build-tree-utils.cc
44.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
// tree/build-tree-utils.cc
// Copyright 2009-2011 Microsoft Corporation; Haihua Xu
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <set>
#include <queue>
#include "util/stl-utils.h"
#include "tree/build-tree-utils.h"
namespace kaldi {
void WriteBuildTreeStats(std::ostream &os, bool binary, const BuildTreeStatsType &stats) {
WriteToken(os, binary, "BTS");
uint32 size = stats.size();
WriteBasicType(os, binary, size);
for (size_t i = 0; i < size; i++) {
WriteEventType(os, binary, stats[i].first);
bool nonNull = (stats[i].second != NULL);
WriteBasicType(os, binary, nonNull);
if (nonNull) stats[i].second->Write(os, binary);
}
if (os.fail()) {
KALDI_ERR << "WriteBuildTreeStats: write failed.";
}
if (!binary) os << '\n';
}
void ReadBuildTreeStats(std::istream &is, bool binary, const Clusterable &example, BuildTreeStatsType *stats) {
KALDI_ASSERT(stats != NULL);
KALDI_ASSERT(stats->empty());
ExpectToken(is, binary, "BTS");
uint32 size;
ReadBasicType(is, binary, &size);
stats->resize(size);
for (size_t i = 0; i < size; i++) {
ReadEventType(is, binary, &((*stats)[i].first));
bool nonNull;
ReadBasicType(is, binary, &nonNull);
if (nonNull) (*stats)[i].second = example.ReadNew(is, binary);
else (*stats)[i].second = NULL;
}
}
bool PossibleValues(EventKeyType key,
const BuildTreeStatsType &stats,
std::vector<EventValueType> *ans) {
bool all_present = true;
std::set<EventValueType> values;
BuildTreeStatsType::const_iterator iter = stats.begin(), end = stats.end();
for (; iter != end; ++iter) {
EventValueType val;
if (EventMap::Lookup(iter->first, key, &val))
values.insert(val);
else
all_present = false;
}
if (ans)
CopySetToVector(values, ans);
return all_present;
}
static void GetEventKeys(const EventType &vec, std::vector<EventKeyType> *keys) {
keys->resize(vec.size());
EventType::const_iterator iter = vec.begin(), end = vec.end();
std::vector<EventKeyType>::iterator out_iter = keys->begin();
for (; iter!= end; ++iter, ++out_iter)
*out_iter = iter->first;
}
// recall:
// typedef std::vector<std::pair<EventType, Clusterable*> > BuildTreeStatsType;
void FindAllKeys(const BuildTreeStatsType &stats, AllKeysType keys_type, std::vector<EventKeyType> *keys_out) {
KALDI_ASSERT(keys_out != NULL);
BuildTreeStatsType::const_iterator iter = stats.begin(), end = stats.end();
if (iter == end) return; // empty set of keys.
std::vector<EventKeyType> keys;
GetEventKeys(iter->first, &keys);
++iter;
for (; iter!= end; ++iter) {
std::vector<EventKeyType> keys2;
GetEventKeys(iter->first, &keys2);
if (keys_type == kAllKeysInsistIdentical) {
if (keys2 != keys)
KALDI_ERR << "AllKeys: keys in events are not all the same [called with kAllKeysInsistIdentical and all are not identical.";
} else if (keys_type == kAllKeysIntersection) {
std::vector<EventKeyType> new_keys(std::max(keys.size(), keys2.size()));
// following line relies on sorted order of event keys.
std::vector<EventKeyType>::iterator end_iter =
std::set_intersection(keys.begin(), keys.end(), keys2.begin(), keys2.end(), new_keys.begin());
new_keys.erase(end_iter, new_keys.end());
keys = new_keys;
} else { // union.
KALDI_ASSERT(keys_type == kAllKeysUnion);
std::vector<EventKeyType> new_keys(keys.size()+keys2.size());
// following line relies on sorted order of event keys.
std::vector<EventKeyType>::iterator end_iter =
std::set_union(keys.begin(), keys.end(), keys2.begin(), keys2.end(), new_keys.begin());
new_keys.erase(end_iter, new_keys.end());
keys = new_keys;
}
}
*keys_out = keys;
}
EventMap *DoTableSplit(const EventMap &orig, EventKeyType key, const BuildTreeStatsType &stats,
int32 *num_leaves) {
// First-- map the stats to each leaf in the EventMap.
std::vector<BuildTreeStatsType> split_stats;
SplitStatsByMap(stats, orig, &split_stats);
// Now for each leaf that has stats in it, do the table split according to the given name.
std::vector<EventMap*> splits(split_stats.size(), NULL);
for (EventAnswerType leaf = 0; leaf < (EventAnswerType)split_stats.size(); leaf++) {
if (!split_stats[leaf].empty()) {
// first work out the possible values the name takes.
std::vector<EventValueType> vals; // vals are put here, sorted.
bool all_present = PossibleValues(key, split_stats[leaf], &vals);
KALDI_ASSERT(all_present); // currently do not support mapping undefined values.
KALDI_ASSERT(!vals.empty() && vals.front() >= 0); // don't support mapping negative values
// at present time-- would need different EventMap type, not TableEventMap.
std::vector<EventMap*> table(vals.back()+1, (EventMap*)NULL);
for (size_t idx = 0;idx < vals.size();idx++) {
EventValueType val = vals[idx];
if (idx == 0) table[val] = new ConstantEventMap(leaf); // reuse current leaf.
else table[val] = new ConstantEventMap( (*num_leaves)++ ); // else take new leaf id.
}
// takes ownershipof stats.
splits[leaf] = new TableEventMap(key, table);
}
}
EventMap *ans = orig.Copy(splits);
DeletePointers(&splits);
return ans;
}
EventMap *DoTableSplitMultiple(const EventMap &orig, const std::vector<EventKeyType> &keys, const BuildTreeStatsType &stats, int32 *num_leaves) {
if (keys.empty()) return orig.Copy();
else {
EventMap *cur = NULL; // would make it &orig, except for const issues.
for (size_t i = 0; i < keys.size(); i++) {
EventMap *next = DoTableSplit( (cur ? *cur : orig), keys[i], stats, num_leaves);
delete cur; // delete intermediate maps.
cur = next;
}
return cur;
}
}
void SplitStatsByMap(const BuildTreeStatsType &stats, const EventMap &e, std::vector<BuildTreeStatsType> *stats_out) {
BuildTreeStatsType::const_iterator iter, end = stats.end();
KALDI_ASSERT(stats_out != NULL);
stats_out->clear();
size_t size = 0;
for (iter = stats.begin(); iter != end; ++iter) {
const EventType &evec = iter->first;
EventAnswerType ans;
if (!e.Map(evec, &ans)) // this is an error--could not map it.
KALDI_ERR << "SplitStatsByMap: could not map event vector " << EventTypeToString(evec)
<< "if error seen during tree-building, check that "
<< "--context-width and --central-position match stats, "
<< "and that phones that are context-independent (CI) during "
<< "stats accumulation do not share roots with non-CI phones.";
size = std::max(size, (size_t)(ans+1));
}
stats_out->resize(size);
for (iter = stats.begin(); iter != end; ++iter) {
const EventType &evec = iter->first;
EventAnswerType ans;
bool b = e.Map(evec, &ans);
KALDI_ASSERT(b);
(*stats_out)[ans].push_back(*iter);
}
}
void SplitStatsByKey(const BuildTreeStatsType &stats_in, EventKeyType key, std::vector<BuildTreeStatsType> *stats_out) {
BuildTreeStatsType::const_iterator iter, end = stats_in.end();
KALDI_ASSERT(stats_out != NULL);
stats_out->clear();
size_t size = 0;
// This loop works out size of output vector.
for (iter = stats_in.begin(); iter != end; ++iter) {
const EventType &evec = iter->first;
EventValueType val;
if (! EventMap::Lookup(evec, key, &val)) // no such key.
KALDI_ERR << "SplitStats: key "<< key << " is not present in event vector " << EventTypeToString(evec);
size = std::max(size, (size_t)(val+1));
}
stats_out->resize(size);
// This loop splits up the stats.
for (iter = stats_in.begin(); iter != end; ++iter) {
const EventType &evec = iter->first;
EventValueType val;
EventMap::Lookup(evec, key, &val); // will not fail.
(*stats_out)[val].push_back(*iter);
}
}
void FilterStatsByKey(const BuildTreeStatsType &stats_in,
EventKeyType key,
std::vector<EventValueType> &values,
bool include_if_present, // true-> retain only in "values",
// false-> retain only not in "values".
BuildTreeStatsType *stats_out) {
KALDI_ASSERT(IsSortedAndUniq(values));
BuildTreeStatsType::const_iterator iter, end = stats_in.end();
KALDI_ASSERT(stats_out != NULL);
stats_out->clear();
for (iter = stats_in.begin(); iter != end; ++iter) {
const EventType &evec = iter->first;
EventValueType val;
if (! EventMap::Lookup(evec, key, &val)) // no such key. // HERE.
KALDI_ERR << "SplitStats: key "<< key << " is not present in event vector " << EventTypeToString(evec);
bool in_values = std::binary_search(values.begin(), values.end(), val);
if (in_values == include_if_present)
stats_out->push_back(*iter);
}
}
Clusterable *SumStats(const BuildTreeStatsType &stats_in) {
Clusterable *ans = NULL;
BuildTreeStatsType::const_iterator iter = stats_in.begin(), end = stats_in.end();
for (; iter != end; ++iter) {
Clusterable *cl = iter->second;
if (cl != NULL) {
if (!ans) ans = cl->Copy();
else ans->Add(*cl);
}
}
return ans;
}
BaseFloat SumNormalizer(const BuildTreeStatsType &stats_in) {
BaseFloat ans = 0.0;
BuildTreeStatsType::const_iterator iter = stats_in.begin(), end = stats_in.end();
for (; iter != end; ++iter) {
Clusterable *cl = iter->second;
if (cl != NULL) ans += cl->Normalizer();
}
return ans;
}
BaseFloat SumObjf(const BuildTreeStatsType &stats_in) {
BaseFloat ans = 0.0;
BuildTreeStatsType::const_iterator iter = stats_in.begin(), end = stats_in.end();
for (; iter != end; ++iter) {
Clusterable *cl = iter->second;
if (cl != NULL) ans += cl->Objf();
}
return ans;
}
void SumStatsVec(const std::vector<BuildTreeStatsType> &stats_in, std::vector<Clusterable*> *stats_out) {
KALDI_ASSERT(stats_out != NULL && stats_out->empty());
stats_out->resize(stats_in.size(), NULL);
for (size_t i = 0;i < stats_in.size();i++) (*stats_out)[i] = SumStats(stats_in[i]);
}
BaseFloat ObjfGivenMap(const BuildTreeStatsType &stats_in, const EventMap &e) {
std::vector<BuildTreeStatsType> split_stats;
SplitStatsByMap(stats_in, e, &split_stats);
std::vector<Clusterable*> summed_stats;
SumStatsVec(split_stats, &summed_stats);
BaseFloat ans = SumClusterableObjf(summed_stats);
DeletePointers(&summed_stats);
return ans;
}
// This function computes the best initial split of these stats [with this key].
// Returns best objf change (>=0).
BaseFloat ComputeInitialSplit(const std::vector<Clusterable*> &summed_stats,
const Questions &q_opts, EventKeyType key,
std::vector<EventValueType> *yes_set) {
KALDI_ASSERT(yes_set != NULL);
yes_set->clear();
const QuestionsForKey &key_opts = q_opts.GetQuestionsOf(key);
// "total" needed for optimization in AddToClustersOptimized,
// and also used to work otu total objf.
Clusterable *total = SumClusterable(summed_stats);
if (total == NULL) return 0.0; // because there were no stats or non-NULL stats.
BaseFloat unsplit_objf = total->Objf();
const std::vector<std::vector<EventValueType> > &questions_of_this_key = key_opts.initial_questions;
int32 best_idx = -1;
BaseFloat best_objf_change = 0;
for (size_t i = 0; i < questions_of_this_key.size(); i++) {
const std::vector<EventValueType> &yes_set = questions_of_this_key[i];
std::vector<int32> assignments(summed_stats.size(), 0); // 0 is index of "no".
std::vector<Clusterable*> clusters(2); // no and yes clusters.
for (std::vector<EventValueType>::const_iterator iter = yes_set.begin(); iter != yes_set.end(); ++iter) {
KALDI_ASSERT(*iter>=0);
if (*iter < (EventValueType)assignments.size()) assignments[*iter] = 1;
}
kaldi::AddToClustersOptimized(summed_stats, assignments, *total, &clusters);
BaseFloat this_objf = SumClusterableObjf(clusters);
if (this_objf < unsplit_objf- 0.001*std::abs(unsplit_objf)) { // got worse; should never happen.
// of course small differences can be caused by roundoff.
KALDI_WARN << "Objective function got worse when building tree: "<< this_objf << " < " << unsplit_objf;
KALDI_ASSERT(!(this_objf < unsplit_objf - 0.01*(200 + std::abs(unsplit_objf)))); // do assert on more stringent check.
}
BaseFloat this_objf_change = this_objf - unsplit_objf;
if (this_objf_change > best_objf_change) {
best_objf_change = this_objf_change;
best_idx = i;
}
DeletePointers(&clusters);
}
delete total;
if (best_idx != -1)
*yes_set = questions_of_this_key[best_idx];
return best_objf_change;
}
// returns best delta-objf.
// If key does not exist, returns 0 and sets yes_set_out to empty.
BaseFloat FindBestSplitForKey(const BuildTreeStatsType &stats,
const Questions &q_opts,
EventKeyType key,
std::vector<EventValueType> *yes_set_out) {
if (stats.size()<=1) return 0.0; // cannot split if only zero or one instance of stats.
if (!PossibleValues(key, stats, NULL)) {
yes_set_out->clear();
return 0.0; // Can't split as key not always defined.
}
std::vector<Clusterable*> summed_stats; // indexed by value corresponding to key. owned here.
{ // compute summed_stats
std::vector<BuildTreeStatsType> split_stats;
SplitStatsByKey(stats, key, &split_stats);
SumStatsVec(split_stats, &summed_stats);
}
std::vector<EventValueType> yes_set;
BaseFloat improvement = ComputeInitialSplit(summed_stats,
q_opts, key, &yes_set);
// find best basic question.
std::vector<int32> assignments(summed_stats.size(), 0); // assigns to "no" (0) by default.
for (std::vector<EventValueType>::const_iterator iter = yes_set.begin(); iter != yes_set.end(); ++iter) {
KALDI_ASSERT(*iter>=0);
if (*iter < (EventValueType)assignments.size()) {
// this guard necessary in case stats did not have all the
// values present in "yes_set".
assignments[*iter] = 1; // assign to "yes" (1).
}
}
std::vector<Clusterable*> clusters(2, (Clusterable*)NULL); // no, yes.
kaldi::AddToClusters(summed_stats, assignments, &clusters);
EnsureClusterableVectorNotNull(&summed_stats);
EnsureClusterableVectorNotNull(&clusters);
// even if improvement == 0 we continue; if we do RefineClusters we may get further improvement.
// now do the RefineClusters stuff. Note that this is null-op if
// q_opts.GetQuestionsOf(key).refine_opts.num_iters == 0. We could check for this but don't bother;
// it happens in RefineClusters anyway.
if (q_opts.GetQuestionsOf(key).refine_opts.num_iters > 0) {
// If we want to refine the questions... (a bit like k-means w/ 2 classes).
// Note: the only reason we introduced the if-statement is so the yes_set
// doesn't get modified (truncated, actually) if we do the refine stuff with
// zero iters.
BaseFloat refine_impr = RefineClusters(summed_stats, &clusters, &assignments,
q_opts.GetQuestionsOf(key).refine_opts);
KALDI_ASSERT(refine_impr > std::min(-1.0, -0.1*fabs(improvement)));
// refine_impr should always be positive
improvement += refine_impr;
yes_set.clear();
for (size_t i = 0;i < assignments.size();i++) if (assignments[i] == 1) yes_set.push_back(i);
}
*yes_set_out = yes_set;
DeletePointers(&clusters);
#ifdef KALDI_PARANOID
{ // Check the "ans" is correct.
KALDI_ASSERT(clusters.size() == 2 && clusters[0] == 0 && clusters[1] == 0);
AddToClusters(summed_stats, assignments, &clusters);
BaseFloat impr;
if (clusters[0] == NULL || clusters[1] == NULL) impr = 0.0;
else impr = clusters[0]->Distance(*(clusters[1]));
if (!ApproxEqual(impr, improvement) && fabs(impr-improvement) > 0.01) {
KALDI_WARN << "FindBestSplitForKey: improvements do not agree: "<< impr
<< " vs. " << improvement;
}
DeletePointers(&clusters);
}
#endif
DeletePointers(&summed_stats);
return improvement; // objective-function improvement.
}
/*
DecisionTreeBuilder is a class used in SplitDecisionTree
*/
class DecisionTreeSplitter {
public:
EventMap *GetMap() {
if (!yes_) { // leaf.
return new ConstantEventMap(leaf_);
} else {
return new SplitEventMap(key_, yes_set_, yes_->GetMap(), no_->GetMap());
}
}
BaseFloat BestSplit() { return best_split_impr_; } // returns objf improvement (>=0) of best possible split.
void DoSplit(int32 *next_leaf) {
if (!yes_) { // not already split; we are a leaf, so split.
DoSplitInternal(next_leaf);
} else { // find which of our children is best to split, and split that.
(yes_->BestSplit() >= no_->BestSplit() ? yes_ : no_)->DoSplit(next_leaf);
best_split_impr_ = std::max(yes_->BestSplit(), no_->BestSplit()); // may have changed.
}
}
DecisionTreeSplitter(EventAnswerType leaf, const BuildTreeStatsType &stats,
const Questions &q_opts): q_opts_(q_opts), yes_(NULL), no_(NULL), leaf_(leaf), stats_(stats) {
// not, this must work when stats is empty too. [just gives zero improvement, non-splittable].
FindBestSplit();
}
~DecisionTreeSplitter() {
delete yes_;
delete no_;
}
private:
void DoSplitInternal(int32 *next_leaf) {
// Does the split; applicable only to leaf nodes.
KALDI_ASSERT(!yes_); // make sure children not already set up.
KALDI_ASSERT(best_split_impr_ > 0);
EventAnswerType yes_leaf = leaf_, no_leaf = (*next_leaf)++;
leaf_ = -1; // we now have no leaf.
// Now split the stats.
BuildTreeStatsType yes_stats, no_stats;
yes_stats.reserve(stats_.size()); no_stats.reserve(stats_.size()); // probably better than multiple resizings.
for (BuildTreeStatsType::const_iterator iter = stats_.begin(); iter != stats_.end(); ++iter) {
const EventType &vec = iter->first;
EventValueType val;
if (!EventMap::Lookup(vec, key_, &val)) KALDI_ERR << "DoSplitInternal: key has no value.";
if (std::binary_search(yes_set_.begin(), yes_set_.end(), val)) yes_stats.push_back(*iter);
else no_stats.push_back(*iter);
}
#ifdef KALDI_PARANOID
{ // Check objf improvement.
Clusterable *yes_clust = SumStats(yes_stats), *no_clust = SumStats(no_stats);
BaseFloat impr_check = yes_clust->Distance(*no_clust);
// this is a negated objf improvement from merging (== objf improvement from splitting).
if (!ApproxEqual(impr_check, best_split_impr_, 0.01)) {
KALDI_WARN << "DoSplitInternal: possible problem: "<< impr_check << " != " << best_split_impr_;
}
delete yes_clust; delete no_clust;
}
#endif
yes_ = new DecisionTreeSplitter(yes_leaf, yes_stats, q_opts_);
no_ = new DecisionTreeSplitter(no_leaf, no_stats, q_opts_);
best_split_impr_ = std::max(yes_->BestSplit(), no_->BestSplit());
stats_.clear(); // note: pointers in stats_ were not owned here.
}
void FindBestSplit() {
// This sets best_split_impr_, key_ and yes_set_.
// May just pick best question, or may iterate a bit (depends on
// q_opts; see FindBestSplitForKey for details)
std::vector<EventKeyType> all_keys;
q_opts_.GetKeysWithQuestions(&all_keys);
if (all_keys.size() == 0) {
KALDI_WARN << "DecisionTreeSplitter::FindBestSplit(), no keys available to split on (maybe no key covered all of your events, or there was a problem with your questions configuration?)";
}
best_split_impr_ = 0;
for (size_t i = 0; i < all_keys.size(); i++) {
if (q_opts_.HasQuestionsForKey(all_keys[i])) {
std::vector<EventValueType> temp_yes_set;
BaseFloat split_improvement = FindBestSplitForKey(stats_, q_opts_, all_keys[i], &temp_yes_set);
if (split_improvement > best_split_impr_) {
best_split_impr_ = split_improvement;
yes_set_ = temp_yes_set;
key_ = all_keys[i];
}
}
}
}
// Data members... Always used:
const Questions &q_opts_;
BaseFloat best_split_impr_;
// If already split:
DecisionTreeSplitter *yes_;
DecisionTreeSplitter *no_;
// Otherwise:
EventAnswerType leaf_;
BuildTreeStatsType stats_; // vector of stats. pointers inside there not owned here.
// key and "yes set" of best split:
EventKeyType key_;
std::vector<EventValueType> yes_set_;
};
EventMap *SplitDecisionTree(const EventMap &input_map,
const BuildTreeStatsType &stats,
Questions &q_opts,
BaseFloat thresh,
int32 max_leaves, // max_leaves<=0 -> no maximum.
int32 *num_leaves,
BaseFloat *obj_impr_out,
BaseFloat *smallest_split_change_out) {
KALDI_ASSERT(num_leaves != NULL && *num_leaves > 0); // can't be 0 or input_map would be empty.
int32 num_empty_leaves = 0;
BaseFloat like_impr = 0.0;
BaseFloat smallest_split_change = 1.0e+20;
std::vector<DecisionTreeSplitter*> builders;
{ // set up "builders" [one for each current leaf]. This array is never extended.
// the structures generated during splitting remain as trees at each array location.
std::vector<BuildTreeStatsType> split_stats;
SplitStatsByMap(stats, input_map, &split_stats);
KALDI_ASSERT(split_stats.size() != 0);
builders.resize(split_stats.size()); // size == #leaves.
for (size_t i = 0;i < split_stats.size();i++) {
EventAnswerType leaf = static_cast<EventAnswerType>(i);
if (split_stats[i].size() == 0) num_empty_leaves++;
builders[i] = new DecisionTreeSplitter(leaf, split_stats[i], q_opts);
}
}
{ // Do the splitting.
int32 count = 0;
std::priority_queue<std::pair<BaseFloat, size_t> > queue; // use size_t because logically these
// are just indexes into the array, not leaf-ids (after splitting they are no longer leaf id's).
// Initialize queue.
for (size_t i = 0; i < builders.size(); i++)
queue.push(std::make_pair(builders[i]->BestSplit(), i));
// Note-- queue's size never changes from now. All the alternatives leaves to split are
// inside the "DecisionTreeSplitter*" objects, in a tree structure.
while (queue.top().first > thresh
&& (max_leaves<=0 || *num_leaves < max_leaves)) {
smallest_split_change = std::min(smallest_split_change, queue.top().first);
size_t i = queue.top().second;
like_impr += queue.top().first;
builders[i]->DoSplit(num_leaves);
queue.pop();
queue.push(std::make_pair(builders[i]->BestSplit(), i));
count++;
}
KALDI_LOG << "DoDecisionTreeSplit: split "<< count << " times, #leaves now " << (*num_leaves);
}
if (smallest_split_change_out)
*smallest_split_change_out = smallest_split_change;
EventMap *answer = NULL;
{ // Create the output EventMap.
std::vector<EventMap*> sub_trees(builders.size());
for (size_t i = 0; i < sub_trees.size();i++) sub_trees[i] = builders[i]->GetMap();
answer = input_map.Copy(sub_trees);
for (size_t i = 0; i < sub_trees.size();i++) delete sub_trees[i];
}
// Free up memory.
for (size_t i = 0;i < builders.size();i++) delete builders[i];
if (obj_impr_out != NULL) *obj_impr_out = like_impr;
return answer;
}
int ClusterEventMapGetMapping(const EventMap &e_in,
const BuildTreeStatsType &stats,
BaseFloat thresh,
std::vector<EventMap*> *mapping) {
// First map stats
KALDI_ASSERT(stats.size() != 0);
std::vector<BuildTreeStatsType> split_stats;
SplitStatsByMap(stats, e_in, &split_stats);
std::vector<Clusterable*> summed_stats;
SumStatsVec(split_stats, &summed_stats);
std::vector<int32> indexes;
std::vector<Clusterable*> summed_stats_contiguous;
size_t max_index = 0;
for (size_t i = 0;i < summed_stats.size();i++) {
if (summed_stats[i] != NULL) {
indexes.push_back(i);
summed_stats_contiguous.push_back(summed_stats[i]);
if (i > max_index) max_index = i;
}
}
if (summed_stats_contiguous.empty()) {
KALDI_WARN << "ClusterBottomUp: nothing to cluster.";
return 0; // nothing merged.
}
std::vector<int32> assignments;
BaseFloat normalizer = SumClusterableNormalizer(summed_stats_contiguous),
change;
change = ClusterBottomUp(summed_stats_contiguous,
thresh,
0, // no min-clust: use threshold for now.
NULL, // don't need clusters out.
&assignments); // this algorithm is quadratic, so might be quite slow.
KALDI_ASSERT(assignments.size() == summed_stats_contiguous.size() && !assignments.empty());
size_t num_clust = * std::max_element(assignments.begin(), assignments.end()) + 1;
int32 num_combined = summed_stats_contiguous.size() - num_clust;
KALDI_ASSERT(num_combined >= 0);
KALDI_VLOG(2) << "ClusterBottomUp combined "<< num_combined
<< " leaves and gave a likelihood change of " << change
<< ", normalized = " << (change/normalizer)
<< ", normalizer = " << normalizer;
KALDI_ASSERT(change < 0.0001); // should be negative or zero.
KALDI_ASSERT(mapping != NULL);
if (max_index >= mapping->size()) mapping->resize(max_index+1, NULL);
for (size_t i = 0;i < summed_stats_contiguous.size();i++) {
size_t index = indexes[i];
size_t new_index = indexes[assignments[i]]; // index assigned by clusterig-- map to existing indices in the map,
// that we clustered from, so we don't conflict with indices in other parts
// of the tree.
KALDI_ASSERT((*mapping)[index] == NULL || "Error: Cluster seems to have been "
"called for different parts of the tree with overlapping sets of "
"indices.");
(*mapping)[index] = new ConstantEventMap(new_index);
}
DeletePointers(&summed_stats);
return num_combined;
}
EventMap *RenumberEventMap(const EventMap &e_in, int32 *num_leaves) {
EventType empty_vec;
std::vector<EventAnswerType> initial_leaves; // before renumbering.
e_in.MultiMap(empty_vec, &initial_leaves);
if (initial_leaves.empty()) {
KALDI_ASSERT(num_leaves);
if (num_leaves) *num_leaves = 0;
return e_in.Copy();
}
SortAndUniq(&initial_leaves);
EventAnswerType max_leaf_plus_one = initial_leaves.back() + 1; // will typically, but not always, equal *num_leaves.
std::vector<EventMap*> mapping(max_leaf_plus_one, (EventMap*)NULL);
std::vector<EventAnswerType>::iterator iter = initial_leaves.begin(), end = initial_leaves.end();
EventAnswerType cur_leaf = 0;
for (; iter != end; ++iter) {
KALDI_ASSERT(*iter >= 0 && *iter<max_leaf_plus_one);
mapping[*iter] = new ConstantEventMap(cur_leaf++);
}
EventMap *ans = e_in.Copy(mapping);
DeletePointers(&mapping);
KALDI_ASSERT((size_t)cur_leaf == initial_leaves.size());
if (num_leaves) *num_leaves = cur_leaf;
return ans;
}
EventMap *MapEventMapLeaves(const EventMap &e_in,
const std::vector<int32> &mapping_in) {
std::vector<EventMap*> mapping(mapping_in.size());
for (size_t i = 0; i < mapping_in.size(); i++)
mapping[i] = new ConstantEventMap(mapping_in[i]);
EventMap *ans = e_in.Copy(mapping);
DeletePointers(&mapping);
return ans;
}
EventMap *ClusterEventMap(const EventMap &e_in, const BuildTreeStatsType &stats,
BaseFloat thresh, int32 *num_removed_ptr) {
std::vector<EventMap*> mapping;
int32 num_removed = ClusterEventMapGetMapping(e_in, stats, thresh, &mapping);
EventMap *ans = e_in.Copy(mapping);
DeletePointers(&mapping);
if (num_removed_ptr != NULL) *num_removed_ptr = num_removed;
return ans;
}
EventMap *ShareEventMapLeaves(const EventMap &e_in, EventKeyType key,
std::vector<std::vector<EventValueType> > &values,
int32 *num_leaves) {
// the use of "pdfs" as the name of the next variable reflects the anticipated
// use of this function.
std::vector<std::vector<EventAnswerType> > pdfs(values.size());
for (size_t i = 0; i < values.size(); i++) {
EventType evec;
for (size_t j = 0; j < values[i].size(); j++) {
evec.push_back(MakeEventPair(key, values[i][j]));
size_t size_at_start = pdfs[i].size();
e_in.MultiMap(evec, &(pdfs[i])); // append any corresponding pdfs to pdfs[i].
if (pdfs[i].size() == size_at_start) { // Nothing added... unexpected.
KALDI_WARN << "ShareEventMapLeaves: had no leaves for key = " << key
<< ", value = " << (values[i][j]);
}
}
SortAndUniq(&(pdfs[i]));
}
std::vector<EventMap*> remapping;
for (size_t i = 0; i < values.size(); i++) {
if (pdfs[i].empty())
KALDI_WARN << "ShareEventMapLeaves: no leaves in one bucket."; // not expected.
else {
EventAnswerType map_to_this = pdfs[i][0]; // map all in this bucket
// to this value.
for (size_t j = 1; j < pdfs[i].size(); j++) {
EventAnswerType leaf = pdfs[i][j];
KALDI_ASSERT(leaf>=0);
if (remapping.size() <= static_cast<size_t>(leaf))
remapping.resize(leaf+1, NULL);
KALDI_ASSERT(remapping[leaf] == NULL);
remapping[leaf] = new ConstantEventMap(map_to_this);
}
}
}
EventMap *shared = e_in.Copy(remapping);
DeletePointers(&remapping);
EventMap *renumbered = RenumberEventMap(*shared, num_leaves);
delete shared;
return renumbered;
}
void DeleteBuildTreeStats(BuildTreeStatsType *stats) {
KALDI_ASSERT(stats != NULL);
BuildTreeStatsType::iterator iter = stats->begin(), end = stats->end();
for (; iter!= end; ++iter) if (iter->second != NULL) { delete iter->second; iter->second = NULL; } // set to NULL for extra safety.
}
EventMap *GetToLengthMap(const BuildTreeStatsType &stats, int32 P,
const std::vector<EventValueType> *phones,
int32 default_length) {
std::vector<BuildTreeStatsType> stats_by_phone;
try {
SplitStatsByKey(stats, P, &stats_by_phone);
} catch(const KaldiFatalError &) {
KALDI_ERR <<
"You seem to have provided invalid stats [no central-phone key].";
}
std::map<EventValueType, EventAnswerType> phone_to_length;
for (size_t p = 0; p < stats_by_phone.size(); p++) {
if (! stats_by_phone[p].empty()) {
std::vector<BuildTreeStatsType> stats_by_length;
try {
SplitStatsByKey(stats_by_phone[p], kPdfClass, &stats_by_length);
} catch(const KaldiFatalError &) {
KALDI_ERR <<
"You seem to have provided invalid stats [no position key].";
}
size_t length = stats_by_length.size();
for (size_t i = 0; i < length; i++) {
if (stats_by_length[i].empty()) {
KALDI_ERR << "There are no stats available for position " << i
<< " of phone " << p;
}
}
phone_to_length[p] = length;
}
}
if (phones != NULL) { // set default length for unseen phones.
for (size_t i = 0; i < phones->size(); i++) {
if (phone_to_length.count( (*phones)[i] ) == 0) { // unseen.
phone_to_length[(*phones)[i]] = default_length;
}
}
}
EventMap *ans = new TableEventMap(P, phone_to_length);
return ans;
}
// Recursive routine that is a helper to ClusterEventMapRestricted.
// returns number removed.
static int32 ClusterEventMapRestrictedHelper(const EventMap &e_in,
const BuildTreeStatsType &stats,
BaseFloat thresh,
std::vector<EventKeyType> keys,
std::vector<EventMap*> *leaf_mapping) {
if (keys.size() == 0) {
return ClusterEventMapGetMapping(e_in, stats, thresh, leaf_mapping);
} else { // split on the key.
int32 ans = 0;
std::vector<BuildTreeStatsType> split_stats;
SplitStatsByKey(stats, keys.back(), &split_stats);
keys.pop_back();
for (size_t i = 0; i< split_stats.size(); i++)
if (split_stats[i].size() != 0)
ans += ClusterEventMapRestrictedHelper(e_in, split_stats[i], thresh, keys, leaf_mapping);
return ans;
}
}
EventMap *ClusterEventMapRestrictedByKeys(const EventMap &e_in,
const BuildTreeStatsType &stats,
BaseFloat thresh,
const std::vector<EventKeyType> &keys,
int32 *num_removed) {
std::vector<EventMap*> leaf_mapping; // For output of ClusterEventMapGetMapping.
int32 nr = ClusterEventMapRestrictedHelper(e_in, stats, thresh, keys, &leaf_mapping);
if (num_removed != NULL) *num_removed = nr;
EventMap *ans = e_in.Copy(leaf_mapping);
DeletePointers(&leaf_mapping);
return ans;
}
EventMap *ClusterEventMapRestrictedByMap(const EventMap &e_in,
const BuildTreeStatsType &stats,
BaseFloat thresh,
const EventMap &e_restrict,
int32 *num_removed_ptr) {
std::vector<EventMap*> leaf_mapping;
std::vector<BuildTreeStatsType> split_stats;
int num_removed = 0;
SplitStatsByMap(stats, e_restrict, &split_stats);
for (size_t i = 0; i < split_stats.size(); i++) {
if (!split_stats[i].empty())
num_removed += ClusterEventMapGetMapping(e_in, split_stats[i], thresh,
&leaf_mapping);
}
if (num_removed_ptr != NULL) *num_removed_ptr = num_removed;
EventMap *ans = e_in.Copy(leaf_mapping);
DeletePointers(&leaf_mapping);
return ans;
}
EventMap *ClusterEventMapToNClustersRestrictedByMap(
const EventMap &e_in,
const BuildTreeStatsType &stats,
int32 num_clusters_required,
const EventMap &e_restrict,
int32 *num_removed_ptr) {
std::vector<BuildTreeStatsType> split_stats;
SplitStatsByMap(stats, e_restrict, &split_stats);
if (num_clusters_required < split_stats.size()) {
KALDI_WARN << "num-clusters-required is less than size of map. Not doing anything.";
if (num_removed_ptr) *num_removed_ptr = 0;
return e_in.Copy();
}
std::vector<std::vector<int32> > indexes(split_stats.size());
std::vector<std::vector<Clusterable*> > summed_stats_contiguous(split_stats.size());
BaseFloat normalizer = 0.0;
size_t max_index = 0;
int32 num_non_empty_clusters_required = num_clusters_required;
int32 num_non_empty_clusters_in_map = 0;
int32 num_non_empty_clusters = 0;
for (size_t i = 0; i < split_stats.size(); i++) {
if (!split_stats[i].empty()) {
num_non_empty_clusters_in_map++;
std::vector<BuildTreeStatsType> split_stats_i;
SplitStatsByMap(split_stats[i], e_in, &split_stats_i);
std::vector<Clusterable*> summed_stats_i;
SumStatsVec(split_stats_i, &summed_stats_i);
for (size_t j = 0; j < summed_stats_i.size(); j++) {
if (summed_stats_i[j] != NULL) {
num_non_empty_clusters++;
indexes[i].push_back(j);
summed_stats_contiguous[i].push_back(summed_stats_i[j]);
if (j > max_index) max_index = j;
}
}
normalizer += SumClusterableNormalizer(summed_stats_contiguous[i]);
} else {
// Even if split_stats[i] is empty, a cluster will be assigned to
// that. To compensate, we decrease the num-clusters required.
num_non_empty_clusters_required--;
}
}
KALDI_VLOG(1) << "Number of non-empty clusters in map = " << num_non_empty_clusters_in_map;
KALDI_VLOG(1) << "Number of non-empty clusters = " << num_non_empty_clusters;
if (num_non_empty_clusters_required > num_non_empty_clusters) {
KALDI_WARN << "Cannot get required num-clusters " << num_clusters_required
<< " as number of non-empty clusters required is larger than "
<< " number of non-empty clusters: " << num_non_empty_clusters_required
<< " > " << num_non_empty_clusters;
if (num_removed_ptr) *num_removed_ptr = 0;
return e_in.Copy();
}
std::vector<std::vector<int32> > assignments;
BaseFloat change = ClusterBottomUpCompartmentalized(
summed_stats_contiguous,
std::numeric_limits<BaseFloat>::infinity(),
num_non_empty_clusters_required,
NULL, // don't need clusters out.
&assignments); // this algorithm is quadratic, so might be quite slow.
KALDI_ASSERT(assignments.size() == split_stats.size());
int32 num_combined = 0;
for (size_t i = 0; i < split_stats.size(); i++) {
KALDI_ASSERT(assignments[i].size() == summed_stats_contiguous[i].size());
if (assignments[i].size() == 0) continue;
size_t num_clust_i = *std::max_element(assignments[i].begin(),
assignments[i].end()) + 1;
num_combined += summed_stats_contiguous[i].size() - num_clust_i;
}
KALDI_VLOG(2) << "ClusterBottomUpCompartmentalized combined " << num_combined
<< " leaves and gave a likelihood change of " << change
<< ", normalized = " << (change / normalizer)
<< ", normalizer = " << normalizer;
KALDI_ASSERT(change < 0.0001); // should be negative or zero.
std::vector<EventMap*> leaf_mapping(max_index + 1, NULL);
for (size_t i = 0; i < split_stats.size(); i++) {
for (size_t j = 0; j < summed_stats_contiguous[i].size(); j++) {
size_t index = indexes[i][j];
size_t new_index = indexes[i][assignments[i][j]];
// index assigned by clusterig-- map to existing indices in the map,
// that we clustered from, so we don't conflict with indices in other parts
// of the tree.
KALDI_ASSERT(leaf_mapping[index] == NULL || "Error: Cluster seems to have been "
"called for different parts of the tree with overlapping sets of "
"indices.");
leaf_mapping[index] = new ConstantEventMap(new_index);
}
DeletePointers(&summed_stats_contiguous[i]);
}
if (num_removed_ptr) *num_removed_ptr = num_combined;
EventMap *ans = e_in.Copy(leaf_mapping);
DeletePointers(&leaf_mapping);
return ans;
}
EventMap *GetStubMap(int32 P,
const std::vector<std::vector<int32> > &phone_sets,
const std::vector<int32> &phone2num_pdf_classes,
const std::vector<bool> &share_roots,
int32 *num_leaves_out) {
{ // Checking inputs.
KALDI_ASSERT(!phone_sets.empty() && share_roots.size() == phone_sets.size());
std::set<int32> all_phones;
for (size_t i = 0; i < phone_sets.size(); i++) {
KALDI_ASSERT(IsSortedAndUniq(phone_sets[i]));
KALDI_ASSERT(!phone_sets[i].empty());
for (size_t j = 0; j < phone_sets[i].size(); j++) {
KALDI_ASSERT(all_phones.count(phone_sets[i][j]) == 0); // check not present.
all_phones.insert(phone_sets[i][j]);
}
}
}
// Initially create a single leaf for each phone set.
size_t max_set_size = 0;
int32 highest_numbered_phone = 0;
for (size_t i = 0; i < phone_sets.size(); i++) {
max_set_size = std::max(max_set_size, phone_sets[i].size());
highest_numbered_phone =
std::max(highest_numbered_phone,
* std::max_element(phone_sets[i].begin(), phone_sets[i].end()));
}
if (phone_sets.size() == 1) { // there is only one set so the recursion finishes.
if (share_roots[0]) { // if "shared roots" return a single leaf.
return new ConstantEventMap( (*num_leaves_out)++ );
} else { // not sharing roots -> work out the length and return a
// TableEventMap splitting on length.
EventAnswerType max_len = 0;
for (size_t i = 0; i < phone_sets[0].size(); i++) {
EventAnswerType len;
EventValueType phone = phone_sets[0][i];
KALDI_ASSERT(static_cast<size_t>(phone) < phone2num_pdf_classes.size());
len = phone2num_pdf_classes[phone];
KALDI_ASSERT(len > 0);
if (i == 0) max_len = len;
else {
if (len != max_len) {
KALDI_WARN << "Mismatching lengths within a phone set: " << len
<< " vs. " << max_len << " [unusual, but not necessarily fatal]. ";
max_len = std::max(len, max_len);
}
}
}
std::map<EventValueType, EventAnswerType> m;
for (EventAnswerType p = 0; p < max_len; p++)
m[p] = (*num_leaves_out)++;
return new TableEventMap(kPdfClass, // split on hmm-position
m);
}
} else if (max_set_size == 1
&& static_cast<int32>(phone_sets.size()) <= 2*highest_numbered_phone) {
// create table map splitting on phone-- more efficient.
// the part after the && checks that this would not contain a very sparse vector.
std::map<EventValueType, EventMap*> m;
for (size_t i = 0; i < phone_sets.size(); i++) {
std::vector<std::vector<int32> > phone_sets_tmp;
phone_sets_tmp.push_back(phone_sets[i]);
std::vector<bool> share_roots_tmp;
share_roots_tmp.push_back(share_roots[i]);
EventMap *this_stub = GetStubMap(P, phone_sets_tmp, phone2num_pdf_classes,
share_roots_tmp,
num_leaves_out);
KALDI_ASSERT(m.count(phone_sets_tmp[0][0]) == 0);
m[phone_sets_tmp[0][0]] = this_stub;
}
return new TableEventMap(P, m);
} else {
// Do a split. Recurse.
size_t half_sz = phone_sets.size() / 2;
std::vector<std::vector<int32> >::const_iterator half_phones =
phone_sets.begin() + half_sz;
std::vector<bool>::const_iterator half_share =
share_roots.begin() + half_sz;
std::vector<std::vector<int32> > phone_sets_1, phone_sets_2;
std::vector<bool> share_roots_1, share_roots_2;
phone_sets_1.insert(phone_sets_1.end(), phone_sets.begin(), half_phones);
phone_sets_2.insert(phone_sets_2.end(), half_phones, phone_sets.end());
share_roots_1.insert(share_roots_1.end(), share_roots.begin(), half_share);
share_roots_2.insert(share_roots_2.end(), half_share, share_roots.end());
EventMap *map1 = GetStubMap(P, phone_sets_1, phone2num_pdf_classes, share_roots_1, num_leaves_out);
EventMap *map2 = GetStubMap(P, phone_sets_2, phone2num_pdf_classes, share_roots_2, num_leaves_out);
std::vector<EventKeyType> all_in_first_set;
for (size_t i = 0; i < half_sz; i++)
for (size_t j = 0; j < phone_sets[i].size(); j++)
all_in_first_set.push_back(phone_sets[i][j]);
std::sort(all_in_first_set.begin(), all_in_first_set.end());
KALDI_ASSERT(IsSortedAndUniq(all_in_first_set));
return new SplitEventMap(P, all_in_first_set, map1, map2);
}
}
// convert stats to different (possibly smaller) context-window size.
bool ConvertStats(int32 oldN, int32 oldP, int32 newN, int32 newP,
BuildTreeStatsType *stats) {
bool warned = false;
KALDI_ASSERT(stats != NULL && oldN > 0 && newN > 0 && oldP >= 0
&& newP >= 0 && newP < newN && oldP < oldN);
if (newN > oldN) { // can't add unseen context.
KALDI_WARN << "Cannot convert stats to larger context: " << newN
<< " > " << oldN;
return false;
}
if (newP > oldP) {
KALDI_WARN << "Cannot convert stats to have more left-context: " << newP
<< " > " << oldP;
}
if (newN-newP-1 > oldN-oldP-1) {
KALDI_WARN << "Cannot convert stats to have more right-context: " << (newN-newP-1)
<< " > " << (oldN-oldP-1);
}
// if shift < 0, this is by how much we "shift down" key
// values.
int32 shift = newP - oldP; // shift <= 0.
for (size_t i = 0; i < stats->size(); i++) {
EventType &evec = (*stats)[i].first;
EventType evec_new;
for (size_t j = 0; j < evec.size(); j++) {
EventKeyType key = evec[j].first;
if (key >= 0 && key < oldN) { //
key += shift;
if (key >= 0 && key < newN) // within new context window...
evec_new.push_back(std::make_pair(key, evec[j].second));
} else {
if (key != -1) {
// don't understand this key value but assume for now
// it's something that doesn't interact with the context window.
if (!warned) {
KALDI_WARN << "Stats had keys defined that we cannot interpret";
warned = true;
}
}
evec_new.push_back(evec[j]);
}
}
evec = evec_new; // Assign the modified EventVector with possibly
// deleted keys.
}
return true;
}
} // end namespace kaldi