fmpe.cc
31 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
// transform/fmpe.cc
// Copyright 2011-2012 Yanmin Qian Johns Hopkins University (Author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "transform/fmpe.h"
#include "util/text-utils.h"
#include "gmm/diag-gmm-normal.h"
#include "gmm/am-diag-gmm.h"
#include "hmm/transition-model.h"
namespace kaldi {
void Fmpe::SetContexts(std::string context_str) {
// sets the contexts_ variable.
using std::vector;
using std::string;
contexts_.clear();
vector<string> ctx_vec; // splitting context_str on ":"
SplitStringToVector(context_str, ":", false, &ctx_vec);
contexts_.resize(ctx_vec.size());
for (size_t i = 0; i < ctx_vec.size(); i++) {
vector<string> pair_vec; // splitting ctx_vec[i] on ";"
SplitStringToVector(ctx_vec[i], ";", false, &pair_vec);
KALDI_ASSERT(pair_vec.size() != 0 && "empty context!");
for (size_t j = 0; j < pair_vec.size(); j++) {
vector<string> one_pair;
SplitStringToVector(pair_vec[j], ",", false, &one_pair);
KALDI_ASSERT(one_pair.size() == 2 &&
"Mal-formed context string: bad --context-expansion option?");
int32 pos = 0;
BaseFloat weight = BaseFloat(0);
bool ok = ConvertStringToInteger(one_pair[0], &pos);
ok = ConvertStringToReal(one_pair[1], &weight) && ok;
if (!ok)
KALDI_ERR << "Mal-formed context string: bad --context-expansion option?";
contexts_[i].push_back(std::make_pair(pos, weight));
}
}
}
void Fmpe::ComputeC() {
KALDI_ASSERT(gmm_.NumGauss() != 0.0);
int32 dim = gmm_.Dim();
// Getting stats from the GMM... assume the model is
// correct.
SpMatrix<double> x2_stats(dim);
Vector<double> x_stats(dim);
double tot_count = 0.0;
DiagGmmNormal ngmm(gmm_);
for (int32 pdf = 0; pdf < ngmm.NumGauss(); pdf++) {
x2_stats.AddVec2(ngmm.weights_(pdf), ngmm.means_.Row(pdf));
x2_stats.AddDiagVec(ngmm.weights_(pdf), ngmm.vars_.Row(pdf)); // add diagonal
// covar to diagonal elements of x2_stats.
x_stats.AddVec(ngmm.weights_(pdf), ngmm.means_.Row(pdf));
tot_count += ngmm.weights_(pdf);
}
KALDI_ASSERT(tot_count != 0.0);
x2_stats.Scale(1.0 / tot_count);
x_stats.Scale(1.0 / tot_count);
x2_stats.AddVec2(-1.0, x_stats); // subtract outer product of mean,
// to get centered covariance.
C_.Resize(dim);
try {
TpMatrix<double> Ctmp(dim); Ctmp.Cholesky(x2_stats);
C_.CopyFromTp(Ctmp);
} catch (...) {
KALDI_ERR << "Error initializing fMPE object: cholesky of "
"feature variance failed. Probably code error, or NaN/inf in model";
}
}
void Fmpe::ComputeStddevs() {
const Matrix<BaseFloat> &inv_vars = gmm_.inv_vars();
stddevs_.Resize(inv_vars.NumRows(), inv_vars.NumCols());
stddevs_.CopyFromMat(inv_vars);
stddevs_.ApplyPow(-0.5);
}
void Fmpe::ApplyContext(const MatrixBase<BaseFloat> &intermed_feat,
MatrixBase<BaseFloat> *feat_out) const {
// Applies the temporal-context part of the transformation.
int32 dim = FeatDim(), ncontexts = NumContexts(),
T = intermed_feat.NumRows();
KALDI_ASSERT(intermed_feat.NumCols() == dim * ncontexts &&
intermed_feat.NumRows() == feat_out->NumRows()
&& feat_out->NumCols() == dim);
// note: ncontexts == contexts_.size().
for (int32 i = 0; i < ncontexts; i++) {
// this_intermed_feat is the chunk of the "intermediate features"
// that corresponds to this "context"
SubMatrix<BaseFloat> this_intermed_feat(intermed_feat, 0, T,
dim*i, dim);
for (int32 j = 0; j < static_cast<int32>(contexts_[i].size()); j++) {
int32 t_offset = contexts_[i][j].first;
BaseFloat weight = contexts_[i][j].second;
// Note: we could do this more efficiently using matrix operations,
// but this doesn't dominate the computation and I think this is
// clearer.
for (int32 t_out = 0; t_out < T; t_out++) { // t_out indexes the output
int32 t_in = t_out + t_offset; // t_in indexes the input.
if (t_in >= 0 && t_in < T) // Discard frames outside range.
feat_out->Row(t_out).AddVec(weight, this_intermed_feat.Row(t_in));
}
}
}
}
void Fmpe::ApplyContextReverse(const MatrixBase<BaseFloat> &feat_deriv,
MatrixBase<BaseFloat> *intermed_feat_deriv)
const {
// Applies the temporal-context part of the transformation,
// in reverse, for getting derivatives for training.
int32 dim = FeatDim(), ncontexts = NumContexts(),
T = feat_deriv.NumRows();
KALDI_ASSERT(intermed_feat_deriv->NumCols() == dim * ncontexts &&
intermed_feat_deriv->NumRows() == feat_deriv.NumRows()
&& feat_deriv.NumCols() == dim);
// note: ncontexts == contexts_.size().
for (int32 i = 0; i < ncontexts; i++) {
// this_intermed_feat is the chunk of the derivative of
// "intermediate features" that corresponds to this "context"
// (this is output, in this routine).
SubMatrix<BaseFloat> this_intermed_feat_deriv(*intermed_feat_deriv, 0, T,
dim*i, dim);
for (int32 j = 0; j < static_cast<int32>(contexts_[i].size()); j++) {
int32 t_offset = contexts_[i][j].first;
BaseFloat weight = contexts_[i][j].second;
// Note: we could do this more efficiently using matrix operations,
// but this doesn't dominate the computation and I think this is
// clearer.
for (int32 t_out = 0; t_out < T; t_out++) { // t_out indexes the output
int32 t_in = t_out + t_offset; // t_in indexes the input.
if (t_in >= 0 && t_in < T) // Discard frames outside range.
this_intermed_feat_deriv.Row(t_in).AddVec(weight,
feat_deriv.Row(t_out));
// Note: the line above is where the work happens; it's the same
// as in ApplyContext except reversing the input and output.
}
}
}
}
void Fmpe::ApplyC(MatrixBase<BaseFloat> *feat_out, bool reverse) const {
int32 T = feat_out->NumRows();
Vector<BaseFloat> tmp(feat_out->NumCols());
for (int32 t = 0; t < T; t++) {
SubVector<BaseFloat> row(*feat_out, t);
// Next line does: tmp = C_ * row
tmp.AddTpVec(1.0, C_, (reverse ? kTrans : kNoTrans), row, 0.0);
row.CopyFromVec(tmp);
}
}
// Constructs the high-dim features and applies the main projection matrix
// projT_. This projects from dimension ngauss*(dim+1) to dim*ncontexts. Note:
// because the input vector of size ngauss*(dim+1) is sparse in a blocky way
// (i.e. each frame only has a couple of nonzero posteriors), we deal with
// sub-matrices of the projection matrix projT_. We actually further optimize
// the code by taking all frames in a file that had nonzero posteriors for a
// particular Gaussian, and forming a matrix out of the corresponding
// high-dimensional features; we can then use a matrix-matrix multiply rather
// than using vector-matrix operations.
void Fmpe::ApplyProjection(const MatrixBase<BaseFloat> &feat_in,
const std::vector<std::vector<int32> > &gselect,
MatrixBase<BaseFloat> *intermed_feat) const {
int32 dim = FeatDim(), ncontexts = NumContexts();
Vector<BaseFloat> post; // will be posteriors of selected Gaussians.
Vector<BaseFloat> input_chunk(dim+1); // will be a segment of
// the high-dimensional features.
// "all_posts" is a vector of ((gauss-index, time-index), gaussian
// posterior).
// We'll compute the posterior information, sort it, and then
// go through it in sorted order, which maintains memory locality
// when accessing the projection matrix.
// Note: if we really cared we could make this use level-3 BLAS
// (matrix-matrix multiply), but we'd need to have a temporary
// matrix for the output and input.
std::vector<std::pair<std::pair<int32, int32>, BaseFloat> > all_posts;
for (int32 t = 0; t < feat_in.NumRows(); t++) {
SubVector<BaseFloat> this_feat(feat_in, t);
gmm_.LogLikelihoodsPreselect(this_feat, gselect[t], &post);
// At this point, post will contain log-likes of the selected
// Gaussians.
post.ApplySoftMax(); // Now they are posteriors (which sum to one).
for (int32 i = 0; i < post.Dim(); i++) {
int32 gauss = gselect[t][i];
all_posts.push_back(std::make_pair(std::make_pair(gauss, t), post(i)));
}
}
std::sort(all_posts.begin(), all_posts.end());
bool optimize = true;
if (!optimize) { // Why do we keep this un-optimized code around?
// For clarity, so you can see what's going on, and for easier
// comparision with ApplyProjectionReverse which is similar to this
// un-optimized segment. Both un-optimized and optimized versions
// should give identical transforms (up to tiny roundoff differences).
for (size_t i = 0; i < all_posts.size(); i++) {
int32 gauss = all_posts[i].first.first, t = all_posts[i].first.second;
SubVector<BaseFloat> this_feat(feat_in, t);
SubVector<BaseFloat> this_intermed_feat(*intermed_feat, t);
BaseFloat this_post = all_posts[i].second;
SubVector<BaseFloat> this_stddev(stddevs_, gauss);
// The next line is equivalent to setting input_chunk to
// -this_post * the gaussian mean / (gaussian stddev). Note: we use
// the fact that mean * inv_var * stddev == mean / stddev.
input_chunk.Range(0, dim).AddVecVec(-this_post, gmm_.means_invvars().Row(gauss),
this_stddev, 0.0);
// The next line is equivalent to adding (feat / gaussian stddev) to
// input_chunk, so now it contains (feat - mean) / stddev, which is
// our "normalized" feature offset.
input_chunk.Range(0, dim).AddVecDivVec(this_post, this_feat, this_stddev,
1.0);
// The last element of this input_chunk is the posterior itself
// (between 0 and 1).
input_chunk(dim) = this_post * config_.post_scale;
// this_intermed_feat += [appropriate chjunk of projT_] * input_chunk.
this_intermed_feat.AddMatVec(1.0, projT_.Range(gauss*(dim+1), dim+1,
0, dim*ncontexts),
kTrans, input_chunk, 1.0);
}
} else {
size_t i = 0;
// We process the "posts" vector in chunks, where each chunk corresponds to
// the same Gaussian index (but different times).
while (i < all_posts.size()) {
int32 gauss = all_posts[i].first.first;
SubVector<BaseFloat> this_stddev(stddevs_, gauss),
this_mean_invvar(gmm_.means_invvars(), gauss);
SubMatrix<BaseFloat> this_projT_chunk(projT_, gauss*(dim+1), dim+1,
0, dim*ncontexts);
int32 batch_size; // number of posteriors with same Gaussian..
for (batch_size = 0;
batch_size+i < static_cast<int32>(all_posts.size()) &&
all_posts[batch_size+i].first.first == gauss;
batch_size++); // empty loop body.
Matrix<BaseFloat> input_chunks(batch_size, dim+1);
Matrix<BaseFloat> intermed_temp(batch_size, dim*ncontexts);
for (int32 j = 0; j < batch_size; j++) { // set up "input_chunks".
// To understand this code, first examine code and comments in "non-optimized"
// code chunk above (the other branch of the if/else statement).
int32 t = all_posts[i+j].first.second;
SubVector<BaseFloat> this_feat(feat_in, t);
SubVector<BaseFloat> this_input_chunk(input_chunks, j);
BaseFloat this_post = all_posts[i+j].second;
this_input_chunk.Range(0, dim).AddVecVec(-this_post,
this_mean_invvar,
this_stddev, 0.0);
this_input_chunk.Range(0, dim).AddVecDivVec(this_post, this_feat,
this_stddev, 1.0);
this_input_chunk(dim) = this_post * config_.post_scale;
}
// The next line is where most of the computation will happen,
// during the feature computation phase. We have rearranged
// stuff so it's a matrix-matrix operation, for greater
// efficiency (when using optimized libraries like ATLAS).
intermed_temp.AddMatMat(1.0, input_chunks, kNoTrans,
this_projT_chunk, kNoTrans, 0.0);
for (int32 j = 0; j < batch_size; j++) { // add data from
// intermed_temp to the output "intermed_feat"
int32 t = all_posts[i+j].first.second;
SubVector<BaseFloat> this_intermed_feat(*intermed_feat, t);
SubVector<BaseFloat> this_intermed_temp(intermed_temp, j);
// this_intermed_feat += this_intermed_temp.
this_intermed_feat.AddVec(1.0, this_intermed_temp);
}
i += batch_size;
}
}
}
// This function does the reverse to ApplyProjection, for the case
// where we want the derivatives w.r.t. the projection matrix.
// It stores the positive and negative parts of this separately.
void Fmpe::ApplyProjectionReverse(const MatrixBase<BaseFloat> &feat_in,
const std::vector<std::vector<int32> > &gselect,
const MatrixBase<BaseFloat> &intermed_feat_deriv,
MatrixBase<BaseFloat> *proj_deriv_plus,
MatrixBase<BaseFloat> *proj_deriv_minus) const {
int32 dim = FeatDim(), ncontexts = NumContexts();
Vector<BaseFloat> post; // will be posteriors of selected Gaussians.
Vector<BaseFloat> input_chunk(dim+1); // will be a segment of
// the high-dimensional features.
// "all_posts" is a vector of ((gauss-index, time-index), gaussian
// posterior).
// We'll compute the posterior information, sort it, and then
// go through it in sorted order, which maintains memory locality
// when accessing the projection matrix.
std::vector<std::pair<std::pair<int32, int32>, BaseFloat> > all_posts;
for (int32 t = 0; t < feat_in.NumRows(); t++) {
SubVector<BaseFloat> this_feat(feat_in, t);
gmm_.LogLikelihoodsPreselect(this_feat, gselect[t], &post);
// At this point, post will contain log-likes of the selected
// Gaussians.
post.ApplySoftMax(); // Now they are posteriors (which sum to one).
for (int32 i = 0; i < post.Dim(); i++) {
// The next few lines (where we set up "input_chunk") are identical
// to ApplyProjection.
int32 gauss = gselect[t][i];
all_posts.push_back(std::make_pair(std::make_pair(gauss, t), post(i)));
}
}
std::sort(all_posts.begin(), all_posts.end());
for (size_t i = 0; i < all_posts.size(); i++) {
int32 gauss = all_posts[i].first.first, t = all_posts[i].first.second;
BaseFloat this_post = all_posts[i].second;
SubVector<BaseFloat> this_feat(feat_in, t);
SubVector<BaseFloat> this_intermed_feat_deriv(intermed_feat_deriv, t);
SubVector<BaseFloat> this_stddev(stddevs_, gauss);
input_chunk.Range(0, dim).AddVecVec(-this_post, gmm_.means_invvars().Row(gauss),
this_stddev, 0.0);
input_chunk.Range(0, dim).AddVecDivVec(this_post, this_feat, this_stddev,
1.0);
input_chunk(dim) = this_post * config_.post_scale;
// If not for accumulating the + and - parts separately, we would be
// doing something like:
// proj_deriv_.Range(0, dim*ncontexts, gauss*(dim+1), dim+1).AddVecVec(
// 1.0, this_intermed_feat_deriv, input_chunk);
SubMatrix<BaseFloat> plus_chunk(*proj_deriv_plus,
gauss*(dim+1), dim+1,
0, dim*ncontexts),
minus_chunk(*proj_deriv_minus,
gauss*(dim+1), dim+1,
0, dim*ncontexts);
// This next function takes the rank-one matrix
// (input_chunk * this_intermed_deriv'), and adds the positive
// part to proj_deriv_plus, and minus the negative part to
// proj_deriv_minus.
AddOuterProductPlusMinus(static_cast<BaseFloat>(1.0),
input_chunk,
this_intermed_feat_deriv,
&plus_chunk, &minus_chunk);
}
}
void Fmpe::ComputeFeatures(const MatrixBase<BaseFloat> &feat_in,
const std::vector<std::vector<int32> > &gselect,
Matrix<BaseFloat> *feat_out) const {
int32 dim = FeatDim();
KALDI_ASSERT(feat_in.NumRows() != 0 && feat_in.NumCols() == dim);
KALDI_ASSERT(feat_in.NumRows() == static_cast<int32>(gselect.size()));
feat_out->Resize(feat_in.NumRows(), feat_in.NumCols()); // will zero it.
// Intermediate-dimension features
Matrix<BaseFloat> intermed_feat(feat_in.NumRows(),
dim * NumContexts());
// Apply the main projection, from high-dim to intermediate
// dimension (dim * NumContexts()).
ApplyProjection(feat_in, gselect, &intermed_feat);
// Apply the temporal context and reduces from
// dimension dim*ncontexts to dim.
ApplyContext(intermed_feat, feat_out);
// Lastly, apply the the "C" matrix-- linear transform on the offsets.
ApplyC(feat_out);
}
void Fmpe::AccStats(const MatrixBase<BaseFloat> &feat_in,
const std::vector<std::vector<int32> > &gselect,
const MatrixBase<BaseFloat> &direct_feat_deriv,
const MatrixBase<BaseFloat> *indirect_feat_deriv, // may be NULL
FmpeStats *fmpe_stats) const {
SubMatrix<BaseFloat> stats_plus(fmpe_stats->DerivPlus());
SubMatrix<BaseFloat> stats_minus(fmpe_stats->DerivMinus());
int32 dim = FeatDim(), ncontexts = NumContexts();
KALDI_ASSERT(feat_in.NumRows() != 0 && feat_in.NumCols() == dim);
KALDI_ASSERT(feat_in.NumRows() == static_cast<int32>(gselect.size()));
KALDI_ASSERT(SameDim(stats_plus, projT_) && SameDim(stats_minus, projT_) &&
SameDim(feat_in, direct_feat_deriv));
if (indirect_feat_deriv != NULL)
fmpe_stats->AccumulateChecks(feat_in, direct_feat_deriv, *indirect_feat_deriv);
Matrix<BaseFloat> feat_deriv(direct_feat_deriv); // "feat_deriv" is initially direct+indirect.
if (indirect_feat_deriv != NULL)
feat_deriv.AddMat(1.0, *indirect_feat_deriv);
// We do the "*Reverse" version of each stage now, in reverse order.
ApplyCReverse(&feat_deriv);
Matrix<BaseFloat> intermed_feat_deriv(feat_in.NumRows(), dim*ncontexts);
ApplyContextReverse(feat_deriv, &intermed_feat_deriv);
ApplyProjectionReverse(feat_in, gselect, intermed_feat_deriv,
&stats_plus, &stats_minus);
}
void FmpeOptions::Write(std::ostream &os, bool binary) const {
WriteToken(os, binary, context_expansion);
WriteBasicType(os, binary, post_scale);
}
void FmpeOptions::Read(std::istream &is, bool binary) {
ReadToken(is, binary, &context_expansion);
ReadBasicType(is, binary, &post_scale);
}
Fmpe::Fmpe(const DiagGmm &gmm, const FmpeOptions &config): gmm_(gmm),
config_(config) {
SetContexts(config.context_expansion);
ComputeC();
ComputeStddevs();
projT_.Resize(NumGauss() * (FeatDim()+1), FeatDim() * NumContexts());
}
BaseFloat Fmpe::Update(const FmpeUpdateOptions &config,
const FmpeStats &stats) {
SubMatrix<BaseFloat> proj_deriv_plus = stats.DerivPlus(),
proj_deriv_minus = stats.DerivMinus();
// tot_linear_objf_impr is the change in the actual
// objective function if it were linear, i.e.
// objf-gradient . parameter-change
// Note: none of this is normalized by the #frames (we don't have
// this info here), so that is done at the script level.
BaseFloat tot_linear_objf_impr = 0.0;
int32 changed = 0; // Keep track of how many elements change sign.
KALDI_ASSERT(SameDim(proj_deriv_plus, projT_) && SameDim(proj_deriv_minus, projT_));
KALDI_ASSERT(proj_deriv_plus.Min() >= 0);
KALDI_ASSERT(proj_deriv_minus.Min() >= 0);
BaseFloat learning_rate = config.learning_rate,
l2_weight = config.l2_weight;
for (int32 i = 0; i < projT_.NumRows(); i++) {
for (int32 j = 0; j < projT_.NumCols(); j++) {
BaseFloat p = proj_deriv_plus(i, j), n = proj_deriv_minus(i, j),
x = projT_(i, j);
// Suppose the basic update (before regularization) is:
// z <-- x + learning_rate * (p - n) / (p + n),
// where z is the new parameter and x is the old one.
// Here, we view (learning_rate / (p + n)) as a parameter-specific
// learning rate. In fact we view this update as the maximization
// of an auxiliary function of the form:
// (z-x).(p-n) - 0.5 (z - x)^2 (p+n)/learning_rate
// and taking the derivative w.r.t z, we get:
// Q'(z) = (p-n) - (z - x) (p+n) / learning_rate
// which we set to zero and solve for z, to get z = x + learning_rate.(p-n)/(p+n)
// At this point we add regularization, a term of the form -l2_weight * z^2.
// Our new auxiliary function derivative is:
// Q(z) = -2.l2_weight.z + (p-n) - (z - x) (p+n) / learning_rate
// We can write this as:
// Q(z) = z . (-2.l2_weight - (p+n)/learning_rate)
// + (p-n) + x(p+n)/learning_rate
// solving for z, we get:
// z = ((p-n) + x (p+n)/learning_rate) / (2.l2_weight + (p+n)/learning_rate)
BaseFloat z = ((p-n) + x*(p+n)/learning_rate) / (2*l2_weight + (p+n)/learning_rate);
// z is the new parameter value.
tot_linear_objf_impr += (z-x) * (p-n); // objf impr based on linear assumption.
projT_(i, j) = z;
if (z*x < 0) changed++;
}
}
KALDI_LOG << "Objf impr (assuming linear) is " << tot_linear_objf_impr;
KALDI_LOG << ((100.0*changed)/(projT_.NumRows()*projT_.NumCols()))
<< "% of matrix elements changed sign.";
return tot_linear_objf_impr;
}
// Note: we write the GMM first, without any other header.
// This way, the gselect code can treat the form on disk as
// a normal GMM object.
void Fmpe::Write(std::ostream &os, bool binary) const {
if (gmm_.NumGauss() == 0)
KALDI_ERR << "Fmpe::Write, object not initialized.";
gmm_.Write(os, binary);
config_.Write(os, binary);
// stddevs_ are derived, don't write them.
projT_.Write(os, binary);
C_.Write(os, binary);
// contexts_ are derived from config, don't write them.
}
void Fmpe::Read(std::istream &is, bool binary) {
gmm_.Read(is, binary);
config_.Read(is, binary);
ComputeStddevs(); // computed from gmm.
projT_.Read(is, binary);
C_.Read(is, binary);
SetContexts(config_.context_expansion);
}
BaseFloat ComputeAmGmmFeatureDeriv(const AmDiagGmm &am_gmm,
const TransitionModel &trans_model,
const Posterior &posterior,
const MatrixBase<BaseFloat> &features,
Matrix<BaseFloat> *direct_deriv,
const AccumAmDiagGmm *model_diff,
Matrix<BaseFloat> *indirect_deriv) {
KALDI_ASSERT((model_diff != NULL) == (indirect_deriv != NULL));
BaseFloat ans = 0.0;
KALDI_ASSERT(posterior.size() == static_cast<size_t>(features.NumRows()));
direct_deriv->Resize(features.NumRows(), features.NumCols());
if (indirect_deriv != NULL)
indirect_deriv->Resize(features.NumRows(), features.NumCols());
Vector<BaseFloat> temp_vec(features.NumCols());
Vector<double> temp_vec_dbl(features.NumCols());
for (size_t i = 0; i < posterior.size(); i++) {
for (size_t j = 0; j < posterior[i].size(); j++) {
int32 tid = posterior[i][j].first, // transition identifier.
pdf_id = trans_model.TransitionIdToPdf(tid);
BaseFloat weight = posterior[i][j].second;
const DiagGmm &gmm = am_gmm.GetPdf(pdf_id);
Vector<BaseFloat> gauss_posteriors;
SubVector<BaseFloat> this_feat(features, i);
SubVector<BaseFloat> this_direct_deriv(*direct_deriv, i);
ans += weight *
gmm.ComponentPosteriors(this_feat, &gauss_posteriors);
gauss_posteriors.Scale(weight);
// The next line does: to i'th row of deriv, add
// means_invvars^T * gauss_posteriors,
// where each row of means_invvars is the mean times
// diagonal inverse covariance... after transposing,
// this becomes a weighted of these rows, weighted by
// the posteriors. This comes from the term
// feat^T * inv_var * mean
// in the objective function.
this_direct_deriv.AddMatVec(1.0, gmm.means_invvars(), kTrans,
gauss_posteriors, 1.0);
// next line does temp_vec == inv_vars^T * gauss_posteriors,
// which sets temp_vec to a weighted sum of the inv_vars,
// weighed by Gaussian posterior.
temp_vec.AddMatVec(1.0, gmm.inv_vars(), kTrans,
gauss_posteriors, 0.0);
// Add to the derivative, -(this_feat .* temp_vec),
// which is the term that comes from the -0.5 * inv_var^T feat_sq,
// in the objective function (where inv_var is a vector, and feat_sq
// is a vector of squares of the feature values).
// Note: we have to do some messing about with double-precision here
// because the stats only come in double precision.
this_direct_deriv.AddVecVec(-1.0, this_feat, temp_vec, 1.0);
if (model_diff != NULL && weight > 0.0) { // We need to get the indirect diff.
// This "weight > 0.0" checks that this is the numerator stats, as the
// fMPE indirect diff applies only to the ML stats-- CAUTION, this
// code will only work as-is for fMMI (and the stats should not be
// canceled), due to the assumption that ML stats == num stats.
Vector<double> gauss_posteriors_dbl(gauss_posteriors);
const AccumDiagGmm &deriv_acc = model_diff->GetAcc(pdf_id);
// part of the derivative. Note: we could just store the direct and
// indirect derivatives together in one matrix, but it makes it easier
// to accumulate certain diagnostics if we store them separately.
SubVector<BaseFloat> this_indirect_deriv(*indirect_deriv, i);
// note: deriv_acc.mean_accumulator() contains the derivative of
// the objective function w.r.t. the "x stats" accumulated for
// this GMM. variance_accumulator() is the same for the "x^2 stats".
temp_vec_dbl.AddMatVec(1.0, deriv_acc.mean_accumulator(), kTrans,
gauss_posteriors_dbl, 0.0);
this_indirect_deriv.AddVec(1.0, temp_vec_dbl);
temp_vec_dbl.AddMatVec(1.0, deriv_acc.variance_accumulator(), kTrans,
gauss_posteriors_dbl, 0.0);
temp_vec.CopyFromVec(temp_vec_dbl); // convert to float.
// next line because d(x^2 stats for Gaussian)/d(feature) =
// 2 * (gaussian posterior) * feature.
this_indirect_deriv.AddVecVec(2.0, this_feat, temp_vec, 1.0);
}
}
}
return ans;
}
SubMatrix<BaseFloat> FmpeStats::DerivPlus() const { // const-ness not preserved.
KALDI_ASSERT(deriv.NumRows() != 0);
int32 proj_num_rows = deriv.NumRows(),
proj_num_cols = deriv.NumCols()/2;
return SubMatrix<BaseFloat>(deriv, 0, proj_num_rows,
0, proj_num_cols);
}
SubMatrix<BaseFloat> FmpeStats::DerivMinus() const { // const-ness not preserved.
KALDI_ASSERT(deriv.NumRows() != 0);
int32 proj_num_rows = deriv.NumRows(),
proj_num_cols = deriv.NumCols()/2;
return SubMatrix<BaseFloat>(deriv, 0, proj_num_rows,
proj_num_cols, proj_num_cols);
}
void FmpeStats::Init(const Fmpe &fmpe) {
int32 num_rows = fmpe.ProjectionTNumRows(),
num_cols = fmpe.ProjectionTNumCols();
deriv.Resize(num_rows, num_cols*2);
int32 feat_dim = fmpe.FeatDim();
checks.Resize(8, feat_dim);
}
void FmpeStats::AccumulateChecks(const MatrixBase<BaseFloat> &feats,
const MatrixBase<BaseFloat> &direct_deriv,
const MatrixBase<BaseFloat> &indirect_deriv) {
int32 T = feats.NumRows(), dim = feats.NumCols();
KALDI_ASSERT(direct_deriv.NumRows() == T && direct_deriv.NumCols() == dim &&
indirect_deriv.NumRows() == T && indirect_deriv.NumCols() == dim);
KALDI_ASSERT(checks.NumRows() == 8 && checks.NumCols() == dim);
for (int32 t = 0; t < T; t++) {
for (int32 d = 0; d < dim; d++) {
BaseFloat zero = 0.0;
checks(0, d) += std::max(zero, direct_deriv(t, d));
checks(1, d) += std::max(zero, -direct_deriv(t, d));
checks(2, d) += std::max(zero, indirect_deriv(t, d));
checks(3, d) += std::max(zero, -indirect_deriv(t, d));
checks(4, d) += std::max(zero, feats(t, d)*direct_deriv(t, d));
checks(5, d) += std::max(zero, -feats(t, d)*direct_deriv(t, d));
checks(6, d) += std::max(zero, feats(t, d)*indirect_deriv(t, d));
checks(7, d) += std::max(zero, -feats(t, d)*indirect_deriv(t, d));
}
}
}
void FmpeStats::DoChecks() {
if (checks.IsZero()) {
KALDI_LOG << "No checks will be done, probably indirect derivative was not used.";
return;
}
int32 dim = checks.NumCols();
Vector<double> shift_check(dim), shift_check2(dim), scale_check(dim), scale_check2(dim);
for (int32 d = 0; d < dim; d++) {
// shiftnumerator = direct+indirect deriv-- should be zero.
double shift_num = checks(0, d) - checks(1, d) + checks(2, d) - checks(3, d),
shift_den = checks(0, d) + checks(1, d) + checks(2, d) + checks(3, d),
shift_den2 = fabs(checks(0, d) - checks(1, d)) + fabs(checks(2, d) - checks(3, d));
shift_check(d) = shift_num / shift_den;
shift_check2(d) = shift_num / shift_den2;
double scale_num = checks(4, d) - checks(5, d) + checks(6, d) - checks(7, d),
scale_den = checks(4, d) + checks(5, d) + checks(6, d) + checks(7, d),
scale_den2 = fabs(checks(4, d) - checks(5, d)) + fabs(checks(6, d) - checks(7, d));
scale_check(d) = scale_num / scale_den;
scale_check2(d) = scale_num / scale_den2;
}
KALDI_LOG << "Shift-check is as follows (should be in range +- 0.01 or less)."
<< shift_check;
KALDI_LOG << "Scale-check is as follows (should be in range +- 0.01 or less)."
<< scale_check;
KALDI_LOG << "Shift-check(2) is as follows: most elements should be in range +-0.1: "
<< shift_check2;
KALDI_LOG << "Scale-check(2) is as follows: most elements should be in range +-0.1: "
<< scale_check2;
}
void FmpeStats::Write(std::ostream &os, bool binary) const {
deriv.Write(os, binary);
checks.Write(os, binary);
}
void FmpeStats::Read(std::istream &is, bool binary, bool add) {
deriv.Read(is, binary, add);
checks.Read(is, binary, add);
}
} // End of namespace kaldi