fmllr-diag-gmm.cc
22.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
// transform/fmllr-diag-gmm.cc
// Copyright 2009-2011 Microsoft Corporation; Saarland University;
// Georg Stemmer
// 2013 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <utility>
#include <vector>
using std::vector;
#include "transform/fmllr-diag-gmm.h"
namespace kaldi {
void FmllrDiagGmmAccs:: AccumulateFromPosteriors(
const DiagGmm &pdf,
const VectorBase<BaseFloat> &data,
const VectorBase<BaseFloat> &posterior) {
if (this->DataHasChanged(data)) {
CommitSingleFrameStats();
InitSingleFrameStats(data);
}
SingleFrameStats &stats = this->single_frame_stats_;
stats.count += posterior.Sum();
stats.a.AddMatVec(1.0, pdf.means_invvars(), kTrans, posterior, 1.0);
stats.b.AddMatVec(1.0, pdf.inv_vars(), kTrans, posterior, 1.0);
}
void FmllrDiagGmmAccs:: AccumulateFromPosteriorsPreselect(
const DiagGmm &pdf,
const std::vector<int32> &gselect,
const VectorBase<BaseFloat> &data,
const VectorBase<BaseFloat> &posterior) {
if (this->DataHasChanged(data)) {
CommitSingleFrameStats();
InitSingleFrameStats(data);
}
SingleFrameStats &stats = this->single_frame_stats_;
stats.count += posterior.Sum();
const Matrix<BaseFloat> &means_invvars = pdf.means_invvars(),
&inv_vars = pdf.inv_vars();
KALDI_ASSERT(static_cast<int32>(gselect.size()) == posterior.Dim());
for (size_t i = 0; i < gselect.size(); i++) {
stats.a.AddVec(posterior(i), means_invvars.Row(gselect[i]));
stats.b.AddVec(posterior(i), inv_vars.Row(gselect[i]));
}
}
FmllrDiagGmmAccs::FmllrDiagGmmAccs(const DiagGmm &gmm,
const AccumFullGmm &fgmm_accs):
single_frame_stats_(gmm.Dim()), opts_(FmllrOptions()) {
KALDI_ASSERT(gmm.NumGauss() == fgmm_accs.NumGauss()
&& gmm.Dim() == fgmm_accs.Dim());
Init(gmm.Dim());
int32 dim = gmm.Dim(), num_gauss = gmm.NumGauss();
for (int32 g = 0; g < num_gauss; g++) {
double this_occ = fgmm_accs.occupancy()(g);
if (this_occ == 0) continue;
SubVector<BaseFloat> this_mean_invvar(gmm.means_invvars(), g);
SubVector<BaseFloat> this_invvar(gmm.inv_vars(), g);
SubVector<double> this_mean_acc(fgmm_accs.mean_accumulator(), g);
Vector<double> this_mean_invvar_dbl(this_mean_invvar);
Vector<double> this_extended_mean_acc(dim+1);
this_extended_mean_acc.Range(0, dim).CopyFromVec(this_mean_acc);
this_extended_mean_acc(dim) = this_occ; // acc of x^+
Matrix<double> this_cov_acc(fgmm_accs.covariance_accumulator()[g]); // copy to
// regular Matrix.
Matrix<double> this_extended_cov_acc(dim+1, dim+1); // make as if accumulated
// using x^+, not x.
this_extended_cov_acc.Range(0, dim, 0, dim).CopyFromMat(this_cov_acc);
this_extended_cov_acc.Row(dim).CopyFromVec(this_extended_mean_acc);
this_extended_cov_acc.CopyColFromVec(this_extended_mean_acc, dim); // since
// there is no Col() function, use a member-function of the matrix class.
SpMatrix<double> this_extended_cov_acc_sp(this_extended_cov_acc);
beta_ += this_occ;
K_.AddVecVec(1.0, this_mean_invvar_dbl, this_extended_mean_acc);
for (int32 d = 0; d < dim; d++)
G_[d].AddSp(this_invvar(d), this_extended_cov_acc_sp);
}
}
BaseFloat FmllrDiagGmmAccs::AccumulateForGmm(const DiagGmm &pdf,
const VectorBase<BaseFloat> &data,
BaseFloat weight) {
int32 num_comp = pdf.NumGauss();
Vector<BaseFloat> posterior(num_comp);
BaseFloat loglike;
loglike = pdf.ComponentPosteriors(data, &posterior);
posterior.Scale(weight);
AccumulateFromPosteriors(pdf, data, posterior);
return loglike;
}
BaseFloat FmllrDiagGmmAccs::AccumulateForGmmPreselect(
const DiagGmm &pdf,
const std::vector<int32> &gselect,
const VectorBase<BaseFloat> &data,
BaseFloat weight) {
KALDI_ASSERT(!gselect.empty() && "Empty gselect information");
Vector<BaseFloat> loglikes;
pdf.LogLikelihoodsPreselect(data, gselect, &loglikes);
BaseFloat loglike = loglikes.ApplySoftMax(); // they are now posteriors.
loglikes.Scale(weight);
AccumulateFromPosteriorsPreselect(pdf, gselect, data, loglikes);
return loglike;
}
void FmllrDiagGmmAccs::Update(const FmllrOptions &opts,
MatrixBase<BaseFloat> *fmllr_mat,
BaseFloat *objf_impr,
BaseFloat *count) {
KALDI_ASSERT(fmllr_mat != NULL);
CommitSingleFrameStats();
if (fmllr_mat->IsZero())
KALDI_ERR << "You must initialize the fMLLR matrix to a non-singular value "
"(so we can report objective function changes); e.g. call SetUnit()";
if (opts.update_type == "full" && this->opts_.update_type != "full") {
KALDI_ERR << "You are requesting a full-fMLLR update but you accumulated "
<< "stats for more limited update type.";
}
if (beta_ > opts.min_count) {
Matrix<BaseFloat> tmp_old(*fmllr_mat), tmp_new(*fmllr_mat);
BaseFloat objf_change;
if (opts.update_type == "full")
objf_change = ComputeFmllrMatrixDiagGmmFull(tmp_old, *this, opts.num_iters, &tmp_new);
else if (opts.update_type == "diag")
objf_change = ComputeFmllrMatrixDiagGmmDiagonal(tmp_old, *this, &tmp_new);
else if (opts.update_type == "offset")
objf_change = ComputeFmllrMatrixDiagGmmOffset(tmp_old, *this, &tmp_new);
else if (opts.update_type == "none")
objf_change = 0.0;
else
KALDI_ERR << "Unknown fMLLR update type " << opts.update_type
<< ", fmllr-update-type must be one of \"full\"|\"diag\"|\"offset\"|\"none\"";
fmllr_mat->CopyFromMat(tmp_new);
if (objf_impr) *objf_impr = objf_change;
if (count) *count = beta_;
} else { // Not changing matrix.
KALDI_WARN << "Not updating fMLLR since below min-count: count is " << beta_;
if (objf_impr) *objf_impr = 0.0;
if (count) *count = beta_;
}
}
BaseFloat ComputeFmllrMatrixDiagGmm(const MatrixBase<BaseFloat> &in_xform,
const AffineXformStats &stats,
std::string fmllr_type, // "none", "offset", "diag", "full"
int32 num_iters,
MatrixBase<BaseFloat> *out_xform) {
if (fmllr_type == "full") {
return ComputeFmllrMatrixDiagGmmFull(in_xform, stats, num_iters, out_xform);
} else if (fmllr_type == "diag") {
return ComputeFmllrMatrixDiagGmmDiagonal(in_xform, stats, out_xform);
} else if (fmllr_type == "offset") {
return ComputeFmllrMatrixDiagGmmOffset(in_xform, stats, out_xform);
} else if (fmllr_type == "none") {
if (!in_xform.IsUnit())
KALDI_WARN << "You set fMLLR type to \"none\" but your starting transform "
"is not unit [this is strange, and diagnostics will be wrong].";
out_xform->SetUnit();
return 0.0;
} else
KALDI_ERR << "Unknown fMLLR update type " << fmllr_type
<< ", must be one of \"full\"|\"diag\"|\"offset\"|\"none\"";
return 0.0;
}
void FmllrInnerUpdate(SpMatrix<double> &inv_G,
VectorBase<double> &k,
double beta,
int32 row,
MatrixBase<double> *transform) {
int32 dim = transform->NumRows();
KALDI_ASSERT(transform->NumCols() == dim + 1);
KALDI_ASSERT(row >= 0 && row < dim);
double logdet;
// Calculating the matrix of cofactors (transpose of adjugate)
Matrix<double> cofact_mat(dim, dim);
cofact_mat.CopyFromMat(transform->Range(0, dim, 0, dim), kTrans);
cofact_mat.Invert(&logdet);
// Removed this step because it's not necessary and could lead to
// under/overflow [Dan]
// cofact_mat.Scale(exp(logdet));
// The extended cofactor vector for the current row
Vector<double> cofact_row(dim + 1);
cofact_row.Range(0, dim).CopyRowFromMat(cofact_mat, row);
cofact_row(dim) = 0;
Vector<double> cofact_row_invg(dim + 1);
cofact_row_invg.AddSpVec(1.0, inv_G, cofact_row, 0.0);
// Solve the quadratic equation for step size
double e1 = VecVec(cofact_row_invg, cofact_row);
double e2 = VecVec(cofact_row_invg, k);
double discr = std::sqrt(e2 * e2 + 4 * e1 * beta);
double alpha1 = (-e2 + discr) / (2 * e1);
double alpha2 = (-e2 - discr) / (2 * e1);
double auxf1 = beta * Log(std::abs(alpha1 * e1 + e2)) -
0.5 * alpha1 * alpha1 * e1;
double auxf2 = beta * Log(std::abs(alpha2 * e1 + e2)) -
0.5 * alpha2 * alpha2 * e1;
double alpha = (auxf1 > auxf2) ? alpha1 : alpha2;
// Update transform row: w_d = (\alpha cofact_d + k_d) G_d^{-1}
cofact_row.Scale(alpha);
cofact_row.AddVec(1.0, k);
transform->Row(row).AddSpVec(1.0, inv_G, cofact_row, 0.0);
}
BaseFloat ComputeFmllrMatrixDiagGmmFull(const MatrixBase<BaseFloat> &in_xform,
const AffineXformStats &stats,
int32 num_iters,
MatrixBase<BaseFloat> *out_xform) {
int32 dim = static_cast<int32>(stats.G_.size());
// Compute the inverse matrices of second-order statistics
vector< SpMatrix<double> > inv_g(dim);
for (int32 d = 0; d < dim; d++) {
inv_g[d].Resize(dim + 1);
inv_g[d].CopyFromSp(stats.G_[d]);
inv_g[d].Invert();
}
Matrix<double> old_xform(in_xform), new_xform(in_xform);
BaseFloat old_objf = FmllrAuxFuncDiagGmm(old_xform, stats);
for (int32 iter = 0; iter < num_iters; ++iter) {
for (int32 d = 0; d < dim; d++) {
SubVector<double> k_d(stats.K_, d);
FmllrInnerUpdate(inv_g[d], k_d, stats.beta_, d, &new_xform);
} // end of looping over rows
} // end of iterations
BaseFloat new_objf = FmllrAuxFuncDiagGmm(new_xform, stats),
objf_improvement = new_objf - old_objf;
KALDI_LOG << "fMLLR objf improvement is "
<< (objf_improvement / (stats.beta_ + 1.0e-10))
<< " per frame over " << stats.beta_ << " frames.";
if (objf_improvement < 0.0 && !ApproxEqual(new_objf, old_objf)) {
KALDI_WARN << "No applying fMLLR transform change because objective "
<< "function did not increase.";
return 0.0;
} else {
out_xform->CopyFromMat(new_xform, kNoTrans);
return objf_improvement;
}
}
BaseFloat ComputeFmllrMatrixDiagGmmDiagonal(const MatrixBase<BaseFloat> &in_xform,
const AffineXformStats &stats,
MatrixBase<BaseFloat> *out_xform) {
// The "Diagonal" here means a diagonal fMLLR matrix, i.e. like W = [ A; b] where
// A is diagonal.
// We re-derived the math (see exponential transform paper) to get a simpler
// update rule.
/*
Write out_xform as D, which is a d x d+1 matrix (where d is the feature dimension).
We are solving for s == d_{i,i}, and o == d_{i,d} [assuming zero-based indexing];
s is a scale, o is an offset.
The stats are K (dimension d x d+1) and G_i for i=0..d-1 (dimension: d+1 x d+1),
and the count beta.
The auxf for the i'th row of the transform is (assuming zero-based indexing):
s k_{i,i} + o k_{i,d}
- \frac{1}{2} s^2 g_{i,i,i} - \frac{1}{2} o^2 g_{i,d,d} - s o g_{i,d,i}
+ \beta \log |s|
Suppose we know s, we can solve for o:
o = (k_{i,d} - s g_{i,d,i}) / g_{i,d,d}
Substituting this expression for o into the auxf (and ignoring
terms that don't vary with s), we have the auxf:
\frac{1}{2} s^2 ( g_{i,d,i}^2 / g_{i,d,d} - g_{i,i,i} )
+ s ( k_{i,i} - g_{i,d,i} k_{i,d} / g_{i,d,d} )
+ \beta \log |s|
Differentiating w.r.t. s and assuming s is positive, we have
a s + b + c/s = 0
where
a = ( g_{i,d,i}^2 / g_{i,d,d} - g_{i,i,i} ),
b = ( k_{i,i} - g_{i,d,i} k_{i,d} / g_{i,d,d} )
c = beta
Multiplying by s, we have the equation
a s^2 + b s + c = 0, where we assume s > 0.
We solve it with:
s = (-b - \sqrt{b^2 - 4ac}) / 2a
[take the negative root because we know a is negative, and this gives
the more positive solution for s; the other one would be negative].
We then solve for o with the equation above, i.e.:
o = (k_{i,d} - s g_{i,d,i}) / g_{i,d,d})
*/
int32 dim = stats.G_.size();
double beta = stats.beta_;
out_xform->CopyFromMat(in_xform);
if (beta == 0.0) {
KALDI_WARN << "Computing diagonal fMLLR matrix: no stats [using original transform]";
return 0.0;
}
BaseFloat old_obj = FmllrAuxFuncDiagGmm(*out_xform, stats);
KALDI_ASSERT(out_xform->Range(0, dim, 0, dim).IsDiagonal()); // orig transform
// must be diagonal.
for(int32 i = 0; i < dim; i++) {
double k_ii = stats.K_(i, i), k_id = stats.K_(i, dim),
g_iii = stats.G_[i](i, i), g_idd = stats.G_[i](dim, dim),
g_idi = stats.G_[i](dim, i);
double a = g_idi*g_idi/g_idd - g_iii,
b = k_ii - g_idi*k_id/g_idd,
c = beta;
double s = (-b - std::sqrt(b*b - 4*a*c)) / (2*a);
KALDI_ASSERT(s > 0.0);
double o = (k_id - s*g_idi) / g_idd;
(*out_xform)(i, i) = s;
(*out_xform)(i, dim) = o;
}
BaseFloat new_obj = FmllrAuxFuncDiagGmm(*out_xform, stats);
KALDI_VLOG(2) << "fMLLR objective function improvement = "
<< (new_obj - old_obj);
return new_obj - old_obj;
}
BaseFloat ComputeFmllrMatrixDiagGmmOffset(const MatrixBase<BaseFloat> &in_xform,
const AffineXformStats &stats,
MatrixBase<BaseFloat> *out_xform) {
int32 dim = stats.G_.size();
KALDI_ASSERT(in_xform.NumRows() == dim && in_xform.NumCols() == dim+1);
SubMatrix<BaseFloat> square_part(in_xform, 0, dim, 0, dim);
KALDI_ASSERT(square_part.IsUnit());
BaseFloat objf_impr = 0.0;
out_xform->CopyFromMat(in_xform);
for (int32 i = 0; i < dim; i++) {
// auxf in this offset b_i is:
// -0.5 b_i^2 G_i(dim, dim) - b_i G_i(i, dim)*1.0 + b_i K(i, dim) (1)
// answer is:
// b_i = [K(i, dim) - G_i(i, dim)] / G_i(dim, dim)
// objf change is given by (1)
BaseFloat b_i = (*out_xform)(i, dim);
BaseFloat objf_before = -0.5 * b_i * b_i * stats.G_[i](dim, dim)
- b_i * stats.G_[i](i, dim) + b_i * stats.K_(i, dim);
b_i = (stats.K_(i, dim) - stats.G_[i](i, dim)) / stats.G_[i](dim, dim);
(*out_xform)(i, dim) = b_i;
BaseFloat objf_after = -0.5 * b_i * b_i * stats.G_[i](dim, dim)
- b_i * stats.G_[i](i, dim) + b_i * stats.K_(i, dim);
if (objf_after < objf_before)
KALDI_WARN << "Objf decrease in offset estimation:"
<< objf_after << " < " << objf_before;
objf_impr += objf_after - objf_before;
}
return objf_impr;
}
void ApplyFeatureTransformToStats(const MatrixBase<BaseFloat> &xform,
AffineXformStats *stats) {
KALDI_ASSERT(stats != NULL && stats->Dim() != 0);
int32 dim = stats->Dim();
// make sure the stats are of the standard diagonal kind.
KALDI_ASSERT(stats->G_.size() == static_cast<size_t>(dim));
KALDI_ASSERT( (xform.NumRows() == dim && xform.NumCols() == dim) // linear
|| (xform.NumRows() == dim && xform.NumCols() == dim+1) // affine
|| (xform.NumRows() == dim+1 && xform.NumCols() == dim+1)); // affine w/ extra row.
if (xform.NumRows() == dim+1) { // check last row of input
// has correct value. 0 0 0 .. 0 1.
for (int32 i = 0; i < dim; i++)
KALDI_ASSERT(xform(dim, i) == 0.0);
KALDI_ASSERT(xform(dim, dim) == 1.0);
}
// Get the transform into the (dim+1 x dim+1) format, with
// 0 0 0 .. 0 1 as the last row.
SubMatrix<BaseFloat> xform_square(xform, 0, dim, 0, dim);
Matrix<double> xform_full(dim+1, dim+1);
SubMatrix<double> xform_full_square(xform_full, 0, dim, 0, dim);
xform_full_square.CopyFromMat(xform_square);
if (xform.NumCols() == dim+1) // copy offset.
for (int32 i = 0; i < dim; i++)
xform_full(i, dim) = xform(i, dim);
xform_full(dim, dim) = 1.0;
SpMatrix<double> Gtmp(dim+1);
for (int32 i = 0; i < dim; i++) {
// Gtmp <-- xform_full * stats->G_[i] * xform_full^T
Gtmp.AddMat2Sp(1.0, xform_full, kNoTrans, stats->G_[i], 0.0);
stats->G_[i].CopyFromSp(Gtmp);
}
Matrix<double> Ktmp(dim, dim+1);
// Ktmp <-- stats->K_ * xform_full^T
Ktmp.AddMatMat(1.0, stats->K_, kNoTrans, xform_full, kTrans, 0.0);
stats->K_.CopyFromMat(Ktmp);
}
void ApplyModelTransformToStats(const MatrixBase<BaseFloat> &xform,
AffineXformStats *stats) {
KALDI_ASSERT(stats != NULL && stats->Dim() != 0.0);
int32 dim = stats->Dim();
KALDI_ASSERT(xform.NumRows() == dim && xform.NumCols() == dim+1);
{
SubMatrix<BaseFloat> xform_square(xform, 0, dim, 0, dim);
// Only works with diagonal transforms.
KALDI_ASSERT(xform_square.IsDiagonal());
}
// Working out rules for transforming fMLLR statistics under diagonal
// model-space transformations.
//
// We work out what the stats would be if we had accumulated
// with offset/scaled means and vars. Let T be the transform
// T = [ D; b ],
// where D is diagonal, d_i is the i'th diagonal of D, and b_i
// is the i'th offset element. This is equivalent to the transform
// x_i -> y_i = d_i x_i + b_i,
// so d_i is the diagonal and b_i is the offset term. We work out the
// reverse feature transform (from general to speaker-specific space),
// which is
// y_i -> x_i = (y_i - b_i) / d_i
// the corresponding mean transform to speaker-space is the same:
// mu_i -> (mu_i - b_i) / d_i
// and the transfrom on the variances is:
// sigma_i^2 -> sigma_i^2 / d_i^2,
// so on inverse variance this becomes:
// (1/sigma_i^2) -> (1/sigma_i^2) * d_i^2.
//
// Now, we work out the change in K and G_i from these effects on the
// means and variances.
//
// Now, k_{ij} is \sum_{m, t} \gamma_m (1/\sigma^2_{m, i}) \mu_{m, i} x^+_j .
//
// If we are transforming to K', we want:
//
// k'_{ij} = \sum_{m, t} \gamma_m (d_i^2/\sigma^2_{m, i}) ((\mu_{m, i} - b_i)/d_i) x^+_j .
// = d_i k_{i, j} - \sum_{m, t} \gamma_m (1/\sigma^2_{m, i}) d_i b_i x^+_j .
// = d_i k_{i, j} - d_i b_i g_{i, d, j},
// where g_{i, d, j} is the {d, j}'th element of G_i. (in zero-based indexing).
//
//
// G_i only depends on the variances and features, so the only change
// in G_i is G_i -> d_i^2 G_i (this comes from the change in 1/sigma_i^2).
// This is done after the change in K.
for (int32 i = 0; i < dim; i++) {
BaseFloat d_i = xform(i, i), b_i = xform(i, dim);
for (int32 j = 0; j <= dim; j++) {
stats->K_(i, j) = d_i * stats->K_(i, j) - d_i * b_i * stats->G_[i](dim, j);
}
}
for (int32 i = 0; i < dim; i++) {
BaseFloat d_i = xform(i, i);
stats->G_[i].Scale(d_i * d_i);
}
}
float FmllrAuxFuncDiagGmm(const MatrixBase<float> &xform,
const AffineXformStats &stats) {
int32 dim = static_cast<int32>(stats.G_.size());
Matrix<double> xform_d(xform);
Vector<double> xform_row_g(dim + 1);
SubMatrix<double> A(xform_d, 0, dim, 0, dim);
double obj = stats.beta_ * A.LogDet() +
TraceMatMat(xform_d, stats.K_, kTrans);
for (int32 d = 0; d < dim; d++) {
xform_row_g.AddSpVec(1.0, stats.G_[d], xform_d.Row(d), 0.0);
obj -= 0.5 * VecVec(xform_row_g, xform_d.Row(d));
}
return obj;
}
double FmllrAuxFuncDiagGmm(const MatrixBase<double> &xform,
const AffineXformStats &stats) {
int32 dim = static_cast<int32>(stats.G_.size());
Vector<double> xform_row_g(dim + 1);
SubMatrix<double> A(xform, 0, dim, 0, dim);
double obj = stats.beta_ * A.LogDet() +
TraceMatMat(xform, stats.K_, kTrans);
for (int32 d = 0; d < dim; d++) {
xform_row_g.AddSpVec(1.0, stats.G_[d], xform.Row(d), 0.0);
obj -= 0.5 * VecVec(xform_row_g, xform.Row(d));
}
return obj;
}
BaseFloat FmllrAuxfGradient(const MatrixBase<BaseFloat> &xform,
// if this is changed back to Matrix<double>
// un-comment the Resize() below.
const AffineXformStats &stats,
MatrixBase<BaseFloat> *grad_out) {
int32 dim = static_cast<int32>(stats.G_.size());
Matrix<double> xform_d(xform);
Vector<double> xform_row_g(dim + 1);
SubMatrix<double> A(xform_d, 0, dim, 0, dim);
double obj = stats.beta_ * A.LogDet() +
TraceMatMat(xform_d, stats.K_, kTrans);
Matrix<double> S(dim, dim + 1);
for (int32 d = 0; d < dim; d++) {
xform_row_g.AddSpVec(1.0, stats.G_[d], xform_d.Row(d), 0.0);
obj -= 0.5 * VecVec(xform_row_g, xform_d.Row(d));
S.CopyRowFromVec(xform_row_g, d);
}
// Compute the gradient: P = \beta [(A^{-1})^{T} , 0] + K - S
// grad_out->Resize(dim, dim + 1);
Matrix<double> tmp_grad(dim, dim + 1);
tmp_grad.Range(0, dim, 0, dim).CopyFromMat(A);
tmp_grad.Range(0, dim, 0, dim).Invert();
tmp_grad.Range(0, dim, 0, dim).Transpose();
tmp_grad.Scale(stats.beta_);
tmp_grad.AddMat(-1.0, S, kNoTrans);
tmp_grad.AddMat(1.0, stats.K_, kNoTrans);
grad_out->CopyFromMat(tmp_grad, kNoTrans);
return obj;
}
bool FmllrDiagGmmAccs::DataHasChanged(const VectorBase<BaseFloat> &data) const {
KALDI_ASSERT(data.Dim() == this->Dim());
return !data.ApproxEqual(single_frame_stats_.x, 0.0);
}
void FmllrDiagGmmAccs::SingleFrameStats::Init(int32 dim) {
x.Resize(dim);
a.Resize(dim);
b.Resize(dim);
count = 0.0;
}
void FmllrDiagGmmAccs::InitSingleFrameStats(const VectorBase<BaseFloat> &data) {
SingleFrameStats &stats = single_frame_stats_;
stats.x.CopyFromVec(data);
stats.count = 0.0;
stats.a.SetZero();
stats.b.SetZero();
}
void FmllrDiagGmmAccs::CommitSingleFrameStats() {
// Commit the stats for this from (in SingleFrameStats).
int32 dim = Dim();
SingleFrameStats &stats = single_frame_stats_;
if (stats.count == 0.0) return;
Vector<double> xplus(dim+1);
xplus.Range(0, dim).CopyFromVec(stats.x);
xplus(dim) = 1.0;
this->beta_ += stats.count;
this->K_.AddVecVec(1.0, Vector<double>(stats.a), xplus);
if (opts_.update_type == "full") {
SpMatrix<double> scatter(dim+1);
scatter.AddVec2(1.0, xplus);
KALDI_ASSERT(static_cast<size_t>(dim) == this->G_.size());
for (int32 i = 0; i < dim; i++)
this->G_[i].AddSp(stats.b(i), scatter);
} else {
// We only need some elements of these stats, so just update those elements.
for (int32 i = 0; i < dim; i++) {
BaseFloat scale = stats.b(i), x_i = xplus(i);
this->G_[i](i, i) += scale * x_i * x_i;
this->G_[i](dim, i) += scale * 1.0 * x_i;
this->G_[i](dim, dim) += scale * 1.0 * 1.0;
}
}
stats.count = 0.0;
stats.a.SetZero();
stats.b.SetZero();
}
} // namespace kaldi