rnnlm-get-egs.cc
5.49 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
// nnet3bin/rnnlm-get-egs.cc
// Copyright 2017 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "rnnlm/sampling-lm.h"
#include "rnnlm/rnnlm-example.h"
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
using namespace kaldi::rnnlm;
typedef kaldi::int32 int32;
typedef kaldi::int64 int64;
const char *usage =
"This program processes lines of text (typically sentences) with weights,\n"
"in a format like:\n"
" 1.0 67 5689 21 8940 6723\n"
"and turns them into examples (class RnnlmExample) for RNNLM training.\n"
"This involves splitting up the sentences to a maximum length,\n"
"importance sampling and other procedures.\n"
"\n"
"Usage:\n"
"(1) no sampling:\n"
" rnnlm-get-egs [options] <sentences-rxfilename> <rnnlm-egs-wspecifier>\n"
"(2) sampling, ARPA LM read:\n"
" rnnlm-get-egs [options] <symbol-table> <ARPA-rxfilename> \\\n"
" <sentences-rxfilename> <rnnlm-egs-wspecifier>\n"
"(3) sampling, non-ARPA LM read:\n"
" rnnlm-get-egs [options] <LM-rxfilename> <sentences-rxfilename>\\\n"
" <rnnlm-egs-wspecifier>\n"
"E.g.:\n"
" ... | rnnlm-get-egs --vocab-size=20002 - ark:- | rnnlm-train ...\n"
"or (with sampling, reading LM as ARPA):\n"
" ... | rnnlm-get-egs words.txt foo.arpa - ark:- | rnnlm-train ...\n"
"or (with sampling, reading LM natively):\n"
" ... | rnnlm-get-egs sampling.lm - ark:- | rnnlm-train ...\n"
"\n"
"See also: rnnlm-train\n";
int32 srand_seed = 0;
RnnlmEgsConfig egs_config;
TaskSequencerConfig sequencer_config; // has --num-threads option; only
// relevant if we are using sampling
ParseOptions po(usage);
egs_config.Register(&po);
sequencer_config.Register(&po);
po.Register("srand", &srand_seed, "Seed for random number generator; "
"affects splitting of utterances and arrangement into "
"minibatches.");
po.Read(argc, argv);
if (po.NumArgs() < 2 || po.NumArgs() > 4) {
po.PrintUsage();
exit(1);
}
srand(srand_seed);
if (po.NumArgs() == 4) {
// the language model is provided (as an ARPA file), and we are doing
// sampling.
std::string symbol_table_rxfilename = po.GetArg(1),
arpa_rxfilename = po.GetArg(2),
sentences_rxfilename = po.GetArg(3),
egs_wspecifier = po.GetArg(4);
RnnlmExampleWriter writer(egs_wspecifier);
fst::SymbolTable *symtab;
{
Input symtab_input(symbol_table_rxfilename);
symtab = fst::SymbolTable::ReadText(symtab_input.Stream(),
symbol_table_rxfilename);
if (symtab == NULL)
KALDI_ERR << "Error reading symbol table.";
}
ArpaParseOptions arpa_options;
arpa_options.bos_symbol = egs_config.bos_symbol;
arpa_options.eos_symbol = egs_config.eos_symbol;
SamplingLm lm(arpa_options, symtab);
{
Input arpa_input(arpa_rxfilename);
lm.Read(arpa_input.Stream());
}
if (egs_config.vocab_size <= 0)
egs_config.vocab_size = lm.VocabSize();
RnnlmExampleSampler sampler(egs_config, lm);
RnnlmExampleCreator creator(egs_config, sequencer_config,
sampler, &writer);
Input ki(sentences_rxfilename);
creator.Process(ki.Stream());
delete symtab;
} else if (po.NumArgs() == 3) {
// the language model is provided (in its native format, not as an ARPA
// file), and we are doing sampling.
std::string lm_rxfilename = po.GetArg(1),
sentences_rxfilename = po.GetArg(2),
egs_wspecifier = po.GetArg(3);
RnnlmExampleWriter writer(egs_wspecifier);
SamplingLm lm;
ReadKaldiObject(lm_rxfilename, &lm);
if (egs_config.vocab_size <= 0)
egs_config.vocab_size = lm.VocabSize();
RnnlmExampleSampler sampler(egs_config, lm);
RnnlmExampleCreator creator(egs_config, sequencer_config,
sampler, &writer);
Input ki(sentences_rxfilename);
creator.Process(ki.Stream());
} else {
std::string sentences_rxfilename = po.GetArg(1),
egs_wspecifier = po.GetArg(2);
RnnlmExampleWriter writer(egs_wspecifier);
RnnlmExampleCreator creator(egs_config, &writer);
Input ki(sentences_rxfilename);
creator.Process(ki.Stream());
}
return 0; // we'd have died with an exception if there was a problem or if
// we didn't process any data.
} catch(const std::exception &e) {
std::cerr << e.what() << '\n';
return -1;
}
}