sgmm2-rescore-lattice.cc
6.14 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
// sgmm2bin/sgmm2-rescore-lattice.cc
// Copyright 2009-2012 Saarland University (Author: Arnab Ghoshal)
// Johns Hopkins University (Author: Daniel Povey)
// Cisco Systems (Author: Neha Agrawal)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "util/stl-utils.h"
#include "sgmm2/am-sgmm2.h"
#include "hmm/transition-model.h"
#include "fstext/fstext-lib.h"
#include "lat/kaldi-lattice.h"
#include "lat/lattice-functions.h"
#include "sgmm2/decodable-am-sgmm2.h"
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
typedef kaldi::int32 int32;
typedef kaldi::int64 int64;
using fst::SymbolTable;
using fst::VectorFst;
using fst::StdArc;
const char *usage =
"Replace the acoustic scores on a lattice using a new model.\n"
"Usage: sgmm2-rescore-lattice [options] <model-in> <lattice-rspecifier> "
"<feature-rspecifier> <lattice-wspecifier>\n"
" e.g.: sgmm2-rescore-lattice 1.mdl ark:1.lats scp:trn.scp ark:2.lats\n";
kaldi::BaseFloat old_acoustic_scale = 0.0;
bool speedup = false;
BaseFloat log_prune = 5.0;
std::string gselect_rspecifier, spkvecs_rspecifier, utt2spk_rspecifier;
kaldi::ParseOptions po(usage);
po.Register("old-acoustic-scale", &old_acoustic_scale,
"Add the current acoustic scores with some scale.");
po.Register("log-prune", &log_prune,
"Pruning beam used to reduce number of exp() evaluations.");
po.Register("spk-vecs", &spkvecs_rspecifier, "Speaker vectors (rspecifier)");
po.Register("utt2spk", &utt2spk_rspecifier,
"rspecifier for utterance to speaker map");
po.Register("gselect", &gselect_rspecifier,
"Precomputed Gaussian indices (rspecifier)");
po.Register("speedup", &speedup,
"If true, enable a faster version of the computation that "
"saves times when there is only one pdf-id on a single frame "
"by only sometimes (randomly) computing the probabilities, and "
"then scaling them up to preserve corpus-level diagnostics.");
po.Read(argc, argv);
if (po.NumArgs() != 4) {
po.PrintUsage();
exit(1);
}
if (gselect_rspecifier == "")
KALDI_ERR << "--gselect-rspecifier option is required.";
std::string model_filename = po.GetArg(1),
lats_rspecifier = po.GetArg(2),
feature_rspecifier = po.GetArg(3),
lats_wspecifier = po.GetArg(4);
AmSgmm2 am_sgmm;
TransitionModel trans_model;
{
bool binary;
Input ki(model_filename, &binary);
trans_model.Read(ki.Stream(), binary);
am_sgmm.Read(ki.Stream(), binary);
}
RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier);
RandomAccessBaseFloatVectorReaderMapped spkvecs_reader(spkvecs_rspecifier,
utt2spk_rspecifier);
RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier);
// Read as compact lattice
SequentialCompactLatticeReader compact_lattice_reader(lats_rspecifier);
// Write as compact lattice.
CompactLatticeWriter compact_lattice_writer(lats_wspecifier);
int32 num_done = 0, num_err = 0;
for (; !compact_lattice_reader.Done(); compact_lattice_reader.Next()) {
std::string utt = compact_lattice_reader.Key();
if (!feature_reader.HasKey(utt)) {
KALDI_WARN << "No feature found for utterance " << utt;
num_err++;
continue;
}
CompactLattice clat = compact_lattice_reader.Value();
compact_lattice_reader.FreeCurrent();
if (old_acoustic_scale != 1.0)
fst::ScaleLattice(fst::AcousticLatticeScale(old_acoustic_scale), &clat);
const Matrix<BaseFloat> &feats = feature_reader.Value(utt);
// Get speaker vectors
Sgmm2PerSpkDerivedVars spk_vars;
if (spkvecs_reader.IsOpen()) {
if (spkvecs_reader.HasKey(utt)) {
spk_vars.SetSpeakerVector(spkvecs_reader.Value(utt));
am_sgmm.ComputePerSpkDerivedVars(&spk_vars);
} else {
KALDI_WARN << "Cannot find speaker vector for " << utt;
num_err++;
continue;
}
} // else spk_vars is "empty"
if (!gselect_reader.HasKey(utt) ||
gselect_reader.Value(utt).size() != feats.NumRows()) {
KALDI_WARN << "No Gaussian-selection info available for utterance "
<< utt << " (or wrong size)";
num_err++;
continue;
}
const std::vector<std::vector<int32> > &gselect =
gselect_reader.Value(utt);
DecodableAmSgmm2 sgmm2_decodable(am_sgmm, trans_model, feats,
gselect, log_prune, &spk_vars);
if (!speedup) {
if (kaldi::RescoreCompactLattice(&sgmm2_decodable, &clat)) {
compact_lattice_writer.Write(utt, clat);
num_done++;
} else num_err++;
} else {
BaseFloat speedup_factor = 100.0;
if (kaldi::RescoreCompactLatticeSpeedup(trans_model, speedup_factor,
&sgmm2_decodable,
&clat)) {
compact_lattice_writer.Write(utt, clat);
num_done++;
} else num_err++;
}
}
KALDI_LOG << "Done " << num_done << " lattices, errors on "
<< num_err;
return (num_done != 0 ? 0 : 1);
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}