ivector && t == frame)) {
      // The call below to UpdateStatsForFrames() is equivalent to doing, for
      // all valid indexes i:
      //  UpdateStatsForFrame(cur_start_frame + i, frame_weights[i])
      UpdateStatsForFrames(frame_weights);
      frame_weights.clear();
      ivector_stats_.GetIvector(num_cg_iters, &current_ivector_);
      if (!info_.use_most_recent_ivector) {  // need to cache iVectors.
        int32 ivec_index = t / ivector_period;
        KALDI_ASSERT(ivec_index == static_cast<int32>(ivectors_history_.size()));
        ivectors_history_.push_back(new Vector<BaseFloat>(current_ivector_));
      }
    }
  }
  if (!frame_weights.empty())
    UpdateStatsForFrames(frame_weights);
}

void OnlineIvectorFeature::UpdateStatsUntilFrameWeighted(int32 frame) {
  KALDI_ASSERT(frame >= 0 && frame < this->NumFramesReady() &&
               delta_weights_provided_ &&
               ! updated_with_no_delta_weights_ &&
               frame <= most_recent_frame_with_weight_);
  bool debug_weights = false;

  int32 ivector_period = info_.ivector_period;
  int32 num_cg_iters = info_.num_cg_iters;

  std::vector<std::pair<int32, BaseFloat> > frame_weights;
  frame_weights.reserve(delta_weights_.size());

  for (; num_frames_stats_ <= frame; num_frames_stats_++) {
    int32 t = num_frames_stats_;
    // Instead of just updating frame t, we update all frames that need updating
    // with index <= t, in case old frames were reclassified as silence/nonsilence.
    while (!delta_weights_.empty() &&
           delta_weights_.top().first <= t) {
      int32 frame = delta_weights_.top().first;
      BaseFloat weight = delta_weights_.top().second;
      frame_weights.push_back(delta_weights_.top());
      delta_weights_.pop();
      if (debug_weights) {
        if (current_frame_weight_debug_.size() <= frame)
          current_frame_weight_debug_.resize(frame + 1, 0.0);
        current_frame_weight_debug_[frame] += weight;
      }
    }
    if ((!info_.use_most_recent_ivector && t % ivector_period == 0) ||
        (info_.use_most_recent_ivector && t == frame)) {
      UpdateStatsForFrames(frame_weights);
      frame_weights.clear();
      ivector_stats_.GetIvector(num_cg_iters, &current_ivector_);
      if (!info_.use_most_recent_ivector) {  // need to cache iVectors.
        int32 ivec_index = t / ivector_period;
        KALDI_ASSERT(ivec_index == static_cast<int32>(ivectors_history_.size()));
        ivectors_history_.push_back(new Vector<BaseFloat>(current_ivector_));
      }
    }
  }
  if (!frame_weights.empty())
    UpdateStatsForFrames(frame_weights);
}


void OnlineIvectorFeature::GetFrame(int32 frame,
                                    VectorBase<BaseFloat> *feat) {
  int32 frame_to_update_until = (info_.greedy_ivector_extractor ?
                                 lda_->NumFramesReady() - 1 : frame);
  if (!delta_weights_provided_)  // No silence weighting.
    UpdateStatsUntilFrame(frame_to_update_until);
  else
    UpdateStatsUntilFrameWeighted(frame_to_update_until);

  KALDI_ASSERT(feat->Dim() == this->Dim());

  if (info_.use_most_recent_ivector) {
    KALDI_VLOG(5) << "due to --use-most-recent-ivector=true, using iVector "
                  << "from frame " << num_frames_stats_ << " for frame "
                  << frame;
    // use the most recent iVector we have, even if 'frame' is significantly in
    // the past.
    feat->CopyFromVec(current_ivector_);
    // Subtract the prior-mean from the first dimension of the output feature so
    // it's approximately zero-mean.
    (*feat)(0) -= info_.extractor.PriorOffset();
  } else {
    int32 i = frame / info_.ivector_period;  // rounds down.
    // if the following fails, UpdateStatsUntilFrame would have a bug.
    KALDI_ASSERT(static_cast<size_t>(i) <  ivectors_history_.size());
    feat->CopyFromVec(*(ivectors_history_[i]));
    (*feat)(0) -= info_.extractor.PriorOffset();
  }
}

void OnlineIvectorFeature::PrintDiagnostics() const {
  if (num_frames_stats_ == 0) {
    KALDI_VLOG(3) << "Processed no data.";
  } else {
    KALDI_VLOG(3) << "UBM log-likelihood was "
                  << (tot_ubm_loglike_ / NumFrames())
                  << " per frame, over " << NumFrames()
                  << " frames.";

    Vector<BaseFloat> temp_ivector(current_ivector_);
    temp_ivector(0) -= info_.extractor.PriorOffset();

    KALDI_VLOG(2) << "By the end of the utterance, objf change/frame "
                  << "from estimating iVector (vs. default) was "
                  << ivector_stats_.ObjfChange(current_ivector_)
                  << " and iVector length was "
                  << temp_ivector.Norm(2.0);
  }
}

OnlineIvectorFeature::~OnlineIvectorFeature() {
  PrintDiagnostics();
  // Delete objects owned here.
  for (size_t i = 0; i < to_delete_.size(); i++)
    delete to_delete_[i];
  for (size_t i = 0; i < ivectors_history_.size(); i++)
    delete ivectors_history_[i];
}

void OnlineIvectorFeature::GetAdaptationState(
    OnlineIvectorExtractorAdaptationState *adaptation_state) const {
  // Note: the following call will work even if cmvn_->NumFramesReady() == 0; in
  // that case it will return the unmodified adaptation state that cmvn_ was
  // initialized with.
  cmvn_->GetState(cmvn_->NumFramesReady() - 1,
                  &(adaptation_state->cmvn_state));
  adaptation_state->ivector_stats = ivector_stats_;
  adaptation_state->LimitFrames(info_.max_remembered_frames,
                                info_.posterior_scale);
}


OnlineIvectorFeature::OnlineIvectorFeature(
    const OnlineIvectorExtractionInfo &info,
    OnlineFeatureInterface *base_feature):
    info_(info),
    base_(base_feature),
    ivector_stats_(info_.extractor.IvectorDim(),
                   info_.extractor.PriorOffset(),
                   info_.max_count),
    num_frames_stats_(0), delta_weights_provided_(false),
    updated_with_no_delta_weights_(false),
    most_recent_frame_with_weight_(-1), tot_ubm_loglike_(0.0) {
  info.Check();
  KALDI_ASSERT(base_feature != NULL);
  OnlineFeatureInterface *splice_feature = new OnlineSpliceFrames(info_.splice_opts, base_feature);
  to_delete_.push_back(splice_feature);
  OnlineFeatureInterface *lda_feature = new OnlineTransform(info.lda_mat, splice_feature);
  to_delete_.push_back(lda_feature);
  OnlineFeatureInterface *lda_cache_feature = new OnlineCacheFeature(lda_feature);
  lda_ = lda_cache_feature;
  to_delete_.push_back(lda_cache_feature);


  OnlineCmvnState naive_cmvn_state(info.global_cmvn_stats);
  // Note: when you call this constructor the CMVN state knows nothing
  // about the speaker.  If you want to inform this class about more specific
  // adaptation state, call this->SetAdaptationState(), most likely derived
  // from a call to GetAdaptationState() from a previous object of this type.
  cmvn_ = new OnlineCmvn(info.cmvn_opts, naive_cmvn_state, base_feature);
  to_delete_.push_back(cmvn_);

  OnlineFeatureInterface *splice_normalized =
      new OnlineSpliceFrames(info_.splice_opts, cmvn_),
      *lda_normalized =
      new OnlineTransform(info.lda_mat, splice_normalized),
      *cache_normalized = new OnlineCacheFeature(lda_normalized);
  lda_normalized_ = cache_normalized;

  to_delete_.push_back(splice_normalized);
  to_delete_.push_back(lda_normalized);
  to_delete_.push_back(cache_normalized);

  // Set the iVector to its default value, [ prior_offset, 0, 0, ... ].
  current_ivector_.Resize(info_.extractor.IvectorDim());
  current_ivector_(0) = info_.extractor.PriorOffset();
}

void OnlineIvectorFeature::SetAdaptationState(
    const OnlineIvectorExtractorAdaptationState &adaptation_state) {
  KALDI_ASSERT(num_frames_stats_ == 0 &&
               "SetAdaptationState called after frames were processed.");
  KALDI_ASSERT(ivector_stats_.IvectorDim() ==
               adaptation_state.ivector_stats.IvectorDim());
  ivector_stats_ = adaptation_state.ivector_stats;
  cmvn_->SetState(adaptation_state.cmvn_state);
}

BaseFloat OnlineIvectorFeature::UbmLogLikePerFrame() const {
  if (NumFrames() == 0) return 0;
  else return tot_ubm_loglike_ / NumFrames();
}

BaseFloat OnlineIvectorFeature::ObjfImprPerFrame() const {
  return ivector_stats_.ObjfChange(current_ivector_);
}


OnlineSilenceWeighting::OnlineSilenceWeighting(
    const TransitionModel &trans_model,
    const OnlineSilenceWeightingConfig &config,
    int32 frame_subsampling_factor):
    trans_model_(trans_model), config_(config),
    frame_subsampling_factor_(frame_subsampling_factor),
    num_frames_output_and_correct_(0) {
  KALDI_ASSERT(frame_subsampling_factor_ >= 1);
  std::vector<int32> silence_phones;
  SplitStringToIntegers(config.silence_phones_str, ":,", false,
                        &silence_phones);
  for (size_t i = 0; i < silence_phones.size(); i++)
    silence_phones_.insert(silence_phones[i]);
}


template <typename FST>
void OnlineSilenceWeighting::ComputeCurrentTraceback(
    const LatticeFasterOnlineDecoderTpl<FST> &decoder) {
  int32 num_frames_decoded = decoder.NumFramesDecoded(),
      num_frames_prev = frame_info_.size();
  // note, num_frames_prev is not the number of frames previously decoded,
  // it's the generally-larger number of frames that we were requested to
  // provide weights for.
  if (num_frames_prev < num_frames_decoded)
    frame_info_.resize(num_frames_decoded);
  if (num_frames_prev > num_frames_decoded &&
      frame_info_[num_frames_decoded].transition_id != -1)
    KALDI_ERR << "Number of frames decoded decreased";  // Likely bug

  if (num_frames_decoded == 0)
    return;
  int32 frame = num_frames_decoded - 1;
  bool use_final_probs = false;
  typename LatticeFasterOnlineDecoderTpl<FST>::BestPathIterator iter =
      decoder.BestPathEnd(use_final_probs, NULL);
  while (frame >= 0) {
    LatticeArc arc;
    arc.ilabel = 0;
    while (arc.ilabel == 0)  // the while loop skips over input-epsilons
      iter = decoder.TraceBackBestPath(iter, &arc);
    // note, the iter.frame values are slightly unintuitively defined,
    // they are one less than you might expect.
    KALDI_ASSERT(iter.frame == frame - 1);

    if (frame_info_[frame].token == iter.tok) {
      // we know that the traceback from this point back will be identical, so
      // no point tracing back further.  Note: we are comparing memory addresses
      // of tokens of the decoder; this guarantees it's the same exact token
      // because tokens, once allocated on a frame, are only deleted, never
      // reallocated for that frame.
      break;
    }

    if (num_frames_output_and_correct_ > frame)
      num_frames_output_and_correct_ = frame;

    frame_info_[frame].token = iter.tok;
    frame_info_[frame].transition_id = arc.ilabel;
    frame--;
    // leave frame_info_.current_weight at zero for now (as set in the
    // constructor), reflecting that we haven't already output a weight for that
    // frame.
  }
}

// Instantiate the template OnlineSilenceWeighting::ComputeCurrentTraceback().
template
void OnlineSilenceWeighting::ComputeCurrentTraceback<fst::Fst<fst::StdArc> >(
    const LatticeFasterOnlineDecoderTpl<fst::Fst<fst::StdArc> > &decoder);
template
void OnlineSilenceWeighting::ComputeCurrentTraceback<fst::GrammarFst>(
    const LatticeFasterOnlineDecoderTpl<fst::GrammarFst> &decoder);

int32 OnlineSilenceWeighting::GetBeginFrame() {
  int32 max_duration = config_.max_state_duration;
  if (max_duration <= 0 || num_frames_output_and_correct_ == 0)
    return num_frames_output_and_correct_;

  // t_last_untouched is the index of the last frame that is not newly touched
  // by ComputeCurrentTraceback.  We are interested in whether it is part of a
  // run of length greater than max_duration, since this would force it
  // to be treated as silence (note: typically a non-silence phone that's very
  // long is really silence, for example this can happen with the word "mm").

  int32 t_last_untouched = num_frames_output_and_correct_ - 1,
      t_end = frame_info_.size();
  int32 transition_id = frame_info_[t_last_untouched].transition_id;
  // no point searching longer than max_duration; when the length of the run is
  // at least that much, a longer length makes no difference.
  int32 lower_search_bound = std::max(0, t_last_untouched - max_duration),
      upper_search_bound = std::min(t_last_untouched + max_duration, t_end - 1),
      t_lower, t_upper;

  // t_lower will be the first index in the run of equal transition-ids.
  for (t_lower = t_last_untouched;
       t_lower > lower_search_bound &&
           frame_info_[t_lower - 1].transition_id == transition_id; t_lower--);

  // t_lower will be the last index in the run of equal transition-ids.
  for (t_upper = t_last_untouched;
       t_upper < upper_search_bound &&
           frame_info_[t_upper + 1].transition_id == transition_id; t_upper++);

  int32 run_length = t_upper - t_lower + 1;
  if (run_length <= max_duration) {
    // we wouldn't treat this run as being silence, as it's within
    // the duration limit.  So we return the default value
    // num_frames_output_and_correct_ as our lower bound for processing.
    return num_frames_output_and_correct_;
  }
  int32 old_run_length = t_last_untouched - t_lower + 1;
  if (old_run_length > max_duration) {
    // The run-length before we got this new data was already longer than the
    // max-duration, so would already have been treated as silence.  therefore
    // we don't have to encompass it all- we just include a long enough length
    // in the region we are going to process, that the run-length in that region
    // is longer than max_duration.
    int32 ans = t_upper - max_duration;
    KALDI_ASSERT(ans >= t_lower);
    return ans;
  } else {
    return t_lower;
  }
}

void OnlineSilenceWeighting::GetDeltaWeights(
    int32 num_frames_ready_in,
    std::vector<std::pair<int32, BaseFloat> > *delta_weights) {
  // num_frames_ready_in is at the feature frame-rate, most of the code
  // in this function is at the decoder frame-rate.
  // round up, so we are sure to get weights for at least the frame
  // 'num_frames_ready_in - 1', and maybe one or two frames afterward.
  int32 fs = frame_subsampling_factor_,
  num_frames_ready = (num_frames_ready_in + fs - 1) / fs;

  const int32 max_state_duration = config_.max_state_duration;
  const BaseFloat silence_weight = config_.silence_weight;

  delta_weights->clear();

  if (frame_info_.size() < static_cast<size_t>(num_frames_ready))
    frame_info_.resize(num_frames_ready);

  // we may have to make begin_frame earlier than num_frames_output_and_correct_
  // so that max_state_duration is properly enforced.   GetBeginFrame() handles
  // this logic.
  int32 begin_frame = GetBeginFrame(),
      frames_out = static_cast<int32>(frame_info_.size()) - begin_frame;
  // frames_out is the number of frames we will output.
  KALDI_ASSERT(frames_out >= 0);
  std::vector<BaseFloat> frame_weight(frames_out, 1.0);
  // we will set frame_weight to the value silence_weight for silence frames and
  // for transition-ids that repeat with duration > max_state_duration.  Frames
  // newer than the most recent traceback will get a weight equal to the weight
  // for the most recent frame in the traceback; or the silence weight, if there
  // is no traceback at all available yet.

  // First treat some special cases.
  if (frames_out == 0)  // Nothing to output.
    return;
  if (frame_info_[begin_frame].transition_id == -1) {
    // We do not have any traceback at all within the frames we are to output...
    // find the most recent weight that we output and apply the same weight to
    // all the new output; or output the silence weight, if nothing was output.
    BaseFloat weight = (begin_frame == 0 ? silence_weight :
                        frame_info_[begin_frame - 1].current_weight);
    for (int32 offset = 0; offset < frames_out; offset++)
      frame_weight[offset] = weight;
  } else {
    int32 current_run_start_offset = 0;
    for (int32 offset = 0; offset < frames_out; offset++) {
      int32 frame = begin_frame + offset;
      int32 transition_id = frame_info_[frame].transition_id;
      if (transition_id == -1) {
        // this frame does not yet have a decoder traceback, so just
        // duplicate the silence/non-silence status of the most recent
        // frame we have a traceback for (probably a reasonable guess).
        frame_weight[offset] = frame_weight[offset - 1];
      } else {
        int32 phone = trans_model_.TransitionIdToPhone(transition_id);
        bool is_silence = (silence_phones_.count(phone) != 0);
        if (is_silence)
          frame_weight[offset] = silence_weight;
        // now deal with max-duration issues.
        if (max_state_duration > 0 &&
            (offset + 1 == frames_out ||
             transition_id != frame_info_[frame + 1].transition_id)) {
          // If this is the last frame of a run...
          int32 run_length = offset - current_run_start_offset + 1;
          if (run_length >= max_state_duration) {
            // treat runs of the same transition-id longer than the max, as
            // silence, even if they were not silence.
            for (int32 offset2 = current_run_start_offset;
                 offset2 <= offset; offset2++)
              frame_weight[offset2] = silence_weight;
          }
          if (offset + 1 < frames_out)
            current_run_start_offset = offset + 1;
        }
      }
    }
  }
  // Now commit the stats...
  for (int32 offset = 0; offset < frames_out; offset++) {
    int32 frame = begin_frame + offset;
    BaseFloat old_weight = frame_info_[frame].current_weight,
        new_weight = frame_weight[offset],
        weight_diff = new_weight - old_weight;
    frame_info_[frame].current_weight = new_weight;
    KALDI_VLOG(6) << "Weight for frame " << frame << " changing from "
                  << old_weight << " to " << new_weight;
    // Even if the delta-weight is zero for the last frame, we provide it,
    // because the identity of the most recent frame with a weight is used in
    // some debugging/checking code.
    if (weight_diff != 0.0 || offset + 1 == frames_out) {
      for(int32 i = 0; i < frame_subsampling_factor_; i++) {
	int32 input_frame = (frame * frame_subsampling_factor_) + i;
	delta_weights->push_back(std::make_pair(input_frame, weight_diff));
      }
    }
  }
}

}  // namespace kaldi