lda-estimate.cc
8.81 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
// transform/lda-estimate.cc
// Copyright 2009-2011 Jan Silovsky
// 2013 Johns Hopkins University
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "transform/lda-estimate.h"
namespace kaldi {
void LdaEstimate::Init(int32 num_classes, int32 dimension) {
zero_acc_.Resize(num_classes);
first_acc_.Resize(num_classes, dimension);
total_second_acc_.Resize(dimension);
}
void LdaEstimate::ZeroAccumulators() {
zero_acc_.SetZero();
first_acc_.SetZero();
total_second_acc_.SetZero();
}
void LdaEstimate::Scale(BaseFloat f) {
double d = static_cast<double>(f);
zero_acc_.Scale(d);
first_acc_.Scale(d);
total_second_acc_.Scale(d);
}
void LdaEstimate::Accumulate(const VectorBase<BaseFloat> &data,
int32 class_id, BaseFloat weight) {
KALDI_ASSERT(class_id >= 0);
KALDI_ASSERT(class_id < NumClasses() && data.Dim() == Dim());
Vector<double> data_d(data);
zero_acc_(class_id) += weight;
first_acc_.Row(class_id).AddVec(weight, data_d);
total_second_acc_.AddVec2(weight, data_d);
}
void LdaEstimate::GetStats(SpMatrix<double> *total_covar,
SpMatrix<double> *between_covar,
Vector<double> *total_mean,
double *tot_count) const {
int32 num_class = NumClasses(), dim = Dim();
double sum = zero_acc_.Sum();
*tot_count = sum;
total_covar->Resize(dim);
total_covar->CopyFromSp(total_second_acc_);
total_mean->Resize(dim);
total_mean->AddRowSumMat(1.0, first_acc_);
total_mean->Scale(1.0 / sum);
total_covar->Scale(1.0 / sum);
total_covar->AddVec2(-1.0, *total_mean);
between_covar->Resize(dim);
Vector<double> class_mean(dim);
for (int32 c = 0; c < num_class; c++) {
if (zero_acc_(c) != 0.0) {
class_mean.CopyRowFromMat(first_acc_, c);
class_mean.Scale(1.0 / zero_acc_(c));
between_covar->AddVec2(zero_acc_(c) / sum, class_mean);
}
}
between_covar->AddVec2(-1.0, *total_mean);
}
void LdaEstimate::Estimate(const LdaEstimateOptions &opts,
Matrix<BaseFloat> *m,
Matrix<BaseFloat> *mfull) const {
int32 target_dim = opts.dim;
KALDI_ASSERT(target_dim > 0);
// between-class covar is of most rank C-1
KALDI_ASSERT(target_dim <= Dim() && (target_dim < NumClasses() || opts.allow_large_dim));
int32 dim = Dim();
double count;
SpMatrix<double> total_covar, bc_covar;
Vector<double> total_mean;
GetStats(&total_covar, &bc_covar, &total_mean, &count);
// within-class covariance
SpMatrix<double> wc_covar(total_covar);
wc_covar.AddSp(-1.0, bc_covar);
TpMatrix<double> wc_covar_sqrt(dim);
try {
wc_covar_sqrt.Cholesky(wc_covar);
} catch (...) {
BaseFloat smooth = 1.0e-03 * wc_covar.Trace() / wc_covar.NumRows();
KALDI_LOG << "Cholesky failed (possibly not +ve definite), so adding " << smooth
<< " to diagonal and trying again.\n";
for (int32 i = 0; i < wc_covar.NumRows(); i++)
wc_covar(i, i) += smooth;
wc_covar_sqrt.Cholesky(wc_covar);
}
Matrix<double> wc_covar_sqrt_mat(wc_covar_sqrt);
// copy wc_covar_sqrt to Matrix, because it facilitates further use
wc_covar_sqrt_mat.Invert();
SpMatrix<double> tmp_sp(dim);
tmp_sp.AddMat2Sp(1.0, wc_covar_sqrt_mat, kNoTrans, bc_covar, 0.0);
Matrix<double> tmp_mat(tmp_sp);
Matrix<double> svd_u(dim, dim), svd_vt(dim, dim);
Vector<double> svd_d(dim);
tmp_mat.Svd(&svd_d, &svd_u, &svd_vt);
SortSvd(&svd_d, &svd_u);
KALDI_LOG << "Data count is " << count;
KALDI_LOG << "LDA singular values are " << svd_d;
KALDI_LOG << "Sum of all singular values is " << svd_d.Sum();
KALDI_LOG << "Sum of selected singular values is " <<
SubVector<double>(svd_d, 0, target_dim).Sum();
Matrix<double> lda_mat(dim, dim);
lda_mat.AddMatMat(1.0, svd_u, kTrans, wc_covar_sqrt_mat, kNoTrans, 0.0);
// finally, copy first target_dim rows to m
m->Resize(target_dim, dim);
m->CopyFromMat(lda_mat.Range(0, target_dim, 0, dim));
if (mfull != NULL) {
mfull->Resize(dim, dim);
mfull->CopyFromMat(lda_mat);
}
if (opts.within_class_factor != 1.0) { // This is not the normal code path;
// it's intended for use in neural net inputs.
for (int32 i = 0; i < svd_d.Dim(); i++) {
BaseFloat old_var = 1.0 + svd_d(i), // the total variance of that dim..
new_var = opts.within_class_factor + svd_d(i), // the variance we want..
scale = sqrt(new_var / old_var);
if (i < m->NumRows())
m->Row(i).Scale(scale);
if (mfull != NULL)
mfull->Row(i).Scale(scale);
}
}
if (opts.remove_offset) {
AddMeanOffset(total_mean, m);
if (mfull != NULL)
AddMeanOffset(total_mean, mfull);
}
}
// static
void LdaEstimate::AddMeanOffset(const VectorBase<double> &mean_dbl,
Matrix<BaseFloat> *projection) {
Vector<BaseFloat> mean(mean_dbl);
Vector<BaseFloat> neg_projected_mean(projection->NumRows());
// the negative
neg_projected_mean.AddMatVec(-1.0, *projection, kNoTrans, mean, 0.0);
projection->Resize(projection->NumRows(),
projection->NumCols() + 1,
kCopyData);
projection->CopyColFromVec(neg_projected_mean, projection->NumCols() - 1);
}
void LdaEstimate::Read(std::istream &in_stream, bool binary, bool add) {
int32 num_classes, dim;
std::string token;
ExpectToken(in_stream, binary, "<LDAACCS>");
ExpectToken(in_stream, binary, "<VECSIZE>");
ReadBasicType(in_stream, binary, &dim);
ExpectToken(in_stream, binary, "<NUMCLASSES>");
ReadBasicType(in_stream, binary, &num_classes);
if (add) {
if (NumClasses() != 0 || Dim() != 0) {
if (num_classes != NumClasses() || dim != Dim()) {
KALDI_ERR <<"LdaEstimate::Read, dimension or classes count mismatch, "
<<(NumClasses()) << ", " <<(Dim()) << ", "
<< " vs. " <<(num_classes) << ", " << (dim);
}
} else {
Init(num_classes, dim);
}
} else {
Init(num_classes, dim);
}
// these are needed for demangling the variances.
Vector<double> tmp_zero_acc;
Matrix<double> tmp_first_acc;
SpMatrix<double> tmp_sec_acc;
ReadToken(in_stream, binary, &token);
while (token != "</LDAACCS>") {
if (token == "<ZERO_ACCS>") {
tmp_zero_acc.Read(in_stream, binary, false);
if (!add) zero_acc_.SetZero();
zero_acc_.AddVec(1.0, tmp_zero_acc);
// zero_acc_.Read(in_stream, binary, add);
} else if (token == "<FIRST_ACCS>") {
tmp_first_acc.Read(in_stream, binary, false);
if (!add) first_acc_.SetZero();
first_acc_.AddMat(1.0, tmp_first_acc);
// first_acc_.Read(in_stream, binary, add);
} else if (token == "<SECOND_ACCS>") {
tmp_sec_acc.Read(in_stream, binary, false);
for (int32 c = 0; c < static_cast<int32>(NumClasses()); c++) {
if (tmp_zero_acc(c) != 0)
tmp_sec_acc.AddVec2(1.0 / tmp_zero_acc(c), tmp_first_acc.Row(c));
}
if (!add) total_second_acc_.SetZero();
total_second_acc_.AddSp(1.0, tmp_sec_acc);
// total_second_acc_.Read(in_stream, binary, add);
} else {
KALDI_ERR << "Unexpected token '" << token << "' in file ";
}
ReadToken(in_stream, binary, &token);
}
}
void LdaEstimate::Write(std::ostream &out_stream, bool binary) const {
WriteToken(out_stream, binary, "<LDAACCS>");
WriteToken(out_stream, binary, "<VECSIZE>");
WriteBasicType(out_stream, binary, static_cast<int32>(Dim()));
WriteToken(out_stream, binary, "<NUMCLASSES>");
WriteBasicType(out_stream, binary, static_cast<int32>(NumClasses()));
WriteToken(out_stream, binary, "<ZERO_ACCS>");
Vector<BaseFloat> zero_acc_bf(zero_acc_);
zero_acc_bf.Write(out_stream, binary);
WriteToken(out_stream, binary, "<FIRST_ACCS>");
Matrix<BaseFloat> first_acc_bf(first_acc_);
first_acc_bf.Write(out_stream, binary);
WriteToken(out_stream, binary, "<SECOND_ACCS>");
SpMatrix<double> tmp_sec_acc(total_second_acc_);
for (int32 c = 0; c < static_cast<int32>(NumClasses()); c++) {
if (zero_acc_(c) != 0)
tmp_sec_acc.AddVec2(-1.0 / zero_acc_(c), first_acc_.Row(c));
}
SpMatrix<BaseFloat> tmp_sec_acc_bf(tmp_sec_acc);
tmp_sec_acc_bf.Write(out_stream, binary);
WriteToken(out_stream, binary, "</LDAACCS>");
}
} // End of namespace kaldi