online-nnet3-decoding.cc
3.57 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
// online2/online-nnet3-decoding.cc
// Copyright 2013-2014 Johns Hopkins University (author: Daniel Povey)
// 2016 Api.ai (Author: Ilya Platonov)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "online2/online-nnet3-decoding.h"
#include "lat/lattice-functions.h"
#include "lat/determinize-lattice-pruned.h"
#include "decoder/grammar-fst.h"
namespace kaldi {
template <typename FST>
SingleUtteranceNnet3DecoderTpl<FST>::SingleUtteranceNnet3DecoderTpl(
const LatticeFasterDecoderConfig &decoder_opts,
const TransitionModel &trans_model,
const nnet3::DecodableNnetSimpleLoopedInfo &info,
const FST &fst,
OnlineNnet2FeaturePipeline *features):
decoder_opts_(decoder_opts),
input_feature_frame_shift_in_seconds_(features->FrameShiftInSeconds()),
trans_model_(trans_model),
decodable_(trans_model_, info,
features->InputFeature(), features->IvectorFeature()),
decoder_(fst, decoder_opts_) {
decoder_.InitDecoding();
}
template <typename FST>
void SingleUtteranceNnet3DecoderTpl<FST>::InitDecoding(int32 frame_offset) {
decoder_.InitDecoding();
decodable_.SetFrameOffset(frame_offset);
}
template <typename FST>
void SingleUtteranceNnet3DecoderTpl<FST>::AdvanceDecoding() {
decoder_.AdvanceDecoding(&decodable_);
}
template <typename FST>
void SingleUtteranceNnet3DecoderTpl<FST>::FinalizeDecoding() {
decoder_.FinalizeDecoding();
}
template <typename FST>
int32 SingleUtteranceNnet3DecoderTpl<FST>::NumFramesDecoded() const {
return decoder_.NumFramesDecoded();
}
template <typename FST>
void SingleUtteranceNnet3DecoderTpl<FST>::GetLattice(bool end_of_utterance,
CompactLattice *clat) const {
if (NumFramesDecoded() == 0)
KALDI_ERR << "You cannot get a lattice if you decoded no frames.";
Lattice raw_lat;
decoder_.GetRawLattice(&raw_lat, end_of_utterance);
if (!decoder_opts_.determinize_lattice)
KALDI_ERR << "--determinize-lattice=false option is not supported at the moment";
BaseFloat lat_beam = decoder_opts_.lattice_beam;
DeterminizeLatticePhonePrunedWrapper(
trans_model_, &raw_lat, lat_beam, clat, decoder_opts_.det_opts);
}
template <typename FST>
void SingleUtteranceNnet3DecoderTpl<FST>::GetBestPath(bool end_of_utterance,
Lattice *best_path) const {
decoder_.GetBestPath(best_path, end_of_utterance);
}
template <typename FST>
bool SingleUtteranceNnet3DecoderTpl<FST>::EndpointDetected(
const OnlineEndpointConfig &config) {
BaseFloat output_frame_shift =
input_feature_frame_shift_in_seconds_ *
decodable_.FrameSubsamplingFactor();
return kaldi::EndpointDetected(config, trans_model_,
output_frame_shift, decoder_);
}
// Instantiate the template for the types needed.
template class SingleUtteranceNnet3DecoderTpl<fst::Fst<fst::StdArc> >;
template class SingleUtteranceNnet3DecoderTpl<fst::GrammarFst>;
} // namespace kaldi