online2-tcp-nnet3-decode-faster-ontrac.cc
14.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
// online2bin/online2-tcp-nnet3-decode-faster.cc
// Copyright 2014 Johns Hopkins University (author: Daniel Povey)
// 2016 Api.ai (Author: Ilya Platonov)
// 2018 Polish-Japanese Academy of Information Technology (Author: Danijel Korzinek)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "feat/wave-reader.h"
#include "online2/online-nnet3-decoding.h"
#include "online2/online-nnet2-feature-pipeline.h"
#include "online2/onlinebin-util.h"
#include "online2/online-timing.h"
#include "online2/online-endpoint.h"
#include "fstext/fstext-lib.h"
#include "lat/lattice-functions.h"
#include "util/kaldi-thread.h"
#include "nnet3/nnet-utils.h"
#include <netinet/in.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <poll.h>
#include <signal.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <string>
namespace kaldi {
class TcpServer {
public:
explicit TcpServer(int read_timeout);
~TcpServer();
bool Listen(int32 port); // start listening on a given port
int32 Accept(); // accept a client and return its descriptor
bool ReadChunk(size_t len); // get more data and return false if end-of-stream
Vector<BaseFloat> GetChunk(); // get the data read by above method
bool Write(const std::string &msg); // write to accepted client
bool WriteLn(const std::string &msg, const std::string &eol = "\n"); // write line to accepted client
void Disconnect();
private:
struct ::sockaddr_in h_addr_;
int32 server_desc_, client_desc_;
int16 *samp_buf_;
size_t buf_len_, has_read_;
pollfd client_set_[1];
int read_timeout_;
};
std::string LatticeToString(const Lattice &lat, const fst::SymbolTable &word_syms) {
LatticeWeight weight;
std::vector<int32> alignment;
std::vector<int32> words;
GetLinearSymbolSequence(lat, &alignment, &words, &weight);
std::ostringstream msg;
for (size_t i = 0; i < words.size(); i++) {
std::string s = word_syms.Find(words[i]);
if (s.empty()) {
KALDI_WARN << "Word-id " << words[i] << " not in symbol table.";
msg << "<#" << std::to_string(i) << "> ";
} else
msg << s << " ";
}
return msg.str();
}
std::string GetTimeString(int32 t_beg, int32 t_end, BaseFloat time_unit) {
char buffer[100];
double t_beg2 = t_beg * time_unit;
double t_end2 = t_end * time_unit;
snprintf(buffer, 100, "%.2f %.2f", t_beg2, t_end2);
return std::string(buffer);
}
int32 GetLatticeTimeSpan(const Lattice& lat) {
std::vector<int32> times;
LatticeStateTimes(lat, ×);
return times.back();
}
std::string LatticeToString(const CompactLattice &clat, const fst::SymbolTable &word_syms) {
if (clat.NumStates() == 0) {
KALDI_WARN << "Empty lattice.";
return "";
}
CompactLattice best_path_clat;
CompactLatticeShortestPath(clat, &best_path_clat);
Lattice best_path_lat;
ConvertLattice(best_path_clat, &best_path_lat);
return LatticeToString(best_path_lat, word_syms);
}
}
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
using namespace fst;
typedef kaldi::int32 int32;
typedef kaldi::int64 int64;
const char *usage =
"Reads in audio from a network socket and performs online\n"
"decoding with neural nets (nnet3 setup), with iVector-based\n"
"speaker adaptation and endpointing.\n"
"Note: some configuration values and inputs are set via config\n"
"files whose filenames are passed as options\n"
"\n"
"Usage: online2-tcp-nnet3-decode-faster [options] <nnet3-in> "
"<fst-in> <word-symbol-table>\n";
ParseOptions po(usage);
// feature_opts includes configuration for the iVector adaptation,
// as well as the basic features.
OnlineNnet2FeaturePipelineConfig feature_opts;
nnet3::NnetSimpleLoopedComputationOptions decodable_opts;
LatticeFasterDecoderConfig decoder_opts;
OnlineEndpointConfig endpoint_opts;
BaseFloat chunk_length_secs = 0.18;
BaseFloat output_period = 1;
BaseFloat samp_freq = 16000.0;
int port_num = 5050;
int read_timeout = 3;
bool produce_time = false;
po.Register("samp-freq", &samp_freq,
"Sampling frequency of the input signal (coded as 16-bit slinear).");
po.Register("chunk-length", &chunk_length_secs,
"Length of chunk size in seconds, that we process.");
po.Register("output-period", &output_period,
"How often in seconds, do we check for changes in output.");
po.Register("num-threads-startup", &g_num_threads,
"Number of threads used when initializing iVector extractor.");
po.Register("read-timeout", &read_timeout,
"Number of seconds of timout for TCP audio data to appear on the stream. Use -1 for blocking.");
po.Register("port-num", &port_num,
"Port number the server will listen on.");
po.Register("produce-time", &produce_time,
"Prepend begin/end times between endpoints (e.g. '5.46 6.81 <text_output>', in seconds)");
feature_opts.Register(&po);
decodable_opts.Register(&po);
decoder_opts.Register(&po);
endpoint_opts.Register(&po);
po.Read(argc, argv);
if (po.NumArgs() != 3) {
po.PrintUsage();
return 1;
}
std::string nnet3_rxfilename = po.GetArg(1),
fst_rxfilename = po.GetArg(2),
word_syms_filename = po.GetArg(3);
OnlineNnet2FeaturePipelineInfo feature_info(feature_opts);
BaseFloat frame_shift = feature_info.FrameShiftInSeconds();
int32 frame_subsampling = decodable_opts.frame_subsampling_factor;
KALDI_VLOG(1) << "Loading AM...";
TransitionModel trans_model;
nnet3::AmNnetSimple am_nnet;
{
bool binary;
Input ki(nnet3_rxfilename, &binary);
trans_model.Read(ki.Stream(), binary);
am_nnet.Read(ki.Stream(), binary);
SetBatchnormTestMode(true, &(am_nnet.GetNnet()));
SetDropoutTestMode(true, &(am_nnet.GetNnet()));
nnet3::CollapseModel(nnet3::CollapseModelConfig(), &(am_nnet.GetNnet()));
}
// this object contains precomputed stuff that is used by all decodable
// objects. It takes a pointer to am_nnet because if it has iVectors it has
// to modify the nnet to accept iVectors at intervals.
nnet3::DecodableNnetSimpleLoopedInfo decodable_info(decodable_opts,
&am_nnet);
KALDI_VLOG(1) << "Loading FST...";
fst::Fst<fst::StdArc> *decode_fst = ReadFstKaldiGeneric(fst_rxfilename);
fst::SymbolTable *word_syms = NULL;
if (!word_syms_filename.empty())
if (!(word_syms = fst::SymbolTable::ReadText(word_syms_filename)))
KALDI_ERR << "Could not read symbol table from file "
<< word_syms_filename;
signal(SIGPIPE, SIG_IGN); // ignore SIGPIPE to avoid crashing when socket forcefully disconnected
TcpServer server(read_timeout);
server.Listen(port_num);
while (true) {
server.Accept();
int32 samp_count = 0;// this is used for output refresh rate
size_t chunk_len = static_cast<size_t>(chunk_length_secs * samp_freq);
int32 check_period = static_cast<int32>(samp_freq * output_period);
int32 check_count = check_period;
int32 frame_offset = 0;
bool eos = false;
OnlineNnet2FeaturePipeline feature_pipeline(feature_info);
SingleUtteranceNnet3Decoder decoder(decoder_opts, trans_model,
decodable_info,
*decode_fst, &feature_pipeline);
while (!eos) {
decoder.InitDecoding(frame_offset);
OnlineSilenceWeighting silence_weighting(
trans_model,
feature_info.silence_weighting_config,
decodable_opts.frame_subsampling_factor);
std::vector<std::pair<int32, BaseFloat>> delta_weights;
while (true) {
eos = !server.ReadChunk(chunk_len);
if (eos) {
feature_pipeline.InputFinished();
decoder.AdvanceDecoding();
decoder.FinalizeDecoding();
frame_offset += decoder.NumFramesDecoded();
if (decoder.NumFramesDecoded() > 0) {
CompactLattice lat;
decoder.GetLattice(true, &lat);
std::string msg = LatticeToString(lat, *word_syms);
// get time-span from previous endpoint to end of audio,
if (produce_time) {
int32 t_beg = frame_offset - decoder.NumFramesDecoded();
int32 t_end = frame_offset;
msg = GetTimeString(t_beg, t_end, frame_shift * frame_subsampling) + " " + msg;
}
KALDI_VLOG(1) << "EndOfAudio, sending message: " << msg;
server.WriteLn(msg);
} else
server.Write("\n");
server.Disconnect();
break;
}
Vector<BaseFloat> wave_part = server.GetChunk();
feature_pipeline.AcceptWaveform(samp_freq, wave_part);
samp_count += chunk_len;
if (silence_weighting.Active() &&
feature_pipeline.IvectorFeature() != NULL) {
silence_weighting.ComputeCurrentTraceback(decoder.Decoder());
silence_weighting.GetDeltaWeights(feature_pipeline.NumFramesReady(),
&delta_weights);
feature_pipeline.UpdateFrameWeights(delta_weights,
frame_offset * decodable_opts.frame_subsampling_factor);
}
decoder.AdvanceDecoding();
if (samp_count > check_count) {
if (decoder.NumFramesDecoded() > 0) {
Lattice lat;
decoder.GetBestPath(false, &lat);
TopSort(&lat); // for LatticeStateTimes(),
std::string msg = LatticeToString(lat, *word_syms);
// get time-span after previous endpoint,
if (produce_time) {
int32 t_beg = frame_offset;
int32 t_end = frame_offset + GetLatticeTimeSpan(lat);
msg = GetTimeString(t_beg, t_end, frame_shift * frame_subsampling) + " " + msg;
}
//YE KALDI_VLOG(1) << "Temporary transcript: " << msg;
//YE server.WriteLn(msg, "\r");
}
check_count += check_period;
}
if (decoder.EndpointDetected(endpoint_opts)) {
decoder.FinalizeDecoding();
frame_offset += decoder.NumFramesDecoded();
CompactLattice lat;
decoder.GetLattice(true, &lat);
std::string msg = LatticeToString(lat, *word_syms);
// get time-span between endpoints,
if (produce_time) {
int32 t_beg = frame_offset - decoder.NumFramesDecoded();
int32 t_end = frame_offset;
msg = GetTimeString(t_beg, t_end, frame_shift * frame_subsampling) + " " + msg;
}
KALDI_VLOG(1) << "Endpoint, sending message: " << msg;
server.WriteLn(msg);
break; // while (true)
}
}
}
}
} catch (const std::exception &e) {
std::cerr << e.what();
return -1;
}
} // main()
namespace kaldi {
TcpServer::TcpServer(int read_timeout) {
server_desc_ = -1;
client_desc_ = -1;
samp_buf_ = NULL;
buf_len_ = 0;
read_timeout_ = 1000 * read_timeout;
}
bool TcpServer::Listen(int32 port) {
h_addr_.sin_addr.s_addr = INADDR_ANY;
h_addr_.sin_port = htons(port);
h_addr_.sin_family = AF_INET;
server_desc_ = socket(AF_INET, SOCK_STREAM, 0);
if (server_desc_ == -1) {
KALDI_ERR << "Cannot create TCP socket!";
return false;
}
int32 flag = 1;
int32 len = sizeof(int32);
if (setsockopt(server_desc_, SOL_SOCKET, SO_REUSEADDR, &flag, len) == -1) {
KALDI_ERR << "Cannot set socket options!";
return false;
}
if (bind(server_desc_, (struct sockaddr *) &h_addr_, sizeof(h_addr_)) == -1) {
KALDI_ERR << "Cannot bind to port: " << port << " (is it taken?)";
return false;
}
if (listen(server_desc_, 1) == -1) {
KALDI_ERR << "Cannot listen on port!";
return false;
}
KALDI_LOG << "TcpServer: Listening on port: " << port;
return true;
}
TcpServer::~TcpServer() {
Disconnect();
if (server_desc_ != -1)
close(server_desc_);
delete[] samp_buf_;
}
int32 TcpServer::Accept() {
KALDI_LOG << "Waiting for client...";
socklen_t len;
len = sizeof(struct sockaddr);
client_desc_ = accept(server_desc_, (struct sockaddr *) &h_addr_, &len);
struct sockaddr_storage addr;
char ipstr[20];
len = sizeof addr;
getpeername(client_desc_, (struct sockaddr *) &addr, &len);
struct sockaddr_in *s = (struct sockaddr_in *) &addr;
inet_ntop(AF_INET, &s->sin_addr, ipstr, sizeof ipstr);
client_set_[0].fd = client_desc_;
client_set_[0].events = POLLIN;
KALDI_LOG << "Accepted connection from: " << ipstr;
return client_desc_;
}
bool TcpServer::ReadChunk(size_t len) {
if (buf_len_ != len) {
buf_len_ = len;
delete[] samp_buf_;
samp_buf_ = new int16[len];
}
ssize_t ret;
int poll_ret;
size_t to_read = len;
has_read_ = 0;
while (to_read > 0) {
poll_ret = poll(client_set_, 1, read_timeout_);
if (poll_ret == 0) {
KALDI_WARN << "Socket timeout! Disconnecting...";
break;
}
if (client_set_[0].revents != POLLIN) {
KALDI_WARN << "Socket error! Disconnecting...";
break;
}
ret = read(client_desc_, static_cast<void *>(samp_buf_ + has_read_), to_read * sizeof(int16));
if (ret <= 0) {
KALDI_WARN << "Stream over...";
break;
}
to_read -= ret / sizeof(int16);
has_read_ += ret / sizeof(int16);
}
return has_read_ > 0;
}
Vector<BaseFloat> TcpServer::GetChunk() {
Vector<BaseFloat> buf;
buf.Resize(static_cast<MatrixIndexT>(has_read_));
for (int i = 0; i < has_read_; i++)
buf(i) = static_cast<BaseFloat>(samp_buf_[i]);
return buf;
}
bool TcpServer::Write(const std::string &msg) {
const char *p = msg.c_str();
size_t to_write = msg.size();
size_t wrote = 0;
while (to_write > 0) {
ssize_t ret = write(client_desc_, static_cast<const void *>(p + wrote), to_write);
if (ret <= 0)
return false;
to_write -= ret;
wrote += ret;
}
return true;
}
bool TcpServer::WriteLn(const std::string &msg, const std::string &eol) {
if (Write(msg))
return Write(eol);
else return false;
}
void TcpServer::Disconnect() {
if (client_desc_ != -1) {
close(client_desc_);
client_desc_ = -1;
}
}
} // namespace kaldi