am-sgmm2.cc
53.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
// sgmm2/am-sgmm2.cc
// Copyright 2009-2011 Microsoft Corporation; Lukas Burget;
// Saarland University (Author: Arnab Ghoshal);
// Ondrej Glembek; Yanmin Qian;
// Copyright 2012-2013 Johns Hopkins University (Author: Daniel Povey)
// Liang Lu; Arnab Ghoshal
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <functional>
#include "sgmm2/am-sgmm2.h"
#include "util/kaldi-thread.h"
namespace kaldi {
using std::vector;
// This function needs to be added because std::generate is complaining
// about RandGauss(), which takes an optional arguments.
static inline float _RandGauss()
{
return RandGauss();
}
void Sgmm2LikelihoodCache::NextFrame() {
t++;
if (t == 0) {
t++; // skip over zero; zero is used to invalidate frames.
for (size_t i = 0; i < substate_cache.size(); i++)
substate_cache[i].t = 0;
for (size_t i = 0; i < pdf_cache.size(); i++)
pdf_cache[i].t = 0;
}
}
void AmSgmm2::ComputeGammaI(const Vector<BaseFloat> &state_occupancies,
Vector<BaseFloat> *gamma_i) const {
KALDI_ASSERT(state_occupancies.Dim() == NumPdfs());
Vector<BaseFloat> w_jm(NumGauss());
gamma_i->Resize(NumGauss());
for (int32 j1 = 0; j1 < NumGroups(); j1++) {
int32 M = NumSubstatesForGroup(j1);
const std::vector<int32> &pdfs = group2pdf_[j1];
Vector<BaseFloat> substate_weight(M); // total weight for each substate.
for (size_t i = 0; i < pdfs.size(); i++) {
int32 j2 = pdfs[i];
substate_weight.AddVec(state_occupancies(j2), c_[j2]);
}
for (int32 m = 0; m < M; m++) {
w_jm.AddMatVec(1.0, w_, kNoTrans, v_[j1].Row(m), 0.0);
w_jm.ApplySoftMax();
gamma_i->AddVec(substate_weight(m), w_jm);
}
}
}
void AmSgmm2::ComputePdfMappings() {
if (pdf2group_.empty()) {
KALDI_WARN << "ComputePdfMappings(): no pdf2group_ map, assuming you "
"are reading in old model.";
KALDI_ASSERT(v_.size() != 0);
pdf2group_.resize(v_.size());
for (int32 j2 = 0; j2 < static_cast<int32>(pdf2group_.size()); j2++)
pdf2group_[j2] = j2;
}
group2pdf_.clear();
for (int32 j2 = 0; j2 < static_cast<int32>(pdf2group_.size()); j2++) {
int32 j1 = pdf2group_[j2];
if (group2pdf_.size() <= j1) group2pdf_.resize(j1+1);
group2pdf_[j1].push_back(j2);
}
}
void AmSgmm2::Read(std::istream &in_stream, bool binary) {
{ // We want this to work even if the object was previously
// populated, so we clear the items that are more likely
// to cause problems.
pdf2group_.clear();
group2pdf_.clear();
u_.Resize(0,0);
w_jmi_.clear();
v_.clear();
}
// removing anything that was in the object before.
int32 num_pdfs = -1, feat_dim, num_gauss;
std::string token;
ExpectToken(in_stream, binary, "<SGMM>");
ExpectToken(in_stream, binary, "<NUMSTATES>");
ReadBasicType(in_stream, binary, &num_pdfs);
ExpectToken(in_stream, binary, "<DIMENSION>");
ReadBasicType(in_stream, binary, &feat_dim);
ExpectToken(in_stream, binary, "<NUMGAUSS>");
ReadBasicType(in_stream, binary, &num_gauss);
KALDI_ASSERT(num_pdfs > 0 && feat_dim > 0);
ReadToken(in_stream, binary, &token);
while (token != "</SGMM>") {
if (token == "<PDF2GROUP>") {
ReadIntegerVector(in_stream, binary, &pdf2group_);
ComputePdfMappings();
} else if (token == "<WEIGHTIDX2GAUSS>") { // TEMP! Will remove.
std::vector<int32> garbage;
ReadIntegerVector(in_stream, binary, &garbage);
} else if (token == "<DIAG_UBM>") {
diag_ubm_.Read(in_stream, binary);
} else if (token == "<FULL_UBM>") {
full_ubm_.Read(in_stream, binary);
} else if (token == "<SigmaInv>") {
SigmaInv_.resize(num_gauss);
for (int32 i = 0; i < num_gauss; i++) {
SigmaInv_[i].Read(in_stream, binary);
}
} else if (token == "<M>") {
M_.resize(num_gauss);
for (int32 i = 0; i < num_gauss; i++) {
M_[i].Read(in_stream, binary);
}
} else if (token == "<N>") {
N_.resize(num_gauss);
for (int32 i = 0; i < num_gauss; i++) {
N_[i].Read(in_stream, binary);
}
} else if (token == "<w>") {
w_.Read(in_stream, binary);
} else if (token == "<u>") {
u_.Read(in_stream, binary);
} else if (token == "<v>") {
int32 num_groups = group2pdf_.size();
if (num_groups == 0) {
KALDI_WARN << "Reading old model with new code (should still work)";
num_groups = num_pdfs;
}
v_.resize(num_groups);
for (int32 j1 = 0; j1 < num_groups; j1++) {
v_[j1].Read(in_stream, binary);
}
} else if (token == "<c>") {
c_.resize(num_pdfs);
for (int32 j2 = 0; j2 < num_pdfs; j2++) {
c_[j2].Read(in_stream, binary);
}
} else if (token == "<n>") {
int32 num_groups = group2pdf_.size();
if (num_groups == 0) num_groups = num_pdfs;
n_.resize(num_groups);
for (int32 j1 = 0; j1 < num_groups; j1++) {
n_[j1].Read(in_stream, binary);
}
// The following are the Gaussian prior parameters for MAP adaptation of M
// They may be moved to somewhere else eventually.
} else if (token == "<M_Prior>") {
ExpectToken(in_stream, binary, "<NUMGaussians>");
ReadBasicType(in_stream, binary, &num_gauss);
M_prior_.resize(num_gauss);
for (int32 i = 0; i < num_gauss; i++) {
M_prior_[i].Read(in_stream, binary);
}
} else if (token == "<Row_Cov_Inv>") {
row_cov_inv_.Read(in_stream, binary);
} else if (token == "<Col_Cov_Inv>") {
col_cov_inv_.Read(in_stream, binary);
} else {
KALDI_ERR << "Unexpected token '" << token << "' in model file ";
}
ReadToken(in_stream, binary, &token);
}
if (pdf2group_.empty())
ComputePdfMappings(); // sets up group2pdf_, and pdf2group_ if reading
// old model.
if (n_.empty())
ComputeNormalizers();
if (HasSpeakerDependentWeights())
ComputeWeights();
}
int32 AmSgmm2::Pdf2Group(int32 j2) const {
KALDI_ASSERT(static_cast<size_t>(j2) < pdf2group_.size());
int32 j1 = pdf2group_[j2];
return j1;
}
void AmSgmm2::Write(std::ostream &out_stream,
bool binary,
SgmmWriteFlagsType write_params) const {
int32 num_pdfs = NumPdfs(),
feat_dim = FeatureDim(),
num_gauss = NumGauss();
WriteToken(out_stream, binary, "<SGMM>");
if (!binary) out_stream << "\n";
WriteToken(out_stream, binary, "<NUMSTATES>");
WriteBasicType(out_stream, binary, num_pdfs);
WriteToken(out_stream, binary, "<DIMENSION>");
WriteBasicType(out_stream, binary, feat_dim);
WriteToken(out_stream, binary, "<NUMGAUSS>");
WriteBasicType(out_stream, binary, num_gauss);
if (!binary) out_stream << "\n";
if (write_params & kSgmmBackgroundGmms) {
WriteToken(out_stream, binary, "<DIAG_UBM>");
diag_ubm_.Write(out_stream, binary);
WriteToken(out_stream, binary, "<FULL_UBM>");
full_ubm_.Write(out_stream, binary);
}
if (write_params & kSgmmGlobalParams) {
WriteToken(out_stream, binary, "<SigmaInv>");
if (!binary) out_stream << "\n";
for (int32 i = 0; i < num_gauss; i++) {
SigmaInv_[i].Write(out_stream, binary);
}
WriteToken(out_stream, binary, "<M>");
if (!binary) out_stream << "\n";
for (int32 i = 0; i < num_gauss; i++) {
M_[i].Write(out_stream, binary);
}
if (N_.size() != 0) {
WriteToken(out_stream, binary, "<N>");
if (!binary) out_stream << "\n";
for (int32 i = 0; i < num_gauss; i++) {
N_[i].Write(out_stream, binary);
}
}
WriteToken(out_stream, binary, "<w>");
w_.Write(out_stream, binary);
WriteToken(out_stream, binary, "<u>");
u_.Write(out_stream, binary);
}
if (write_params & kSgmmStateParams) {
WriteToken(out_stream, binary, "<PDF2GROUP>");
WriteIntegerVector(out_stream, binary, pdf2group_);
WriteToken(out_stream, binary, "<v>");
for (int32 j1 = 0; j1 < NumGroups(); j1++) {
v_[j1].Write(out_stream, binary);
}
WriteToken(out_stream, binary, "<c>");
for (int32 j2 = 0; j2 < num_pdfs; j2++) {
c_[j2].Write(out_stream, binary);
}
}
if (write_params & kSgmmNormalizers) {
WriteToken(out_stream, binary, "<n>");
if (n_.empty())
KALDI_WARN << "Not writing normalizers since they are not present.";
else
for (int32 j1 = 0; j1 < NumGroups(); j1++)
n_[j1].Write(out_stream, binary);
}
WriteToken(out_stream, binary, "</SGMM>");
}
void AmSgmm2::Check(bool show_properties) {
int32 J1 = NumGroups(),
J2 = NumPdfs(),
num_gauss = NumGauss(),
feat_dim = FeatureDim(),
phn_dim = PhoneSpaceDim(),
spk_dim = SpkSpaceDim();
if (show_properties)
KALDI_LOG << "AmSgmm2: #pdfs = " << J2 << ", #pdf-groups = "
<< J1 << ", #Gaussians = "
<< num_gauss << ", feature dim = " << feat_dim
<< ", phone-space dim =" << phn_dim
<< ", speaker-space dim =" << spk_dim;
KALDI_ASSERT(J1 > 0 && num_gauss > 0 && feat_dim > 0 && phn_dim > 0
&& J2 > 0 && J2 >= J1);
std::ostringstream debug_str;
// First check the diagonal-covariance UBM.
KALDI_ASSERT(diag_ubm_.NumGauss() == num_gauss);
KALDI_ASSERT(diag_ubm_.Dim() == feat_dim);
// Check the full-covariance UBM.
KALDI_ASSERT(full_ubm_.NumGauss() == num_gauss);
KALDI_ASSERT(full_ubm_.Dim() == feat_dim);
// Check the globally-shared covariance matrices.
KALDI_ASSERT(SigmaInv_.size() == static_cast<size_t>(num_gauss));
for (int32 i = 0; i < num_gauss; i++) {
KALDI_ASSERT(SigmaInv_[i].NumRows() == feat_dim &&
SigmaInv_[i](0, 0) > 0.0); // or it wouldn't be +ve definite.
}
if (spk_dim != 0) {
KALDI_ASSERT(N_.size() == static_cast<size_t>(num_gauss));
for (int32 i = 0; i < num_gauss; i++)
KALDI_ASSERT(N_[i].NumRows() == feat_dim && N_[i].NumCols() == spk_dim);
if (u_.NumRows() == 0) {
debug_str << "Speaker-weight projections: no.";
} else {
KALDI_ASSERT(u_.NumRows() == num_gauss && u_.NumCols() == spk_dim);
debug_str << "Speaker-weight projections: yes.";
}
} else {
KALDI_ASSERT(N_.size() == 0 && u_.NumRows() == 0);
}
KALDI_ASSERT(M_.size() == static_cast<size_t>(num_gauss));
for (int32 i = 0; i < num_gauss; i++) {
KALDI_ASSERT(M_[i].NumRows() == feat_dim && M_[i].NumCols() == phn_dim);
}
KALDI_ASSERT(w_.NumRows() == num_gauss && w_.NumCols() == phn_dim);
{ // check v, c.
KALDI_ASSERT(v_.size() == static_cast<size_t>(J1) &&
c_.size() == static_cast<size_t>(J2));
int32 nSubstatesTot = 0;
for (int32 j1 = 0; j1 < J1; j1++) {
int32 M_j = NumSubstatesForGroup(j1);
nSubstatesTot += M_j;
KALDI_ASSERT(M_j > 0 && v_[j1].NumRows() == M_j &&
v_[j1].NumCols() == phn_dim);
}
debug_str << "Substates: "<< (nSubstatesTot) << ". ";
int32 nSubstateWeights = 0;
for (int32 j2 = 0; j2 < J2; j2++) {
int32 j1 = Pdf2Group(j2);
int32 M = NumSubstatesForPdf(j2);
KALDI_ASSERT(M == NumSubstatesForGroup(j1));
nSubstateWeights += M;
}
KALDI_ASSERT(nSubstateWeights >= nSubstatesTot);
debug_str << "SubstateWeights: "<< (nSubstateWeights) << ". ";
}
// check normalizers.
if (n_.size() == 0) {
debug_str << "Normalizers: no. ";
} else {
debug_str << "Normalizers: yes. ";
KALDI_ASSERT(n_.size() == static_cast<size_t>(J1));
for (int32 j1 = 0; j1 < J1; j1++) {
KALDI_ASSERT(n_[j1].NumRows() == num_gauss &&
n_[j1].NumCols() == NumSubstatesForGroup(j1));
}
}
// check w_jmi_.
if (w_jmi_.size() == 0) {
debug_str << "Computed weights: no. ";
} else {
debug_str << "Computed weights: yes. ";
KALDI_ASSERT(w_jmi_.size() == static_cast<size_t>(J1));
for (int32 j1 = 0; j1 < J1; j1++) {
KALDI_ASSERT(w_jmi_[j1].NumRows() == NumSubstatesForGroup(j1) &&
w_jmi_[j1].NumCols() == num_gauss);
}
}
if (show_properties)
KALDI_LOG << "Subspace GMM model properties: " << debug_str.str();
}
void AmSgmm2::InitializeFromFullGmm(const FullGmm &full_gmm,
const std::vector<int32> &pdf2group,
int32 phn_subspace_dim,
int32 spk_subspace_dim,
bool speaker_dependent_weights,
BaseFloat self_weight) {
pdf2group_ = pdf2group;
ComputePdfMappings();
full_ubm_.CopyFromFullGmm(full_gmm);
diag_ubm_.CopyFromFullGmm(full_gmm);
if (phn_subspace_dim < 1 || phn_subspace_dim > full_gmm.Dim() + 1) {
KALDI_WARN << "Initial phone-subspace dimension must be >= 1, value is "
<< phn_subspace_dim << "; setting to " << full_gmm.Dim() + 1;
phn_subspace_dim = full_gmm.Dim() + 1;
}
KALDI_ASSERT(spk_subspace_dim >= 0);
w_.Resize(0, 0);
N_.clear();
c_.clear();
v_.clear();
SigmaInv_.clear();
KALDI_LOG << "Initializing model";
Matrix<BaseFloat> norm_xform;
ComputeFeatureNormalizingTransform(full_gmm, &norm_xform);
InitializeMw(phn_subspace_dim, norm_xform);
if (spk_subspace_dim > 0)
InitializeNu(spk_subspace_dim, norm_xform, speaker_dependent_weights);
InitializeVecsAndSubstateWeights(self_weight);
KALDI_LOG << "Initializing variances";
InitializeCovars();
}
void AmSgmm2::CopyFromSgmm2(const AmSgmm2 &other,
bool copy_normalizers,
bool copy_weights) {
KALDI_LOG << "Copying AmSgmm2";
pdf2group_ = other.pdf2group_;
group2pdf_ = other.group2pdf_;
// Copy background GMMs
diag_ubm_.CopyFromDiagGmm(other.diag_ubm_);
full_ubm_.CopyFromFullGmm(other.full_ubm_);
// Copy global params
SigmaInv_ = other.SigmaInv_;
M_ = other.M_;
w_ = other.w_;
N_ = other.N_;
u_ = other.u_;
// Copy state-specific params, but only copy normalizers if requested.
v_ = other.v_;
c_ = other.c_;
if (copy_normalizers) n_ = other.n_;
if (copy_weights) w_jmi_ = other.w_jmi_;
KALDI_LOG << "Done.";
}
void AmSgmm2::ComputePerFrameVars(const VectorBase<BaseFloat> &data,
const std::vector<int32> &gselect,
const Sgmm2PerSpkDerivedVars &spk_vars,
Sgmm2PerFrameDerivedVars *per_frame_vars) const {
KALDI_ASSERT(!n_.empty() && "ComputeNormalizers() must be called.");
per_frame_vars->Resize(gselect.size(), FeatureDim(), PhoneSpaceDim());
per_frame_vars->gselect = gselect;
per_frame_vars->xt.CopyFromVec(data);
for (int32 ki = 0, last = gselect.size(); ki < last; ki++) {
int32 i = gselect[ki];
per_frame_vars->xti.Row(ki).CopyFromVec(per_frame_vars->xt);
if (spk_vars.v_s.Dim() != 0)
per_frame_vars->xti.Row(ki).AddVec(-1.0, spk_vars.o_s.Row(i));
}
Vector<BaseFloat> SigmaInv_xt(FeatureDim());
bool speaker_dep_weights =
(spk_vars.v_s.Dim() != 0 && HasSpeakerDependentWeights());
for (int32 ki = 0, last = gselect.size(); ki < last; ki++) {
int32 i = gselect[ki];
BaseFloat ssgmm_term = (speaker_dep_weights ? spk_vars.log_b_is(i) : 0.0);
SigmaInv_xt.AddSpVec(1.0, SigmaInv_[i], per_frame_vars->xti.Row(ki), 0.0);
// Eq (35): z_{i}(t) = M_{i}^{T} \Sigma_{i}^{-1} x_{i}(t)
per_frame_vars->zti.Row(ki).AddMatVec(1.0, M_[i], kTrans, SigmaInv_xt, 0.0);
// Eq.(36): n_{i}(t) = -0.5 x_{i}^{T} \Sigma_{i}^{-1} x_{i}(t)
per_frame_vars->nti(ki) = -0.5 * VecVec(per_frame_vars->xti.Row(ki),
SigmaInv_xt) + ssgmm_term;
}
}
// inline
void AmSgmm2::ComponentLogLikes(const Sgmm2PerFrameDerivedVars &per_frame_vars,
int32 j1,
Sgmm2PerSpkDerivedVars *spk_vars,
Matrix<BaseFloat> *loglikes) const {
const vector<int32> &gselect = per_frame_vars.gselect;
int32 num_gselect = gselect.size(), num_substates = v_[j1].NumRows();
// Eq.(37): log p(x(t), m, i|j) [indexed by j, ki]
// Although the extra memory allocation of storing this as a
// matrix might seem unnecessary, we save time in the LogSumExp()
// via more effective pruning.
loglikes->Resize(num_gselect, num_substates);
bool speaker_dep_weights =
(spk_vars->v_s.Dim() != 0 && HasSpeakerDependentWeights());
if (speaker_dep_weights) {
KALDI_ASSERT(static_cast<int32>(spk_vars->log_d_jms.size()) == NumGroups());
KALDI_ASSERT(static_cast<int32>(w_jmi_.size()) == NumGroups() ||
"You need to call ComputeWeights().");
}
for (int32 ki = 0; ki < num_gselect; ki++) {
SubVector<BaseFloat> logp_xi(*loglikes, ki);
int32 i = gselect[ki];
// for all substates, compute z_{i}^T v_{jm}
logp_xi.AddMatVec(1.0, v_[j1], kNoTrans, per_frame_vars.zti.Row(ki), 0.0);
logp_xi.AddVec(1.0, n_[j1].Row(i)); // for all substates, add n_{jim}
logp_xi.Add(per_frame_vars.nti(ki)); // for all substates, add n_{i}(t)
}
if (speaker_dep_weights) { // [SSGMM]
Vector<BaseFloat> &log_d = spk_vars->log_d_jms[j1];
if (log_d.Dim() == 0) { // have not yet cached this quantity.
log_d.Resize(num_substates);
log_d.AddMatVec(1.0, w_jmi_[j1], kNoTrans, spk_vars->b_is, 0.0);
log_d.ApplyLog();
}
loglikes->AddVecToRows(-1.0, log_d); // [SSGMM] this is the term
// - log d_{jm}^{(s)} in the likelihood function [eq. 25 in
// the techreport]
}
}
BaseFloat AmSgmm2::LogLikelihood(const Sgmm2PerFrameDerivedVars &per_frame_vars,
int32 j2,
Sgmm2LikelihoodCache *cache,
Sgmm2PerSpkDerivedVars *spk_vars,
BaseFloat log_prune) const {
int32 t = cache->t; // not a real time; used to uniquely identify frames.
// Forgo asserts here, as this is frequently called.
// We'll probably get a segfault if an error is made.
Sgmm2LikelihoodCache::PdfCacheElement &pdf_cache =
cache->pdf_cache[j2];
#ifdef KALDI_PARANOID
bool random_test = (Rand() % 1000 == 1); // to check that the user is
// calling Next() on the cache, as they should.
#else
bool random_test = false; // compiler will ignore test branches.
#endif
if (pdf_cache.t == t) {
if (!random_test) return pdf_cache.log_like;
} else {
random_test = false;
}
// if random_test == true at this point, it was already cached, and we will
// verify that we return the same value as the cached one.
pdf_cache.t = t;
int32 j1 = pdf2group_[j2];
Sgmm2LikelihoodCache::SubstateCacheElement &substate_cache =
cache->substate_cache[j1];
if (substate_cache.t != t) { // Need to compute sub-state likelihoods.
substate_cache.t = t;
Matrix<BaseFloat> loglikes; // indexed [gselect-index][substate-index]
ComponentLogLikes(per_frame_vars, j1, spk_vars, &loglikes);
BaseFloat max = loglikes.Max(); // use this to keep things in good numerical range.
loglikes.Add(-max);
loglikes.ApplyExp();
substate_cache.remaining_log_like = max;
int32 num_substates = loglikes.NumCols();
substate_cache.likes.Resize(num_substates); // zeroes it.
substate_cache.likes.AddRowSumMat(1.0, loglikes); // add likelihoods [not in log!] for
// each column [i.e. summing over the rows], so we get the sum for
// each substate index. You have to multiply by exp(remaining_log_like)
// to get a real likelihood.
}
BaseFloat log_like = substate_cache.remaining_log_like
+ Log(VecVec(substate_cache.likes, c_[j2]));
if (random_test)
KALDI_ASSERT(ApproxEqual(pdf_cache.log_like, log_like));
pdf_cache.log_like = log_like;
KALDI_ASSERT(log_like == log_like && log_like - log_like == 0); // check
// that it's not NaN or infinity.
return log_like;
}
BaseFloat
AmSgmm2::ComponentPosteriors(const Sgmm2PerFrameDerivedVars &per_frame_vars,
int32 j2,
Sgmm2PerSpkDerivedVars *spk_vars,
Matrix<BaseFloat> *post) const {
KALDI_ASSERT(j2 < NumPdfs() && post != NULL);
int32 j1 = pdf2group_[j2];
ComponentLogLikes(per_frame_vars, j1, spk_vars, post); // now
// post is a matrix of log-likelihoods indexed by [gaussian-selection index]
// [sub-state index]. It doesn't include the sub-state weights,
// though.
BaseFloat loglike = post->Max();
post->Add(-loglike); // get it to nicer numeric range.
post->ApplyExp(); // so we're dealing with likelihoods (with an arbitrary offset
// "loglike" removed to make it in a nice numeric range)
post->MulColsVec(c_[j2]); // include the sub-state weights.
BaseFloat tot_like = post->Sum();
KALDI_ASSERT(tot_like != 0.0); // note: not valid to have zero weights.
loglike += Log(tot_like);
post->Scale(1.0 / tot_like); // so "post" now sums to one, and "loglike"
// contains the correct log-likelihood of the data given the pdf.
return loglike;
}
void AmSgmm2::SplitSubstatesInGroup(const Vector<BaseFloat> &pdf_occupancies,
const Sgmm2SplitSubstatesConfig &opts,
const SpMatrix<BaseFloat> &sqrt_H_sm,
int32 j1,
int32 tgt_M) {
const std::vector<int32> &pdfs = group2pdf_[j1];
int32 phn_dim = PhoneSpaceDim(), cur_M = NumSubstatesForGroup(j1),
num_pdfs_for_group = pdfs.size();
Vector<BaseFloat> rand_vec(phn_dim), v_shift(phn_dim);
KALDI_ASSERT(tgt_M >= cur_M);
if (cur_M == tgt_M) return;
// Resize v[j1] to fit new substates
{
Matrix<BaseFloat> tmp_v_j(v_[j1]);
v_[j1].Resize(tgt_M, phn_dim);
v_[j1].Range(0, cur_M, 0, phn_dim).CopyFromMat(tmp_v_j);
}
// we'll use a temporary matrix for the c quantities.
Matrix<BaseFloat> c_j(num_pdfs_for_group, tgt_M);
for (int32 i = 0; i < num_pdfs_for_group; i++) {
int32 j2 = pdfs[i];
c_j.Row(i).Range(0, cur_M).CopyFromVec(c_[j2]);
}
// Keep splitting substates until obtaining the desired number
for (; cur_M < tgt_M; cur_M++) {
int32 split_m; // substate to split.
{
Vector<BaseFloat> substate_count(tgt_M);
substate_count.AddRowSumMat(1.0, c_j);
BaseFloat *data = substate_count.Data();
split_m = std::max_element(data, data+cur_M) - data;
}
for (int32 i = 0; i < num_pdfs_for_group; i++) { // divide count of split
// substate. [extended for SCTM]
// c_{jkm} := c_{jmk}' := c_{jkm} / 2
c_j(i, split_m) = c_j(i, cur_M) = c_j(i, split_m) / 2;
}
// v_{jkm} := +/- split_perturb * H_k^{(sm)}^{-0.5} * rand_vec
std::generate(rand_vec.Data(), rand_vec.Data() + rand_vec.Dim(),
_RandGauss);
v_shift.AddSpVec(opts.perturb_factor, sqrt_H_sm, rand_vec, 0.0);
v_[j1].Row(cur_M).CopyFromVec(v_[j1].Row(split_m));
v_[j1].Row(cur_M).AddVec(1.0, v_shift);
v_[j1].Row(split_m).AddVec(-1.0, v_shift);
}
// copy the temporary matrix for the c_ (sub-state weight)
// quantities back to the place it belongs.
for (int32 i = 0; i < num_pdfs_for_group; i++) {
int32 j2 = pdfs[i];
c_[j2].Resize(tgt_M);
c_[j2].CopyFromVec(c_j.Row(i));
}
}
void AmSgmm2::SplitSubstates(const Vector<BaseFloat> &pdf_occupancies,
const Sgmm2SplitSubstatesConfig &opts) {
KALDI_ASSERT(pdf_occupancies.Dim() == NumPdfs());
int32 J1 = NumGroups(), J2 = NumPdfs();
Vector<BaseFloat> group_occupancies(J1);
for (int32 j2 = 0; j2 < J2; j2++)
group_occupancies(Pdf2Group(j2)) += pdf_occupancies(j2);
vector<int32> tgt_num_substates;
GetSplitTargets(group_occupancies, opts.split_substates,
opts.power, opts.min_count, &tgt_num_substates);
int32 tot_num_substates_old = 0, tot_num_substates_new = 0;
vector< SpMatrix<BaseFloat> > H_i;
SpMatrix<BaseFloat> sqrt_H_sm;
ComputeH(&H_i); // set up that array.
ComputeHsmFromModel(H_i, pdf_occupancies, &sqrt_H_sm, opts.max_cond);
H_i.clear();
sqrt_H_sm.ApplyPow(-0.5);
for (int32 j1 = 0; j1 < J1; j1++) {
int32 cur_M = NumSubstatesForGroup(j1),
tgt_M = tgt_num_substates[j1];
tot_num_substates_old += cur_M;
tot_num_substates_new += std::max(cur_M, tgt_M);
if (cur_M < tgt_M)
SplitSubstatesInGroup(pdf_occupancies, opts, sqrt_H_sm, j1, tgt_M);
}
if (tot_num_substates_old == tot_num_substates_new) {
KALDI_LOG << "Not splitting substates; current #substates is "
<< tot_num_substates_old << " and target is "
<< opts.split_substates;
} else {
KALDI_LOG << "Getting rid of normalizers as they will no longer be valid";
n_.clear();
KALDI_LOG << "Split " << tot_num_substates_old << " substates to "
<< tot_num_substates_new;
}
}
void AmSgmm2::IncreasePhoneSpaceDim(int32 target_dim,
const Matrix<BaseFloat> &norm_xform) {
KALDI_ASSERT(!M_.empty());
int32 initial_dim = PhoneSpaceDim(),
feat_dim = FeatureDim();
KALDI_ASSERT(norm_xform.NumRows() == feat_dim);
if (target_dim < initial_dim)
KALDI_ERR << "You asked to increase phn dim to a value lower than the "
<< " current dimension, " << target_dim << " < " << initial_dim;
if (target_dim > initial_dim + feat_dim) {
KALDI_WARN << "Cannot increase phone subspace dimensionality from "
<< initial_dim << " to " << target_dim << ", increasing to "
<< initial_dim + feat_dim;
target_dim = initial_dim + feat_dim;
}
if (initial_dim < target_dim) {
Matrix<BaseFloat> tmp_M(feat_dim, initial_dim);
for (int32 i = 0; i < NumGauss(); i++) {
tmp_M.CopyFromMat(M_[i]);
M_[i].Resize(feat_dim, target_dim);
M_[i].Range(0, feat_dim, 0, tmp_M.NumCols()).CopyFromMat(tmp_M);
M_[i].Range(0, feat_dim, tmp_M.NumCols(),
target_dim - tmp_M.NumCols()).CopyFromMat(norm_xform.Range(0,
feat_dim, 0, target_dim-tmp_M.NumCols()));
}
Matrix<BaseFloat> tmp_w = w_;
w_.Resize(tmp_w.NumRows(), target_dim);
w_.Range(0, tmp_w.NumRows(), 0, tmp_w.NumCols()).CopyFromMat(tmp_w);
for (int32 j1 = 0; j1 < NumGroups(); j1++) {
// Resize phonetic-subspce vectors.
Matrix<BaseFloat> tmp_v_j = v_[j1];
v_[j1].Resize(tmp_v_j.NumRows(), target_dim);
v_[j1].Range(0, tmp_v_j.NumRows(), 0, tmp_v_j.NumCols()).CopyFromMat(
tmp_v_j);
}
KALDI_LOG << "Phone subspace dimensionality increased from " <<
initial_dim << " to " << target_dim;
} else {
KALDI_LOG << "Phone subspace dimensionality unchanged, since target " <<
"dimension (" << target_dim << ") <= initial dimansion (" <<
initial_dim << ")";
}
}
void AmSgmm2::IncreaseSpkSpaceDim(int32 target_dim,
const Matrix<BaseFloat> &norm_xform,
bool speaker_dependent_weights) {
int32 initial_dim = SpkSpaceDim(),
feat_dim = FeatureDim();
KALDI_ASSERT(norm_xform.NumRows() == feat_dim);
if (N_.size() == 0)
N_.resize(NumGauss());
if (target_dim < initial_dim)
KALDI_ERR << "You asked to increase spk dim to a value lower than the "
<< " current dimension, " << target_dim << " < " << initial_dim;
if (target_dim > initial_dim + feat_dim) {
KALDI_WARN << "Cannot increase speaker subspace dimensionality from "
<< initial_dim << " to " << target_dim << ", increasing to "
<< initial_dim + feat_dim;
target_dim = initial_dim + feat_dim;
}
if (initial_dim < target_dim) {
int32 dim_change = target_dim - initial_dim;
Matrix<BaseFloat> tmp_N((initial_dim != 0) ? feat_dim : 0,
initial_dim);
for (int32 i = 0; i < NumGauss(); i++) {
if (initial_dim != 0) tmp_N.CopyFromMat(N_[i]);
N_[i].Resize(feat_dim, target_dim);
if (initial_dim != 0) {
N_[i].Range(0, feat_dim, 0, tmp_N.NumCols()).CopyFromMat(tmp_N);
}
N_[i].Range(0, feat_dim, tmp_N.NumCols(), dim_change).CopyFromMat(
norm_xform.Range(0, feat_dim, 0, dim_change));
}
// if we already have speaker-dependent weights or we are increasing
// spk-dim from zero and are asked to add them...
if (u_.NumRows() != 0 || (initial_dim == 0 && speaker_dependent_weights))
u_.Resize(NumGauss(), target_dim, kCopyData); // extend dim of u_i's
KALDI_LOG << "Speaker subspace dimensionality increased from " <<
initial_dim << " to " << target_dim;
if (initial_dim == 0 && speaker_dependent_weights)
KALDI_LOG << "Added parameters u for speaker-dependent weights.";
} else {
KALDI_LOG << "Speaker subspace dimensionality unchanged, since target " <<
"dimension (" << target_dim << ") <= initial dimansion (" <<
initial_dim << ")";
}
}
void AmSgmm2::ComputeWeights() {
int32 J1 = NumGroups();
w_jmi_.resize(J1);
int32 i = NumGauss();
for (int32 j1 = 0; j1 < J1; j1++) {
int32 M = NumSubstatesForGroup(j1);
w_jmi_[j1].Resize(M, i);
w_jmi_[j1].AddMatMat(1.0, v_[j1], kNoTrans, w_, kTrans, 0.0);
// now w_jmi_ contains un-normalized log weights.
for (int32 m = 0; m < M; m++)
w_jmi_[j1].Row(m).ApplySoftMax(); // get the actual weights.
}
}
void AmSgmm2::ComputeDerivedVars() {
if (n_.empty()) ComputeNormalizers();
if (diag_ubm_.NumGauss() != full_ubm_.NumGauss()
|| diag_ubm_.Dim() != full_ubm_.Dim()) {
diag_ubm_.CopyFromFullGmm(full_ubm_);
}
if (w_jmi_.empty() && HasSpeakerDependentWeights())
ComputeWeights();
}
class ComputeNormalizersClass: public MultiThreadable { // For multi-threaded.
public:
ComputeNormalizersClass(AmSgmm2 *am_sgmm,
int32 *entropy_count_ptr,
double *entropy_sum_ptr):
am_sgmm_(am_sgmm), entropy_count_ptr_(entropy_count_ptr),
entropy_sum_ptr_(entropy_sum_ptr), entropy_count_(0),
entropy_sum_(0.0) { }
ComputeNormalizersClass(const ComputeNormalizersClass &other):
MultiThreadable(other),
am_sgmm_(other.am_sgmm_), entropy_count_ptr_(other.entropy_count_ptr_),
entropy_sum_ptr_(other.entropy_sum_ptr_), entropy_count_(0),
entropy_sum_(0.0) { }
~ComputeNormalizersClass() {
*entropy_count_ptr_ += entropy_count_;
*entropy_sum_ptr_ += entropy_sum_;
}
inline void operator() () {
// Note: give them local copy of the sums we're computing,
// which will be propagated to original pointer in the destructor.
am_sgmm_->ComputeNormalizersInternal(num_threads_, thread_id_,
&entropy_count_,
&entropy_sum_);
}
private:
ComputeNormalizersClass() { } // Disallow empty constructor.
AmSgmm2 *am_sgmm_;
int32 *entropy_count_ptr_;
double *entropy_sum_ptr_;
int32 entropy_count_;
double entropy_sum_;
};
void AmSgmm2::ComputeNormalizers() {
KALDI_LOG << "Computing normalizers";
n_.resize(NumPdfs());
int32 entropy_count = 0;
double entropy_sum = 0.0;
ComputeNormalizersClass c(this, &entropy_count, &entropy_sum);
RunMultiThreaded(c);
KALDI_LOG << "Entropy of weights in substates is "
<< (entropy_sum / entropy_count) << " over " << entropy_count
<< " substates, equivalent to perplexity of "
<< (Exp(entropy_sum /entropy_count));
KALDI_LOG << "Done computing normalizers";
}
void AmSgmm2::ComputeNormalizersInternal(int32 num_threads, int32 thread,
int32 *entropy_count,
double *entropy_sum) {
BaseFloat DLog2pi = FeatureDim() * Log(2 * M_PI);
Vector<BaseFloat> log_det_Sigma(NumGauss());
for (int32 i = 0; i < NumGauss(); i++) {
try {
log_det_Sigma(i) = - SigmaInv_[i].LogPosDefDet();
} catch(...) {
if (thread == 0) // just for one thread, print errors [else, duplicates]
KALDI_WARN << "Covariance is not positive definite, setting to unit";
SigmaInv_[i].SetUnit();
log_det_Sigma(i) = 0.0;
}
}
int32 J1 = NumGroups();
int block_size = (NumPdfs() + num_threads-1) / num_threads;
int j_start = thread * block_size, j_end = std::min(J1, j_start + block_size);
int32 I = NumGauss();
for (int32 j1 = j_start; j1 < j_end; j1++) {
int32 M = NumSubstatesForGroup(j1);
Matrix<BaseFloat> log_w_jm(M, I);
n_[j1].Resize(I, M);
Matrix<BaseFloat> mu_jmi(M, FeatureDim());
Matrix<BaseFloat> SigmaInv_mu(M, FeatureDim());
// (in logs): w_jm = softmax([w_{k1}^T ... w_{kD}^T] * v_{jkm}) eq.(7)
log_w_jm.AddMatMat(1.0, v_[j1], kNoTrans, w_, kTrans, 0.0);
for (int32 m = 0; m < M; m++) {
log_w_jm.Row(m).Add(-1.0 * log_w_jm.Row(m).LogSumExp());
{ // DIAGNOSTIC CODE
(*entropy_count)++;
for (int32 i = 0; i < NumGauss(); i++) {
(*entropy_sum) -= log_w_jm(m, i) * Exp(log_w_jm(m, i));
}
}
}
for (int32 i = 0; i < I; i++) {
// mu_jmi = M_{i} * v_{jm}
mu_jmi.AddMatMat(1.0, v_[j1], kNoTrans, M_[i], kTrans, 0.0);
SigmaInv_mu.AddMatSp(1.0, mu_jmi, kNoTrans, SigmaInv_[i], 0.0);
for (int32 m = 0; m < M; m++) {
// mu_{jmi} * \Sigma_{i}^{-1} * mu_{jmi}
BaseFloat mu_SigmaInv_mu = VecVec(mu_jmi.Row(m), SigmaInv_mu.Row(m));
// Previously had:
// BaseFloat logc = log(c_[j](m));
// but because of STCM aspect, we can't include the sub-state mixture weights
// at this point [included later on.]
// eq.(31)
n_[j1](i, m) = log_w_jm(m, i) - 0.5 * (log_det_Sigma(i) + DLog2pi
+ mu_SigmaInv_mu);
{ // Mainly diagnostic code. Not necessary.
BaseFloat tmp = n_[j1](i, m);
if (!KALDI_ISFINITE(tmp)) { // NaN or inf
KALDI_LOG << "Warning: normalizer for j1 = " << j1 << ", m = " << m
<< ", i = " << i << " is infinite or NaN " << tmp << "= "
<< log_w_jm(m, i) << "+"
<< (-0.5 * log_det_Sigma(i)) << "+" << (-0.5 * DLog2pi)
<< "+" << (mu_SigmaInv_mu) << ", setting to finite.";
n_[j1](i, m) = -1.0e+40; // future work(arnab): get rid of magic number
}
}
}
}
}
}
BaseFloat AmSgmm2::GetDjms(int32 j1, int32 m,
Sgmm2PerSpkDerivedVars *spk_vars) const {
// This relates to SSGMMs (speaker-dependent weights).
if (spk_vars->log_d_jms.empty()) return -1; // this would be
// because we don't have speaker-dependent weights ("u" not set up).
KALDI_ASSERT(!w_jmi_.empty() && "You need to call ComputeWeights() on SGMM.");
Vector<BaseFloat> &log_d = spk_vars->log_d_jms[j1];
if (log_d.Dim() == 0) {
log_d.Resize(NumSubstatesForGroup(j1));
log_d.AddMatVec(1.0, w_jmi_[j1], kNoTrans, spk_vars->b_is, 0.0);
log_d.ApplyLog();
}
return Exp(log_d(m));
}
void AmSgmm2::ComputeFmllrPreXform(const Vector<BaseFloat> &state_occs,
Matrix<BaseFloat> *xform,
Matrix<BaseFloat> *inv_xform,
Vector<BaseFloat> *diag_mean_scatter) const {
int32 num_pdfs = NumPdfs(),
num_gauss = NumGauss(),
dim = FeatureDim();
KALDI_ASSERT(state_occs.Dim() == num_pdfs);
BaseFloat total_occ = state_occs.Sum();
// Degenerate case: unlikely to ever happen.
if (total_occ == 0) {
KALDI_WARN << "Zero probability (computing transform). Using unit "
<< "pre-transform";
xform->Resize(dim, dim + 1, kUndefined);
xform->SetUnit();
inv_xform->Resize(dim, dim + 1, kUndefined);
inv_xform->SetUnit();
diag_mean_scatter->Resize(dim, kSetZero);
return;
}
// Convert state occupancies to posteriors; Eq. (B.1)
Vector<BaseFloat> state_posteriors(state_occs);
state_posteriors.Scale(1/total_occ);
Vector<BaseFloat> mu_jmi(dim), global_mean(dim);
SpMatrix<BaseFloat> within_class_covar(dim), between_class_covar(dim);
Vector<BaseFloat> gauss_weight(num_gauss); // weights for within-class vars.
Vector<BaseFloat> w_jm(num_gauss);
for (int32 j1 = 0; j1 < NumGroups(); j1++) {
const std::vector<int32> &pdfs = group2pdf_[j1];
int32 M = NumSubstatesForGroup(j1);
Vector<BaseFloat> substate_weight(M); // total weight for each substate.
for (size_t i = 0; i < pdfs.size(); i++) {
int32 j2 = pdfs[i];
substate_weight.AddVec(state_posteriors(j2), c_[j2]);
}
for (int32 m = 0; m < M; m++) {
BaseFloat this_substate_weight = substate_weight(m);
// Eq. (7): w_jm = softmax([w_{1}^T ... w_{D}^T] * v_{jm})
w_jm.AddMatVec(1.0, w_, kNoTrans, v_[j1].Row(m), 0.0);
w_jm.ApplySoftMax();
for (int32 i = 0; i < num_gauss; i++) {
BaseFloat weight = this_substate_weight * w_jm(i);
mu_jmi.AddMatVec(1.0, M_[i], kNoTrans, v_[j1].Row(m), 0.0); // Eq. (6)
// Eq. (B.3): \mu_avg = \sum_{jmi} p(j) c_{jm} w_{jmi} \mu_{jmi}
global_mean.AddVec(weight, mu_jmi);
// \Sigma_B = \sum_{jmi} p(j) c_{jm} w_{jmi} \mu_{jmi} \mu_{jmi}^T
between_class_covar.AddVec2(weight, mu_jmi); // Eq. (B.4)
gauss_weight(i) += weight;
}
}
}
between_class_covar.AddVec2(-1.0, global_mean); // Eq. (B.4)
for (int32 i = 0; i < num_gauss; i++) {
SpMatrix<BaseFloat> Sigma(SigmaInv_[i]);
Sigma.InvertDouble();
// Eq. (B.2): \Sigma_W = \sum_{jmi} p(j) c_{jm} w_{jmi} \Sigma_i
within_class_covar.AddSp(gauss_weight(i), Sigma);
}
TpMatrix<BaseFloat> tmpL(dim);
Matrix<BaseFloat> tmpLInvFull(dim, dim);
tmpL.Cholesky(within_class_covar); // \Sigma_W = L L^T
tmpL.InvertDouble(); // L^{-1}
tmpLInvFull.CopyFromTp(tmpL); // get as full matrix.
// B := L^{-1} * \Sigma_B * L^{-T}
SpMatrix<BaseFloat> tmpB(dim);
tmpB.AddMat2Sp(1.0, tmpLInvFull, kNoTrans, between_class_covar, 0.0);
Matrix<BaseFloat> U(dim, dim);
diag_mean_scatter->Resize(dim);
xform->Resize(dim, dim + 1);
inv_xform->Resize(dim, dim + 1);
tmpB.Eig(diag_mean_scatter, &U); // Eq. (B.5): B = U D V^T
int32 n;
diag_mean_scatter->ApplyFloor(1.0e-04, &n);
if (n != 0)
KALDI_WARN << "Floored " << n << " elements of the mean-scatter matrix.";
// Eq. (B.6): A_{pre} = U^T * L^{-1}
SubMatrix<BaseFloat> Apre(*xform, 0, dim, 0, dim);
Apre.AddMatMat(1.0, U, kTrans, tmpLInvFull, kNoTrans, 0.0);
#ifdef KALDI_PARANOID
{
SpMatrix<BaseFloat> tmp(dim);
tmp.AddMat2Sp(1.0, Apre, kNoTrans, within_class_covar, 0.0);
KALDI_ASSERT(tmp.IsUnit(0.01));
}
{
SpMatrix<BaseFloat> tmp(dim);
tmp.AddMat2Sp(1.0, Apre, kNoTrans, between_class_covar, 0.0);
KALDI_ASSERT(tmp.IsDiagonal(0.01));
}
#endif
// Eq. (B.7): b_{pre} = - A_{pre} \mu_{avg}
Vector<BaseFloat> b_pre(dim);
b_pre.AddMatVec(-1.0, Apre, kNoTrans, global_mean, 0.0);
for (int32 r = 0; r < dim; r++) {
xform->Row(r)(dim) = b_pre(r); // W_{pre} = [ A_{pre}, b_{pre} ]
}
// Eq. (B.8) & (B.9): W_{inv} = [ A_{pre}^{-1}, \mu_{avg} ]
inv_xform->CopyFromMat(*xform);
inv_xform->Range(0, dim, 0, dim).InvertDouble();
for (int32 r = 0; r < dim; r++)
inv_xform->Row(r)(dim) = global_mean(r);
} // End of ComputePreXform()
template<typename Real>
void AmSgmm2::GetNtransSigmaInv(vector< Matrix<Real> > *out) const {
KALDI_ASSERT(SpkSpaceDim() > 0 &&
"Cannot compute N^{T} \\Sigma_{i}^{-1} without speaker projections.");
out->resize(NumGauss());
Matrix<Real> tmpcov(FeatureDim(), FeatureDim());
Matrix<Real> tmp_n(FeatureDim(), SpkSpaceDim());
for (int32 i = 0; i < NumGauss(); i++) {
tmpcov.CopyFromSp(SigmaInv_[i]);
tmp_n.CopyFromMat(N_[i]);
(*out)[i].Resize(SpkSpaceDim(), FeatureDim());
(*out)[i].AddMatMat(1.0, tmp_n, kTrans, tmpcov, kNoTrans, 0.0);
}
}
// Instantiate the above template.
template
void AmSgmm2::GetNtransSigmaInv(vector< Matrix<float> > *out) const;
template
void AmSgmm2::GetNtransSigmaInv(vector< Matrix<double> > *out) const;
///////////////////////////////////////////////////////////////////////////////
template<class Real>
void AmSgmm2::ComputeH(std::vector< SpMatrix<Real> > *H_i) const {
KALDI_ASSERT(NumGauss() != 0);
(*H_i).resize(NumGauss());
SpMatrix<BaseFloat> H_i_tmp(PhoneSpaceDim());
for (int32 i = 0; i < NumGauss(); i++) {
(*H_i)[i].Resize(PhoneSpaceDim());
H_i_tmp.AddMat2Sp(1.0, M_[i], kTrans, SigmaInv_[i], 0.0);
(*H_i)[i].CopyFromSp(H_i_tmp);
}
}
// Instantiate the template.
template
void AmSgmm2::ComputeH(std::vector< SpMatrix<float> > *H_i) const;
template
void AmSgmm2::ComputeH(std::vector< SpMatrix<double> > *H_i) const;
// Initializes the matrices M_{i} and w_i
void AmSgmm2::InitializeMw(int32 phn_subspace_dim,
const Matrix<BaseFloat> &norm_xform) {
int32 ddim = full_ubm_.Dim();
KALDI_ASSERT(phn_subspace_dim <= ddim + 1);
KALDI_ASSERT(phn_subspace_dim <= norm_xform.NumCols() + 1);
KALDI_ASSERT(ddim <= norm_xform.NumRows());
Vector<BaseFloat> mean(ddim);
int32 num_gauss = full_ubm_.NumGauss();
w_.Resize(num_gauss, phn_subspace_dim);
M_.resize(num_gauss);
for (int32 i = 0; i < num_gauss; i++) {
full_ubm_.GetComponentMean(i, &mean);
Matrix<BaseFloat> &thisM(M_[i]);
thisM.Resize(ddim, phn_subspace_dim);
// Eq. (27): M_{i} = [ \bar{\mu}_{i} (J)_{1:D, 1:(S-1)}]
thisM.CopyColFromVec(mean, 0);
int32 nonrandom_dim = std::min(phn_subspace_dim - 1, ddim),
random_dim = phn_subspace_dim - 1 - nonrandom_dim;
thisM.Range(0, ddim, 1, nonrandom_dim).CopyFromMat(
norm_xform.Range(0, ddim, 0, nonrandom_dim), kNoTrans);
// The following extension to the original paper allows us to
// initialize the model with a larger dimension of phone-subspace vector.
if (random_dim > 0)
thisM.Range(0, ddim, nonrandom_dim + 1, random_dim).SetRandn();
}
}
// Initializes the matrices N_i, and [if speaker_dependent_weights==true] u_i.
void AmSgmm2::InitializeNu(int32 spk_subspace_dim,
const Matrix<BaseFloat> &norm_xform,
bool speaker_dependent_weights) {
int32 ddim = full_ubm_.Dim();
int32 num_gauss = full_ubm_.NumGauss();
N_.resize(num_gauss);
for (int32 i = 0; i < num_gauss; i++) {
N_[i].Resize(ddim, spk_subspace_dim);
// Eq. (28): N_{i} = [ (J)_{1:D, 1:T)}]
int32 nonrandom_dim = std::min(spk_subspace_dim, ddim),
random_dim = spk_subspace_dim - nonrandom_dim;
N_[i].Range(0, ddim, 0, nonrandom_dim).
CopyFromMat(norm_xform.Range(0, ddim, 0, nonrandom_dim), kNoTrans);
// The following extension to the original paper allows us to
// initialize the model with a larger dimension of speaker-subspace vector.
if (random_dim > 0)
N_[i].Range(0, ddim, nonrandom_dim, random_dim).SetRandn();
}
if (speaker_dependent_weights) {
u_.Resize(num_gauss, spk_subspace_dim); // will set to zero.
} else {
u_.Resize(0, 0);
}
}
void AmSgmm2::CopyGlobalsInitVecs(const AmSgmm2 &other,
const std::vector<int32> &pdf2group,
BaseFloat self_weight) {
KALDI_LOG << "Initializing model";
pdf2group_ = pdf2group;
ComputePdfMappings();
// Copy background GMMs
diag_ubm_.CopyFromDiagGmm(other.diag_ubm_);
full_ubm_.CopyFromFullGmm(other.full_ubm_);
// Copy global params
SigmaInv_ = other.SigmaInv_;
M_ = other.M_;
w_ = other.w_;
u_ = other.u_;
N_ = other.N_;
InitializeVecsAndSubstateWeights(self_weight);
}
// Initializes the vectors v_{j1,m} and substate weights c_{j2,m}.
void AmSgmm2::InitializeVecsAndSubstateWeights(BaseFloat self_weight) {
int32 J1 = NumGroups(), J2 = NumPdfs();
KALDI_ASSERT(J1 > 0 && J2 >= J1);
int32 phn_subspace_dim = PhoneSpaceDim();
KALDI_ASSERT(phn_subspace_dim > 0 && "Initialize M and w first.");
v_.resize(J1);
if (self_weight == 1.0) {
for (int32 j1 = 0; j1 < J1; j1++) {
v_[j1].Resize(1, phn_subspace_dim);
v_[j1](0, 0) = 1.0; // Eq. (26): v_{j1} = [1 0 0 ... 0]
}
c_.resize(J2);
for (int32 j2 = 0; j2 < J2; j2++) {
c_[j2].Resize(1);
c_[j2](0) = 1.0; // Eq. (25): c_{j1} = 1.0
}
} else {
for (int32 j1 = 0; j1 < J1; j1++) {
int32 npdfs = group2pdf_[j1].size();
v_[j1].Resize(npdfs, phn_subspace_dim);
for (int32 m = 0; m < npdfs; m++)
v_[j1](m, 0) = 1.0; // Eq. (26): v_{j1} = [1 0 0 ... 0]
}
c_.resize(J2);
for (int32 j2 = 0; j2 < J2; j2++) {
int32 j1 = pdf2group_[j2], npdfs = group2pdf_[j1].size();
c_[j2].Resize(npdfs);
if (npdfs == 1) c_[j2].Set(1.0);
else {
// note: just avoid NaNs if npdfs-1... value won't matter.
double other_weight = (1.0 - self_weight) / std::max((1-npdfs), 1);
c_[j2].Set(other_weight);
for (int32 k = 0; k < npdfs; k++)
if(group2pdf_[j1][k] == j2) c_[j2](k) = self_weight;
}
}
}
}
// Initializes the within-class vars Sigma_{ki}
void AmSgmm2::InitializeCovars() {
std::vector< SpMatrix<BaseFloat> > &inv_covars(full_ubm_.inv_covars());
int32 num_gauss = full_ubm_.NumGauss();
int32 dim = full_ubm_.Dim();
SigmaInv_.resize(num_gauss);
for (int32 i = 0; i < num_gauss; i++) {
SigmaInv_[i].Resize(dim);
SigmaInv_[i].CopyFromSp(inv_covars[i]);
}
}
// Compute the "smoothing" matrix H^{(sm)} from expected counts given the model.
void AmSgmm2::ComputeHsmFromModel(
const std::vector< SpMatrix<BaseFloat> > &H,
const Vector<BaseFloat> &state_occupancies,
SpMatrix<BaseFloat> *H_sm,
BaseFloat max_cond) const {
int32 num_gauss = NumGauss();
BaseFloat tot_sum = 0.0;
KALDI_ASSERT(state_occupancies.Dim() == NumPdfs());
Vector<BaseFloat> w_jm(num_gauss);
H_sm->Resize(PhoneSpaceDim());
H_sm->SetZero();
Vector<BaseFloat> gamma_i;
ComputeGammaI(state_occupancies, &gamma_i);
BaseFloat sum = 0.0;
for (int32 i = 0; i < num_gauss; i++) {
if (gamma_i(i) > 0) {
H_sm->AddSp(gamma_i(i), H[i]);
sum += gamma_i(i);
}
}
if (sum == 0.0) {
KALDI_WARN << "Sum of counts is zero. ";
// set to unit matrix--arbitrary non-singular matrix.. won't ever matter.
H_sm->SetUnit();
} else {
H_sm->Scale(1.0 / sum);
int32 tmp = H_sm->LimitCondDouble(max_cond);
if (tmp > 0) {
KALDI_WARN << "Limited " << (tmp) << " eigenvalues of H_sm";
}
}
tot_sum += sum;
KALDI_LOG << "total count is " << tot_sum;
}
void ComputeFeatureNormalizingTransform(const FullGmm &gmm, Matrix<BaseFloat> *xform) {
int32 dim = gmm.Dim();
int32 num_gauss = gmm.NumGauss();
SpMatrix<BaseFloat> within_class_covar(dim);
SpMatrix<BaseFloat> between_class_covar(dim);
Vector<BaseFloat> global_mean(dim);
// Accumulate LDA statistics from the GMM parameters.
{
BaseFloat total_weight = 0.0;
Vector<BaseFloat> tmp_weight(num_gauss);
Matrix<BaseFloat> tmp_means;
std::vector< SpMatrix<BaseFloat> > tmp_covars;
tmp_weight.CopyFromVec(gmm.weights());
gmm.GetCovarsAndMeans(&tmp_covars, &tmp_means);
for (int32 i = 0; i < num_gauss; i++) {
BaseFloat w_i = tmp_weight(i);
total_weight += w_i;
within_class_covar.AddSp(w_i, tmp_covars[i]);
between_class_covar.AddVec2(w_i, tmp_means.Row(i));
global_mean.AddVec(w_i, tmp_means.Row(i));
}
KALDI_ASSERT(total_weight > 0);
if (fabs(total_weight - 1.0) > 0.001) {
KALDI_WARN << "Total weight across the GMMs is " << (total_weight)
<< ", renormalizing.";
global_mean.Scale(1.0 / total_weight);
within_class_covar.Scale(1.0 / total_weight);
between_class_covar.Scale(1.0 / total_weight);
}
between_class_covar.AddVec2(-1.0, global_mean);
}
TpMatrix<BaseFloat> chol(dim);
chol.Cholesky(within_class_covar); // Sigma_W = L L^T
TpMatrix<BaseFloat> chol_inv(chol);
chol_inv.InvertDouble();
Matrix<BaseFloat> chol_full(dim, dim);
chol_full.CopyFromTp(chol_inv);
SpMatrix<BaseFloat> LBL(dim);
// LBL = L^{-1} \Sigma_B L^{-T}
LBL.AddMat2Sp(1.0, chol_full, kNoTrans, between_class_covar, 0.0);
Vector<BaseFloat> Dvec(dim);
Matrix<BaseFloat> U(dim, dim);
LBL.Eig(&Dvec, &U);
SortSvd(&Dvec, &U);
xform->Resize(dim, dim);
chol_full.CopyFromTp(chol);
// T := L U, eq (23)
xform->AddMatMat(1.0, chol_full, kNoTrans, U, kNoTrans, 0.0);
#ifdef KALDI_PARANOID
Matrix<BaseFloat> inv_xform(*xform);
inv_xform.InvertDouble();
{ // Check that T*within_class_covar*T' = I.
Matrix<BaseFloat> wc_covar_full(dim, dim), tmp(dim, dim);
wc_covar_full.CopyFromSp(within_class_covar);
tmp.AddMatMat(1.0, inv_xform, kNoTrans, wc_covar_full, kNoTrans, 0.0);
wc_covar_full.AddMatMat(1.0, tmp, kNoTrans, inv_xform, kTrans, 0.0);
KALDI_ASSERT(wc_covar_full.IsUnit(0.01));
}
{ // Check that T*between_class_covar*T' = diagonal.
Matrix<BaseFloat> bc_covar_full(dim, dim), tmp(dim, dim);
bc_covar_full.CopyFromSp(between_class_covar);
tmp.AddMatMat(1.0, inv_xform, kNoTrans, bc_covar_full, kNoTrans, 0.0);
bc_covar_full.AddMatMat(1.0, tmp, kNoTrans, inv_xform, kTrans, 0.0);
KALDI_ASSERT(bc_covar_full.IsDiagonal(0.01));
}
#endif
}
void AmSgmm2::ComputePerSpkDerivedVars(Sgmm2PerSpkDerivedVars *vars) const {
KALDI_ASSERT(vars != NULL);
if (vars->v_s.Dim() != 0) {
KALDI_ASSERT(vars->v_s.Dim() == SpkSpaceDim());
vars->o_s.Resize(NumGauss(), FeatureDim());
int32 num_gauss = NumGauss();
// first compute the o_i^{(s)} quantities.
for (int32 i = 0; i < num_gauss; i++) {
// Eqn. (32): o_i^{(s)} = N_i v^{(s)}
vars->o_s.Row(i).AddMatVec(1.0, N_[i], kNoTrans, vars->v_s, 0.0);
}
// the rest relates to the SSGMM. We only need to to this
// if we're using speaker-dependent weights.
if (HasSpeakerDependentWeights()) {
vars->log_d_jms.clear();
vars->log_d_jms.resize(NumGroups());
vars->log_b_is.Resize(NumGauss());
vars->log_b_is.AddMatVec(1.0, u_, kNoTrans, vars->v_s, 0.0);
vars->b_is.Resize(NumGauss());
vars->b_is.CopyFromVec(vars->log_b_is);
vars->b_is.ApplyExp();
for (int32 i = 0; i < vars->b_is.Dim(); i++) {
if (vars->b_is(i) - vars->b_is(i) != 0.0) { // NaN.
vars->b_is(i) = 1.0;
KALDI_WARN << "Set NaN in b_is to 1.0";
}
}
} else {
vars->b_is.Resize(0);
vars->log_b_is.Resize(0);
vars->log_d_jms.resize(0);
}
} else {
vars->Clear(); // make sure everything is cleared.
}
}
BaseFloat AmSgmm2::GaussianSelection(const Sgmm2GselectConfig &config,
const VectorBase<BaseFloat> &data,
std::vector<int32> *gselect) const {
KALDI_ASSERT(diag_ubm_.NumGauss() != 0 &&
diag_ubm_.NumGauss() == full_ubm_.NumGauss() &&
diag_ubm_.Dim() == data.Dim());
KALDI_ASSERT(config.diag_gmm_nbest > 0 && config.full_gmm_nbest > 0 &&
config.full_gmm_nbest < config.diag_gmm_nbest);
int32 num_gauss = diag_ubm_.NumGauss();
std::vector< std::pair<BaseFloat, int32> > pruned_pairs;
if (config.diag_gmm_nbest < num_gauss) { Vector<BaseFloat> loglikes(num_gauss);
diag_ubm_.LogLikelihoods(data, &loglikes);
Vector<BaseFloat> loglikes_copy(loglikes);
BaseFloat *ptr = loglikes_copy.Data();
std::nth_element(ptr, ptr+num_gauss-config.diag_gmm_nbest, ptr+num_gauss);
BaseFloat thresh = ptr[num_gauss-config.diag_gmm_nbest];
for (int32 g = 0; g < num_gauss; g++)
if (loglikes(g) >= thresh) // met threshold for diagonal phase.
pruned_pairs.push_back(
std::make_pair(full_ubm_.ComponentLogLikelihood(data, g), g));
} else {
Vector<BaseFloat> loglikes(num_gauss);
full_ubm_.LogLikelihoods(data, &loglikes);
for (int32 g = 0; g < num_gauss; g++)
pruned_pairs.push_back(std::make_pair(loglikes(g), g));
}
KALDI_ASSERT(!pruned_pairs.empty());
if (pruned_pairs.size() > static_cast<size_t>(config.full_gmm_nbest)) {
std::nth_element(pruned_pairs.begin(),
pruned_pairs.end() - config.full_gmm_nbest,
pruned_pairs.end());
pruned_pairs.erase(pruned_pairs.begin(),
pruned_pairs.end() - config.full_gmm_nbest);
}
Vector<BaseFloat> loglikes_tmp(pruned_pairs.size()); // for return value.
KALDI_ASSERT(gselect != NULL);
gselect->resize(pruned_pairs.size());
// Make sure pruned Gaussians appear from best to worst.
std::sort(pruned_pairs.begin(), pruned_pairs.end(),
std::greater< std::pair<BaseFloat, int32> >());
for (size_t i = 0; i < pruned_pairs.size(); i++) {
loglikes_tmp(i) = pruned_pairs[i].first;
(*gselect)[i] = pruned_pairs[i].second;
}
return loglikes_tmp.LogSumExp();
}
void Sgmm2GauPost::Write(std::ostream &os, bool binary) const {
WriteToken(os, binary, "<Sgmm2GauPost>");
int32 T = this->size();
WriteBasicType(os, binary, T);
for (int32 t = 0; t < T; t++) {
WriteToken(os, binary, "<gselect>");
WriteIntegerVector(os, binary, (*this)[t].gselect);
WriteToken(os, binary, "<tids>");
WriteIntegerVector(os, binary, (*this)[t].tids);
KALDI_ASSERT((*this)[t].tids.size() == (*this)[t].posteriors.size());
for (size_t i = 0; i < (*this)[t].posteriors.size(); i++) {
(*this)[t].posteriors[i].Write(os, binary);
}
}
WriteToken(os, binary, "</Sgmm2GauPost>");
}
void Sgmm2GauPost::Read(std::istream &is, bool binary) {
ExpectToken(is, binary, "<Sgmm2GauPost>");
int32 T;
ReadBasicType(is, binary, &T);
KALDI_ASSERT(T >= 0);
this->resize(T);
for (int32 t = 0; t < T; t++) {
ExpectToken(is, binary, "<gselect>");
ReadIntegerVector(is, binary, &((*this)[t].gselect));
ExpectToken(is, binary, "<tids>");
ReadIntegerVector(is, binary, &((*this)[t].tids));
size_t sz = (*this)[t].tids.size();
(*this)[t].posteriors.resize(sz);
for (size_t i = 0; i < sz; i++)
(*this)[t].posteriors[i].Read(is, binary);
}
ExpectToken(is, binary, "</Sgmm2GauPost>");
}
} // namespace kaldi