cmvn.cc
6.38 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
// transform/cmvn.cc
// Copyright 2009-2013 Microsoft Corporation
// Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "transform/cmvn.h"
namespace kaldi {
void InitCmvnStats(int32 dim, Matrix<double> *stats) {
KALDI_ASSERT(dim > 0);
stats->Resize(2, dim+1);
}
void AccCmvnStats(const VectorBase<BaseFloat> &feats, BaseFloat weight, MatrixBase<double> *stats) {
int32 dim = feats.Dim();
KALDI_ASSERT(stats != NULL);
KALDI_ASSERT(stats->NumRows() == 2 && stats->NumCols() == dim + 1);
// Remove these __restrict__ modifiers if they cause compilation problems.
// It's just an optimization.
double *__restrict__ mean_ptr = stats->RowData(0),
*__restrict__ var_ptr = stats->RowData(1),
*__restrict__ count_ptr = mean_ptr + dim;
const BaseFloat * __restrict__ feats_ptr = feats.Data();
*count_ptr += weight;
// Careful-- if we change the format of the matrix, the "mean_ptr < count_ptr"
// statement below might become wrong.
for (; mean_ptr < count_ptr; mean_ptr++, var_ptr++, feats_ptr++) {
*mean_ptr += *feats_ptr * weight;
*var_ptr += *feats_ptr * *feats_ptr * weight;
}
}
void AccCmvnStats(const MatrixBase<BaseFloat> &feats,
const VectorBase<BaseFloat> *weights,
MatrixBase<double> *stats) {
int32 num_frames = feats.NumRows();
if (weights != NULL) {
KALDI_ASSERT(weights->Dim() == num_frames);
}
for (int32 i = 0; i < num_frames; i++) {
SubVector<BaseFloat> this_frame = feats.Row(i);
BaseFloat weight = (weights == NULL ? 1.0 : (*weights)(i));
if (weight != 0.0)
AccCmvnStats(this_frame, weight, stats);
}
}
void ApplyCmvn(const MatrixBase<double> &stats,
bool var_norm,
MatrixBase<BaseFloat> *feats) {
KALDI_ASSERT(feats != NULL);
int32 dim = stats.NumCols() - 1;
if (stats.NumRows() > 2 || stats.NumRows() < 1 || feats->NumCols() != dim) {
KALDI_ERR << "Dim mismatch: cmvn "
<< stats.NumRows() << 'x' << stats.NumCols()
<< ", feats " << feats->NumRows() << 'x' << feats->NumCols();
}
if (stats.NumRows() == 1 && var_norm)
KALDI_ERR << "You requested variance normalization but no variance stats "
<< "are supplied.";
double count = stats(0, dim);
// Do not change the threshold of 1.0 here: in the balanced-cmvn code, when
// computing an offset and representing it as stats, we use a count of one.
if (count < 1.0)
KALDI_ERR << "Insufficient stats for cepstral mean and variance normalization: "
<< "count = " << count;
if (!var_norm) {
Vector<BaseFloat> offset(dim);
SubVector<double> mean_stats(stats.RowData(0), dim);
offset.AddVec(-1.0 / count, mean_stats);
feats->AddVecToRows(1.0, offset);
return;
}
// norm(0, d) = mean offset;
// norm(1, d) = scale, e.g. x(d) <-- x(d)*norm(1, d) + norm(0, d).
Matrix<BaseFloat> norm(2, dim);
for (int32 d = 0; d < dim; d++) {
double mean, offset, scale;
mean = stats(0, d)/count;
double var = (stats(1, d)/count) - mean*mean,
floor = 1.0e-20;
if (var < floor) {
KALDI_WARN << "Flooring cepstral variance from " << var << " to "
<< floor;
var = floor;
}
scale = 1.0 / sqrt(var);
if (scale != scale || 1/scale == 0.0)
KALDI_ERR << "NaN or infinity in cepstral mean/variance computation";
offset = -(mean*scale);
norm(0, d) = offset;
norm(1, d) = scale;
}
// Apply the normalization.
feats->MulColsVec(norm.Row(1));
feats->AddVecToRows(1.0, norm.Row(0));
}
void ApplyCmvnReverse(const MatrixBase<double> &stats,
bool var_norm,
MatrixBase<BaseFloat> *feats) {
KALDI_ASSERT(feats != NULL);
int32 dim = stats.NumCols() - 1;
if (stats.NumRows() > 2 || stats.NumRows() < 1 || feats->NumCols() != dim) {
KALDI_ERR << "Dim mismatch: cmvn "
<< stats.NumRows() << 'x' << stats.NumCols()
<< ", feats " << feats->NumRows() << 'x' << feats->NumCols();
}
if (stats.NumRows() == 1 && var_norm)
KALDI_ERR << "You requested variance normalization but no variance stats "
<< "are supplied.";
double count = stats(0, dim);
// Do not change the threshold of 1.0 here: in the balanced-cmvn code, when
// computing an offset and representing it as stats, we use a count of one.
if (count < 1.0)
KALDI_ERR << "Insufficient stats for cepstral mean and variance normalization: "
<< "count = " << count;
Matrix<BaseFloat> norm(2, dim); // norm(0, d) = mean offset
// norm(1, d) = scale, e.g. x(d) <-- x(d)*norm(1, d) + norm(0, d).
for (int32 d = 0; d < dim; d++) {
double mean, offset, scale;
mean = stats(0, d) / count;
if (!var_norm) {
scale = 1.0;
offset = mean;
} else {
double var = (stats(1, d)/count) - mean*mean,
floor = 1.0e-20;
if (var < floor) {
KALDI_WARN << "Flooring cepstral variance from " << var << " to "
<< floor;
var = floor;
}
// we aim to transform zero-mean, unit-variance input into data
// with the given mean and variance.
scale = sqrt(var);
offset = mean;
}
norm(0, d) = offset;
norm(1, d) = scale;
}
if (var_norm)
feats->MulColsVec(norm.Row(1));
feats->AddVecToRows(1.0, norm.Row(0));
}
void FakeStatsForSomeDims(const std::vector<int32> &dims,
MatrixBase<double> *stats) {
KALDI_ASSERT(stats->NumRows() == 2 && stats->NumCols() > 1);
int32 dim = stats->NumCols() - 1;
double count = (*stats)(0, dim);
for (size_t i = 0; i < dims.size(); i++) {
int32 d = dims[i];
KALDI_ASSERT(d >= 0 && d < dim);
(*stats)(0, d) = 0.0;
(*stats)(1, d) = count;
}
}
} // namespace kaldi