online2-wav-nnet2-latgen-faster.cc
10.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
// online2bin/online2-wav-nnet2-latgen-faster.cc
// Copyright 2014 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "feat/wave-reader.h"
#include "online2/online-nnet2-decoding.h"
#include "online2/online-nnet2-feature-pipeline.h"
#include "online2/onlinebin-util.h"
#include "online2/online-timing.h"
#include "online2/online-endpoint.h"
#include "fstext/fstext-lib.h"
#include "lat/lattice-functions.h"
#include "util/kaldi-thread.h"
namespace kaldi {
void GetDiagnosticsAndPrintOutput(const std::string &utt,
const fst::SymbolTable *word_syms,
const CompactLattice &clat,
int64 *tot_num_frames,
double *tot_like) {
if (clat.NumStates() == 0) {
KALDI_WARN << "Empty lattice.";
return;
}
CompactLattice best_path_clat;
CompactLatticeShortestPath(clat, &best_path_clat);
Lattice best_path_lat;
ConvertLattice(best_path_clat, &best_path_lat);
double likelihood;
LatticeWeight weight;
int32 num_frames;
std::vector<int32> alignment;
std::vector<int32> words;
GetLinearSymbolSequence(best_path_lat, &alignment, &words, &weight);
num_frames = alignment.size();
likelihood = -(weight.Value1() + weight.Value2());
*tot_num_frames += num_frames;
*tot_like += likelihood;
KALDI_VLOG(2) << "Likelihood per frame for utterance " << utt << " is "
<< (likelihood / num_frames) << " over " << num_frames
<< " frames.";
if (word_syms != NULL) {
std::cerr << utt << ' ';
for (size_t i = 0; i < words.size(); i++) {
std::string s = word_syms->Find(words[i]);
if (s == "")
KALDI_ERR << "Word-id " << words[i] << " not in symbol table.";
std::cerr << s << ' ';
}
std::cerr << std::endl;
}
}
}
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
using namespace fst;
typedef kaldi::int32 int32;
typedef kaldi::int64 int64;
const char *usage =
"Reads in wav file(s) and simulates online decoding with neural nets\n"
"(nnet2 setup), with optional iVector-based speaker adaptation and\n"
"optional endpointing. Note: some configuration values and inputs are\n"
"set via config files whose filenames are passed as options\n"
"\n"
"Usage: online2-wav-nnet2-latgen-faster [options] <nnet2-in> <fst-in> "
"<spk2utt-rspecifier> <wav-rspecifier> <lattice-wspecifier>\n"
"The spk2utt-rspecifier can just be <utterance-id> <utterance-id> if\n"
"you want to decode utterance by utterance.\n"
"See egs/rm/s5/local/run_online_decoding_nnet2.sh for example\n"
"See also online2-wav-nnet2-latgen-threaded\n";
ParseOptions po(usage);
std::string word_syms_rxfilename;
OnlineEndpointConfig endpoint_config;
// feature_config includes configuration for the iVector adaptation,
// as well as the basic features.
OnlineNnet2FeaturePipelineConfig feature_config;
OnlineNnet2DecodingConfig nnet2_decoding_config;
BaseFloat chunk_length_secs = 0.05;
bool do_endpointing = false;
bool online = true;
po.Register("chunk-length", &chunk_length_secs,
"Length of chunk size in seconds, that we process. Set to <= 0 "
"to use all input in one chunk.");
po.Register("word-symbol-table", &word_syms_rxfilename,
"Symbol table for words [for debug output]");
po.Register("do-endpointing", &do_endpointing,
"If true, apply endpoint detection");
po.Register("online", &online,
"You can set this to false to disable online iVector estimation "
"and have all the data for each utterance used, even at "
"utterance start. This is useful where you just want the best "
"results and don't care about online operation. Setting this to "
"false has the same effect as setting "
"--use-most-recent-ivector=true and --greedy-ivector-extractor=true "
"in the file given to --ivector-extraction-config, and "
"--chunk-length=-1.");
po.Register("num-threads-startup", &g_num_threads,
"Number of threads used when initializing iVector extractor.");
feature_config.Register(&po);
nnet2_decoding_config.Register(&po);
endpoint_config.Register(&po);
po.Read(argc, argv);
if (po.NumArgs() != 5) {
po.PrintUsage();
return 1;
}
std::string nnet2_rxfilename = po.GetArg(1),
fst_rxfilename = po.GetArg(2),
spk2utt_rspecifier = po.GetArg(3),
wav_rspecifier = po.GetArg(4),
clat_wspecifier = po.GetArg(5);
OnlineNnet2FeaturePipelineInfo feature_info(feature_config);
if (!online) {
feature_info.ivector_extractor_info.use_most_recent_ivector = true;
feature_info.ivector_extractor_info.greedy_ivector_extractor = true;
chunk_length_secs = -1.0;
}
TransitionModel trans_model;
nnet2::AmNnet nnet;
{
bool binary;
Input ki(nnet2_rxfilename, &binary);
trans_model.Read(ki.Stream(), binary);
nnet.Read(ki.Stream(), binary);
}
fst::Fst<fst::StdArc> *decode_fst = ReadFstKaldiGeneric(fst_rxfilename);
fst::SymbolTable *word_syms = NULL;
if (word_syms_rxfilename != "")
if (!(word_syms = fst::SymbolTable::ReadText(word_syms_rxfilename)))
KALDI_ERR << "Could not read symbol table from file "
<< word_syms_rxfilename;
int32 num_done = 0, num_err = 0;
double tot_like = 0.0;
int64 num_frames = 0;
SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier);
RandomAccessTableReader<WaveHolder> wav_reader(wav_rspecifier);
CompactLatticeWriter clat_writer(clat_wspecifier);
OnlineTimingStats timing_stats;
for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) {
std::string spk = spk2utt_reader.Key();
const std::vector<std::string> &uttlist = spk2utt_reader.Value();
OnlineIvectorExtractorAdaptationState adaptation_state(
feature_info.ivector_extractor_info);
for (size_t i = 0; i < uttlist.size(); i++) {
std::string utt = uttlist[i];
if (!wav_reader.HasKey(utt)) {
KALDI_WARN << "Did not find audio for utterance " << utt;
num_err++;
continue;
}
const WaveData &wave_data = wav_reader.Value(utt);
// get the data for channel zero (if the signal is not mono, we only
// take the first channel).
SubVector<BaseFloat> data(wave_data.Data(), 0);
OnlineNnet2FeaturePipeline feature_pipeline(feature_info);
feature_pipeline.SetAdaptationState(adaptation_state);
OnlineSilenceWeighting silence_weighting(
trans_model,
feature_info.silence_weighting_config);
SingleUtteranceNnet2Decoder decoder(nnet2_decoding_config,
trans_model,
nnet,
*decode_fst,
&feature_pipeline);
OnlineTimer decoding_timer(utt);
BaseFloat samp_freq = wave_data.SampFreq();
int32 chunk_length;
if (chunk_length_secs > 0) {
chunk_length = int32(samp_freq * chunk_length_secs);
if (chunk_length == 0) chunk_length = 1;
} else {
chunk_length = std::numeric_limits<int32>::max();
}
int32 samp_offset = 0;
std::vector<std::pair<int32, BaseFloat> > delta_weights;
while (samp_offset < data.Dim()) {
int32 samp_remaining = data.Dim() - samp_offset;
int32 num_samp = chunk_length < samp_remaining ? chunk_length
: samp_remaining;
SubVector<BaseFloat> wave_part(data, samp_offset, num_samp);
feature_pipeline.AcceptWaveform(samp_freq, wave_part);
samp_offset += num_samp;
decoding_timer.WaitUntil(samp_offset / samp_freq);
if (samp_offset == data.Dim()) {
// no more input. flush out last frames
feature_pipeline.InputFinished();
}
if (silence_weighting.Active() &&
feature_pipeline.IvectorFeature() != NULL) {
silence_weighting.ComputeCurrentTraceback(decoder.Decoder());
silence_weighting.GetDeltaWeights(
feature_pipeline.IvectorFeature()->NumFramesReady(),
&delta_weights);
feature_pipeline.IvectorFeature()->UpdateFrameWeights(
delta_weights);
}
decoder.AdvanceDecoding();
if (do_endpointing && decoder.EndpointDetected(endpoint_config))
break;
}
decoder.FinalizeDecoding();
CompactLattice clat;
bool end_of_utterance = true;
decoder.GetLattice(end_of_utterance, &clat);
GetDiagnosticsAndPrintOutput(utt, word_syms, clat,
&num_frames, &tot_like);
decoding_timer.OutputStats(&timing_stats);
// In an application you might avoid updating the adaptation state if
// you felt the utterance had low confidence. See lat/confidence.h
feature_pipeline.GetAdaptationState(&adaptation_state);
// we want to output the lattice with un-scaled acoustics.
BaseFloat inv_acoustic_scale =
1.0 / nnet2_decoding_config.decodable_opts.acoustic_scale;
ScaleLattice(AcousticLatticeScale(inv_acoustic_scale), &clat);
clat_writer.Write(utt, clat);
KALDI_LOG << "Decoded utterance " << utt;
num_done++;
}
}
timing_stats.Print(online);
KALDI_LOG << "Decoded " << num_done << " utterances, "
<< num_err << " with errors.";
KALDI_LOG << "Overall likelihood per frame was " << (tot_like / num_frames)
<< " per frame over " << num_frames << " frames.";
delete decode_fst;
delete word_syms; // will delete if non-NULL.
return (num_done != 0 ? 0 : 1);
} catch(const std::exception& e) {
std::cerr << e.what();
return -1;
}
} // main()