online2-wav-gmm-latgen-faster.cc
8.61 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
// online2bin/online2-wav-gmm-latgen-faster.cc
// Copyright 2014 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "feat/wave-reader.h"
#include "online2/online-feature-pipeline.h"
#include "online2/online-gmm-decoding.h"
#include "online2/onlinebin-util.h"
#include "online2/online-timing.h"
#include "online2/online-endpoint.h"
#include "fstext/fstext-lib.h"
#include "lat/lattice-functions.h"
namespace kaldi {
void GetDiagnosticsAndPrintOutput(const std::string &utt,
const fst::SymbolTable *word_syms,
const CompactLattice &clat,
int64 *tot_num_frames,
double *tot_like) {
if (clat.NumStates() == 0) {
KALDI_WARN << "Empty lattice.";
return;
}
CompactLattice best_path_clat;
CompactLatticeShortestPath(clat, &best_path_clat);
Lattice best_path_lat;
ConvertLattice(best_path_clat, &best_path_lat);
double likelihood;
LatticeWeight weight;
int32 num_frames;
std::vector<int32> alignment;
std::vector<int32> words;
GetLinearSymbolSequence(best_path_lat, &alignment, &words, &weight);
num_frames = alignment.size();
likelihood = -(weight.Value1() + weight.Value2());
*tot_num_frames += num_frames;
*tot_like += likelihood;
KALDI_VLOG(2) << "Likelihood per frame for utterance " << utt << " is "
<< (likelihood / num_frames) << " over " << num_frames
<< " frames.";
if (word_syms != NULL) {
std::cerr << utt << ' ';
for (size_t i = 0; i < words.size(); i++) {
std::string s = word_syms->Find(words[i]);
if (s == "")
KALDI_ERR << "Word-id " << words[i] << " not in symbol table.";
std::cerr << s << ' ';
}
std::cerr << std::endl;
}
}
}
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
using namespace fst;
typedef kaldi::int32 int32;
typedef kaldi::int64 int64;
const char *usage =
"Reads in wav file(s) and simulates online decoding, including\n"
"basis-fMLLR adaptation and endpointing. Writes lattices.\n"
"Models are specified via options.\n"
"\n"
"Usage: online2-wav-gmm-latgen-faster [options] <fst-in> "
"<spk2utt-rspecifier> <wav-rspecifier> <lattice-wspecifier>\n"
"Run egs/rm/s5/local/run_online_decoding.sh for example\n";
ParseOptions po(usage);
std::string word_syms_rxfilename;
OnlineEndpointConfig endpoint_config;
OnlineFeaturePipelineCommandLineConfig feature_cmdline_config;
OnlineGmmDecodingConfig decode_config;
BaseFloat chunk_length_secs = 0.05;
bool do_endpointing = false;
std::string use_gpu = "no";
po.Register("chunk-length", &chunk_length_secs,
"Length of chunk size in seconds, that we process.");
po.Register("word-symbol-table", &word_syms_rxfilename,
"Symbol table for words [for debug output]");
po.Register("do-endpointing", &do_endpointing,
"If true, apply endpoint detection");
feature_cmdline_config.Register(&po);
decode_config.Register(&po);
endpoint_config.Register(&po);
po.Read(argc, argv);
if (po.NumArgs() != 4) {
po.PrintUsage();
return 1;
}
std::string fst_rxfilename = po.GetArg(1),
spk2utt_rspecifier = po.GetArg(2),
wav_rspecifier = po.GetArg(3),
clat_wspecifier = po.GetArg(4);
OnlineFeaturePipelineConfig feature_config(feature_cmdline_config);
OnlineFeaturePipeline pipeline_prototype(feature_config);
// The following object initializes the models we use in decoding.
OnlineGmmDecodingModels gmm_models(decode_config);
fst::Fst<fst::StdArc> *decode_fst = ReadFstKaldiGeneric(fst_rxfilename);
fst::SymbolTable *word_syms = NULL;
if (word_syms_rxfilename != "")
if (!(word_syms = fst::SymbolTable::ReadText(word_syms_rxfilename)))
KALDI_ERR << "Could not read symbol table from file "
<< word_syms_rxfilename;
int32 num_done = 0, num_err = 0;
double tot_like = 0.0;
int64 num_frames = 0;
SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier);
RandomAccessTableReader<WaveHolder> wav_reader(wav_rspecifier);
CompactLatticeWriter clat_writer(clat_wspecifier);
OnlineTimingStats timing_stats;
for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) {
std::string spk = spk2utt_reader.Key();
const std::vector<std::string> &uttlist = spk2utt_reader.Value();
OnlineGmmAdaptationState adaptation_state;
for (size_t i = 0; i < uttlist.size(); i++) {
std::string utt = uttlist[i];
if (!wav_reader.HasKey(utt)) {
KALDI_WARN << "Did not find audio for utterance " << utt;
num_err++;
continue;
}
const WaveData &wave_data = wav_reader.Value(utt);
// get the data for channel zero (if the signal is not mono, we only
// take the first channel).
SubVector<BaseFloat> data(wave_data.Data(), 0);
SingleUtteranceGmmDecoder decoder(decode_config,
gmm_models,
pipeline_prototype,
*decode_fst,
adaptation_state);
OnlineTimer decoding_timer(utt);
BaseFloat samp_freq = wave_data.SampFreq();
int32 chunk_length = int32(samp_freq * chunk_length_secs);
if (chunk_length == 0) chunk_length = 1;
int32 samp_offset = 0;
while (samp_offset < data.Dim()) {
int32 samp_remaining = data.Dim() - samp_offset;
int32 num_samp = chunk_length < samp_remaining ? chunk_length
: samp_remaining;
SubVector<BaseFloat> wave_part(data, samp_offset, num_samp);
decoder.FeaturePipeline().AcceptWaveform(samp_freq, wave_part);
samp_offset += num_samp;
decoding_timer.WaitUntil(samp_offset / samp_freq);
if (samp_offset == data.Dim()) {
// no more input. flush out last frames
decoder.FeaturePipeline().InputFinished();
}
decoder.AdvanceDecoding();
if (do_endpointing && decoder.EndpointDetected(endpoint_config))
break;
}
decoder.FinalizeDecoding();
bool end_of_utterance = true;
decoder.EstimateFmllr(end_of_utterance);
CompactLattice clat;
bool rescore_if_needed = true;
decoder.GetLattice(rescore_if_needed, end_of_utterance, &clat);
GetDiagnosticsAndPrintOutput(utt, word_syms, clat,
&num_frames, &tot_like);
decoding_timer.OutputStats(&timing_stats);
// In an application you might avoid updating the adaptation state if
// you felt the utterance had low confidence. See lat/confidence.h
decoder.GetAdaptationState(&adaptation_state);
// we want to output the lattice with un-scaled acoustics.
if (decode_config.acoustic_scale != 0.0) {
BaseFloat inv_acoustic_scale = 1.0 / decode_config.acoustic_scale;
ScaleLattice(AcousticLatticeScale(inv_acoustic_scale), &clat);
}
clat_writer.Write(utt, clat);
KALDI_LOG << "Decoded utterance " << utt;
num_done++;
}
}
timing_stats.Print();
KALDI_LOG << "Decoded " << num_done << " utterances, "
<< num_err << " with errors.";
KALDI_LOG << "Overall likelihood per frame was " << (tot_like / num_frames)
<< " per frame over " << num_frames << " frames.";
delete decode_fst;
delete word_syms; // will delete if non-NULL.
return (num_done != 0 ? 0 : 1);
} catch(const std::exception& e) {
std::cerr << e.what();
return -1;
}
} // main()