build-tree-utils.cc 44.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
// tree/build-tree-utils.cc

// Copyright 2009-2011  Microsoft Corporation;  Haihua Xu

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include <set>
#include <queue>
#include "util/stl-utils.h"
#include "tree/build-tree-utils.h"



namespace kaldi {

void WriteBuildTreeStats(std::ostream &os, bool binary, const BuildTreeStatsType &stats) {
  WriteToken(os, binary, "BTS");
  uint32 size = stats.size();
  WriteBasicType(os, binary, size);
  for (size_t i = 0; i < size; i++) {
    WriteEventType(os, binary, stats[i].first);
    bool nonNull = (stats[i].second != NULL);
    WriteBasicType(os, binary, nonNull);
    if (nonNull) stats[i].second->Write(os, binary);
  }
  if (os.fail()) {
    KALDI_ERR << "WriteBuildTreeStats: write failed.";
  }
  if (!binary) os << '\n';
}


void ReadBuildTreeStats(std::istream &is, bool binary, const Clusterable &example, BuildTreeStatsType *stats) {
  KALDI_ASSERT(stats != NULL);
  KALDI_ASSERT(stats->empty());
  ExpectToken(is, binary, "BTS");
  uint32 size;
  ReadBasicType(is, binary, &size);
  stats->resize(size);
  for (size_t i = 0; i < size; i++) {
    ReadEventType(is, binary, &((*stats)[i].first));
    bool nonNull;
    ReadBasicType(is, binary, &nonNull);
    if (nonNull) (*stats)[i].second = example.ReadNew(is, binary);
    else (*stats)[i].second = NULL;
  }
}


bool PossibleValues(EventKeyType key,
                    const BuildTreeStatsType &stats,
                    std::vector<EventValueType> *ans) {
  bool all_present = true;
  std::set<EventValueType> values;
  BuildTreeStatsType::const_iterator iter = stats.begin(), end = stats.end();
  for (; iter != end; ++iter) {
    EventValueType val;
    if (EventMap::Lookup(iter->first, key, &val))
      values.insert(val);
    else
      all_present = false;
  }
  if (ans)
    CopySetToVector(values, ans);
  return all_present;
}

static void GetEventKeys(const EventType &vec, std::vector<EventKeyType> *keys) {
  keys->resize(vec.size());
  EventType::const_iterator iter = vec.begin(), end = vec.end();
  std::vector<EventKeyType>::iterator out_iter = keys->begin();
  for (; iter!= end; ++iter, ++out_iter)
    *out_iter = iter->first;
}


// recall:
// typedef std::vector<std::pair<EventType, Clusterable*> > BuildTreeStatsType;
void FindAllKeys(const BuildTreeStatsType &stats, AllKeysType keys_type, std::vector<EventKeyType> *keys_out) {
  KALDI_ASSERT(keys_out != NULL);
  BuildTreeStatsType::const_iterator iter = stats.begin(), end = stats.end();
  if (iter == end) return;  // empty set of keys.
  std::vector<EventKeyType> keys;
  GetEventKeys(iter->first, &keys);
  ++iter;
  for (; iter!= end; ++iter) {
    std::vector<EventKeyType> keys2;
    GetEventKeys(iter->first, &keys2);
    if (keys_type == kAllKeysInsistIdentical) {
      if (keys2 != keys)
        KALDI_ERR << "AllKeys: keys in events are not all the same [called with kAllKeysInsistIdentical and all are not identical.";
    } else if (keys_type == kAllKeysIntersection) {
      std::vector<EventKeyType> new_keys(std::max(keys.size(), keys2.size()));
      // following line relies on sorted order of event keys.
      std::vector<EventKeyType>::iterator end_iter =
          std::set_intersection(keys.begin(), keys.end(), keys2.begin(), keys2.end(), new_keys.begin());
      new_keys.erase(end_iter, new_keys.end());
      keys = new_keys;
    } else {  // union.
      KALDI_ASSERT(keys_type == kAllKeysUnion);
      std::vector<EventKeyType> new_keys(keys.size()+keys2.size());
      // following line relies on sorted order of event keys.
      std::vector<EventKeyType>::iterator end_iter =
          std::set_union(keys.begin(), keys.end(), keys2.begin(), keys2.end(), new_keys.begin());
      new_keys.erase(end_iter, new_keys.end());
      keys = new_keys;
    }
  }
  *keys_out = keys;
}


EventMap *DoTableSplit(const EventMap &orig, EventKeyType key,  const BuildTreeStatsType &stats,
                       int32 *num_leaves) {
  // First-- map the stats to each leaf in the EventMap.
  std::vector<BuildTreeStatsType> split_stats;
  SplitStatsByMap(stats, orig, &split_stats);
  // Now for each leaf that has stats in it, do the table split according to the given name.
  std::vector<EventMap*> splits(split_stats.size(), NULL);
  for (EventAnswerType leaf = 0; leaf < (EventAnswerType)split_stats.size(); leaf++) {
    if (!split_stats[leaf].empty()) {
      // first work out the possible values the name takes.
      std::vector<EventValueType> vals;  // vals are put here, sorted.
      bool all_present = PossibleValues(key, split_stats[leaf], &vals);
      KALDI_ASSERT(all_present);  // currently do not support mapping undefined values.
      KALDI_ASSERT(!vals.empty() && vals.front() >= 0);  // don't support mapping negative values
      // at present time-- would need different EventMap type, not TableEventMap.
      std::vector<EventMap*> table(vals.back()+1, (EventMap*)NULL);
      for (size_t idx = 0;idx < vals.size();idx++) {
        EventValueType val = vals[idx];
        if (idx == 0) table[val] = new ConstantEventMap(leaf);  // reuse current leaf.
        else table[val] = new ConstantEventMap( (*num_leaves)++ );  // else take new leaf id.
      }
      // takes ownershipof stats.
      splits[leaf] = new TableEventMap(key, table);
    }
  }
  EventMap *ans = orig.Copy(splits);
  DeletePointers(&splits);
  return ans;
}

EventMap *DoTableSplitMultiple(const EventMap &orig, const std::vector<EventKeyType> &keys,  const BuildTreeStatsType &stats, int32 *num_leaves) {

  if (keys.empty()) return orig.Copy();
  else {
    EventMap *cur = NULL;  // would make it &orig, except for const issues.
    for (size_t i = 0; i < keys.size(); i++) {
      EventMap *next = DoTableSplit( (cur ? *cur : orig), keys[i], stats, num_leaves);
      delete cur;  // delete intermediate maps.
      cur = next;
    }
    return cur;
  }
}



void SplitStatsByMap(const BuildTreeStatsType &stats, const EventMap &e, std::vector<BuildTreeStatsType> *stats_out) {
  BuildTreeStatsType::const_iterator iter, end = stats.end();
  KALDI_ASSERT(stats_out != NULL);
  stats_out->clear();
  size_t size = 0;
  for (iter = stats.begin(); iter != end; ++iter) {
    const EventType &evec = iter->first;
    EventAnswerType ans;
    if (!e.Map(evec, &ans)) // this is an error--could not map it.
      KALDI_ERR << "SplitStatsByMap: could not map event vector " << EventTypeToString(evec)
                << "if error seen during tree-building, check that "
                << "--context-width and --central-position match stats, "
                << "and that phones that are context-independent (CI) during "
                << "stats accumulation do not share roots with non-CI phones.";
    size = std::max(size, (size_t)(ans+1));
  }
  stats_out->resize(size);
  for (iter = stats.begin(); iter != end; ++iter) {
    const EventType &evec = iter->first;
    EventAnswerType ans;
    bool b = e.Map(evec, &ans);
    KALDI_ASSERT(b);
    (*stats_out)[ans].push_back(*iter);
  }
}

void SplitStatsByKey(const BuildTreeStatsType &stats_in, EventKeyType key, std::vector<BuildTreeStatsType> *stats_out) {
  BuildTreeStatsType::const_iterator iter, end = stats_in.end();
  KALDI_ASSERT(stats_out != NULL);
  stats_out->clear();
  size_t size = 0;
  // This loop works out size of output vector.
  for (iter = stats_in.begin(); iter != end; ++iter) {
    const EventType &evec = iter->first;
    EventValueType val;
    if (! EventMap::Lookup(evec, key, &val)) // no such key.
      KALDI_ERR << "SplitStats: key "<< key << " is not present in event vector " << EventTypeToString(evec);
    size = std::max(size, (size_t)(val+1));
  }
  stats_out->resize(size);
  // This loop splits up the stats.
  for (iter = stats_in.begin(); iter != end; ++iter) {
    const EventType &evec = iter->first;
    EventValueType val;
    EventMap::Lookup(evec, key, &val);  // will not fail.
    (*stats_out)[val].push_back(*iter);
  }
}


void FilterStatsByKey(const BuildTreeStatsType &stats_in,
                      EventKeyType key,
                      std::vector<EventValueType> &values,
                      bool include_if_present,  // true-> retain only in "values",
                      // false-> retain only not in "values".
                      BuildTreeStatsType *stats_out) {
  KALDI_ASSERT(IsSortedAndUniq(values));
  BuildTreeStatsType::const_iterator iter, end = stats_in.end();
  KALDI_ASSERT(stats_out != NULL);
  stats_out->clear();

  for (iter = stats_in.begin(); iter != end; ++iter) {
    const EventType &evec = iter->first;
    EventValueType val;
    if (! EventMap::Lookup(evec, key, &val)) // no such key. // HERE.
      KALDI_ERR << "SplitStats: key "<< key << " is not present in event vector " << EventTypeToString(evec);
    bool in_values = std::binary_search(values.begin(), values.end(), val);
    if (in_values == include_if_present)
      stats_out->push_back(*iter);
  }
}


Clusterable *SumStats(const BuildTreeStatsType &stats_in) {
  Clusterable *ans = NULL;
  BuildTreeStatsType::const_iterator iter = stats_in.begin(), end = stats_in.end();
  for (; iter != end; ++iter) {
    Clusterable *cl = iter->second;
    if (cl != NULL) {
      if (!ans)  ans = cl->Copy();
      else ans->Add(*cl);
    }
  }
  return ans;
}

BaseFloat SumNormalizer(const BuildTreeStatsType &stats_in) {
  BaseFloat ans = 0.0;
  BuildTreeStatsType::const_iterator iter = stats_in.begin(), end = stats_in.end();
  for (; iter != end; ++iter) {
    Clusterable *cl = iter->second;
    if (cl != NULL) ans += cl->Normalizer();
  }
  return ans;
}

BaseFloat SumObjf(const BuildTreeStatsType &stats_in) {
  BaseFloat ans = 0.0;
  BuildTreeStatsType::const_iterator iter = stats_in.begin(), end = stats_in.end();
  for (; iter != end; ++iter) {
    Clusterable *cl = iter->second;
    if (cl != NULL) ans += cl->Objf();
  }
  return ans;
}


void SumStatsVec(const std::vector<BuildTreeStatsType> &stats_in, std::vector<Clusterable*> *stats_out) {
  KALDI_ASSERT(stats_out != NULL && stats_out->empty());
  stats_out->resize(stats_in.size(), NULL);
  for (size_t i = 0;i < stats_in.size();i++) (*stats_out)[i] = SumStats(stats_in[i]);
}

BaseFloat ObjfGivenMap(const BuildTreeStatsType &stats_in, const EventMap &e) {
  std::vector<BuildTreeStatsType> split_stats;
  SplitStatsByMap(stats_in, e, &split_stats);
  std::vector<Clusterable*> summed_stats;
  SumStatsVec(split_stats, &summed_stats);
  BaseFloat ans = SumClusterableObjf(summed_stats);
  DeletePointers(&summed_stats);
  return ans;
}

// This function computes the best initial split of these stats [with this key].
// Returns best objf change (>=0).
BaseFloat ComputeInitialSplit(const std::vector<Clusterable*> &summed_stats,
                              const Questions &q_opts, EventKeyType key,
                              std::vector<EventValueType> *yes_set) {
  KALDI_ASSERT(yes_set != NULL);
  yes_set->clear();
  const QuestionsForKey &key_opts = q_opts.GetQuestionsOf(key);

  // "total" needed for optimization in AddToClustersOptimized,
  // and also used to work otu total objf.
  Clusterable *total = SumClusterable(summed_stats);
  if (total == NULL) return 0.0;  // because there were no stats or non-NULL stats.
  BaseFloat unsplit_objf = total->Objf();

  const std::vector<std::vector<EventValueType> > &questions_of_this_key = key_opts.initial_questions;

  int32 best_idx = -1;
  BaseFloat best_objf_change = 0;

  for (size_t i = 0; i < questions_of_this_key.size(); i++) {
    const std::vector<EventValueType> &yes_set = questions_of_this_key[i];
    std::vector<int32> assignments(summed_stats.size(), 0);  // 0 is index of "no".
    std::vector<Clusterable*> clusters(2);  // no and yes clusters.
    for (std::vector<EventValueType>::const_iterator iter = yes_set.begin(); iter != yes_set.end(); ++iter) {
      KALDI_ASSERT(*iter>=0);
      if (*iter < (EventValueType)assignments.size()) assignments[*iter] = 1;
    }
    kaldi::AddToClustersOptimized(summed_stats, assignments, *total, &clusters);
    BaseFloat this_objf = SumClusterableObjf(clusters);

    if (this_objf < unsplit_objf- 0.001*std::abs(unsplit_objf)) {  // got worse; should never happen.
      // of course small differences can be caused by roundoff.
      KALDI_WARN << "Objective function got worse when building tree: "<< this_objf << " < " << unsplit_objf;
      KALDI_ASSERT(!(this_objf < unsplit_objf - 0.01*(200 + std::abs(unsplit_objf))));  // do assert on more stringent check.
    }

    BaseFloat this_objf_change = this_objf - unsplit_objf;
    if (this_objf_change > best_objf_change) {
      best_objf_change = this_objf_change;
      best_idx = i;
    }
    DeletePointers(&clusters);
  }
  delete total;
  if (best_idx != -1)
    *yes_set = questions_of_this_key[best_idx];
  return best_objf_change;
}


// returns best delta-objf.
// If key does not exist, returns 0 and sets yes_set_out to empty.
BaseFloat FindBestSplitForKey(const BuildTreeStatsType &stats,
                              const Questions &q_opts,
                              EventKeyType key,
                              std::vector<EventValueType> *yes_set_out) {
  if (stats.size()<=1) return 0.0;  // cannot split if only zero or one instance of stats.
  if (!PossibleValues(key, stats, NULL)) {
    yes_set_out->clear();
    return 0.0;  // Can't split as key not always defined.
  }
  std::vector<Clusterable*> summed_stats;  // indexed by value corresponding to key. owned here.
  {  // compute summed_stats
    std::vector<BuildTreeStatsType> split_stats;
    SplitStatsByKey(stats, key, &split_stats);
    SumStatsVec(split_stats, &summed_stats);
  }

  std::vector<EventValueType> yes_set;
  BaseFloat improvement = ComputeInitialSplit(summed_stats,
                                               q_opts, key, &yes_set);
  // find best basic question.

  std::vector<int32> assignments(summed_stats.size(), 0);  // assigns to "no" (0) by default.
  for (std::vector<EventValueType>::const_iterator iter = yes_set.begin(); iter != yes_set.end(); ++iter) {
    KALDI_ASSERT(*iter>=0);
    if (*iter < (EventValueType)assignments.size()) {
      // this guard necessary in case stats did not have all the
      // values present in "yes_set".
      assignments[*iter] = 1;  // assign to "yes" (1).
    }
  }
  std::vector<Clusterable*> clusters(2, (Clusterable*)NULL);  // no, yes.
  kaldi::AddToClusters(summed_stats, assignments, &clusters);

  EnsureClusterableVectorNotNull(&summed_stats);
  EnsureClusterableVectorNotNull(&clusters);

  // even if improvement == 0 we continue; if we do RefineClusters we may get further improvement.
  // now do the RefineClusters stuff.  Note that this is null-op if
  // q_opts.GetQuestionsOf(key).refine_opts.num_iters == 0.  We could check for this but don't bother;
  // it happens in RefineClusters anyway.

  if (q_opts.GetQuestionsOf(key).refine_opts.num_iters > 0) {
    // If we want to refine the questions... (a bit like k-means w/ 2 classes).
    // Note: the only reason we introduced the if-statement is so the yes_set
    // doesn't get modified (truncated, actually) if we do the refine stuff with
    // zero iters.
    BaseFloat refine_impr = RefineClusters(summed_stats, &clusters, &assignments,
                                           q_opts.GetQuestionsOf(key).refine_opts);
    KALDI_ASSERT(refine_impr > std::min(-1.0, -0.1*fabs(improvement)));
    // refine_impr should always be positive
    improvement += refine_impr;
    yes_set.clear();
    for (size_t i = 0;i < assignments.size();i++) if (assignments[i] == 1) yes_set.push_back(i);
  }
  *yes_set_out = yes_set;

  DeletePointers(&clusters);
#ifdef KALDI_PARANOID
  {  // Check the "ans" is correct.
    KALDI_ASSERT(clusters.size() == 2 && clusters[0] == 0 && clusters[1] == 0);
    AddToClusters(summed_stats, assignments, &clusters);
    BaseFloat impr;
    if (clusters[0] == NULL || clusters[1] == NULL) impr = 0.0;
    else impr = clusters[0]->Distance(*(clusters[1]));
    if (!ApproxEqual(impr, improvement) && fabs(impr-improvement) > 0.01) {
      KALDI_WARN << "FindBestSplitForKey: improvements do not agree: "<< impr
                 << " vs. " << improvement;
    }
    DeletePointers(&clusters);
  }
#endif
  DeletePointers(&summed_stats);
  return improvement; // objective-function improvement.
}



/*
  DecisionTreeBuilder is a class used in SplitDecisionTree
*/

class DecisionTreeSplitter {
 public:
  EventMap *GetMap() {
    if (!yes_) {  // leaf.
      return new ConstantEventMap(leaf_);
    } else {
      return new SplitEventMap(key_, yes_set_, yes_->GetMap(), no_->GetMap());
    }
  }
  BaseFloat BestSplit() { return best_split_impr_; } // returns objf improvement (>=0) of best possible split.
  void DoSplit(int32 *next_leaf) {
    if (!yes_) {  // not already split; we are a leaf, so split.
      DoSplitInternal(next_leaf);
    } else {  // find which of our children is best to split, and split that.
      (yes_->BestSplit() >= no_->BestSplit() ? yes_ : no_)->DoSplit(next_leaf);
      best_split_impr_ = std::max(yes_->BestSplit(), no_->BestSplit());  // may have changed.
    }
  }
  DecisionTreeSplitter(EventAnswerType leaf, const BuildTreeStatsType &stats,
                      const Questions &q_opts): q_opts_(q_opts), yes_(NULL), no_(NULL), leaf_(leaf), stats_(stats) {
    // not, this must work when stats is empty too. [just gives zero improvement, non-splittable].
    FindBestSplit();
  }
  ~DecisionTreeSplitter() {
    delete yes_;
    delete no_;
  }
 private:
  void DoSplitInternal(int32 *next_leaf) {
    // Does the split; applicable only to leaf nodes.
    KALDI_ASSERT(!yes_);  // make sure children not already set up.
    KALDI_ASSERT(best_split_impr_ > 0);
    EventAnswerType yes_leaf = leaf_, no_leaf = (*next_leaf)++;
    leaf_ = -1;  // we now have no leaf.
    // Now split the stats.
    BuildTreeStatsType yes_stats, no_stats;
    yes_stats.reserve(stats_.size()); no_stats.reserve(stats_.size());  //  probably better than multiple resizings.
    for (BuildTreeStatsType::const_iterator iter = stats_.begin(); iter != stats_.end(); ++iter) {
      const EventType &vec = iter->first;
      EventValueType val;
      if (!EventMap::Lookup(vec, key_, &val)) KALDI_ERR << "DoSplitInternal: key has no value.";
      if (std::binary_search(yes_set_.begin(), yes_set_.end(), val)) yes_stats.push_back(*iter);
      else no_stats.push_back(*iter);
    }
#ifdef KALDI_PARANOID
    {  // Check objf improvement.
      Clusterable *yes_clust = SumStats(yes_stats), *no_clust = SumStats(no_stats);
      BaseFloat impr_check = yes_clust->Distance(*no_clust);
      // this is a negated objf improvement from merging (== objf improvement from splitting).
      if (!ApproxEqual(impr_check, best_split_impr_, 0.01)) {
        KALDI_WARN << "DoSplitInternal: possible problem: "<< impr_check << " != " << best_split_impr_;
      }
      delete yes_clust; delete no_clust;
    }
#endif
    yes_ = new DecisionTreeSplitter(yes_leaf, yes_stats, q_opts_);
    no_ = new DecisionTreeSplitter(no_leaf, no_stats, q_opts_);
    best_split_impr_ = std::max(yes_->BestSplit(), no_->BestSplit());
    stats_.clear();  // note: pointers in stats_ were not owned here.
  }
  void FindBestSplit() {
    // This sets best_split_impr_, key_ and yes_set_.
    // May just pick best question, or may iterate a bit (depends on
    // q_opts; see FindBestSplitForKey for details)
    std::vector<EventKeyType> all_keys;
    q_opts_.GetKeysWithQuestions(&all_keys);
    if (all_keys.size() == 0) {
      KALDI_WARN << "DecisionTreeSplitter::FindBestSplit(), no keys available to split on (maybe no key covered all of your events, or there was a problem with your questions configuration?)";
    }
    best_split_impr_ = 0;
    for (size_t i = 0; i < all_keys.size(); i++) {
      if (q_opts_.HasQuestionsForKey(all_keys[i])) {
        std::vector<EventValueType> temp_yes_set;
        BaseFloat split_improvement = FindBestSplitForKey(stats_, q_opts_, all_keys[i], &temp_yes_set);
        if (split_improvement > best_split_impr_) {
          best_split_impr_ = split_improvement;
          yes_set_ = temp_yes_set;
          key_ = all_keys[i];
        }
      }
    }
  }



  // Data members... Always used:
  const Questions &q_opts_;
  BaseFloat best_split_impr_;

  // If already split:
  DecisionTreeSplitter *yes_;
  DecisionTreeSplitter *no_;

  // Otherwise:
  EventAnswerType leaf_;
  BuildTreeStatsType stats_;  // vector of stats.  pointers inside there not owned here.

  // key and "yes set" of best split:
  EventKeyType key_;
  std::vector<EventValueType> yes_set_;

};

EventMap *SplitDecisionTree(const EventMap &input_map,
                            const BuildTreeStatsType &stats,
                            Questions &q_opts,
                            BaseFloat thresh,
                            int32 max_leaves,  // max_leaves<=0 -> no maximum.
                            int32 *num_leaves,
                            BaseFloat *obj_impr_out,
                            BaseFloat *smallest_split_change_out) {
  KALDI_ASSERT(num_leaves != NULL && *num_leaves > 0);  // can't be 0 or input_map would be empty.
  int32 num_empty_leaves = 0;
  BaseFloat like_impr = 0.0;
  BaseFloat smallest_split_change = 1.0e+20;
  std::vector<DecisionTreeSplitter*> builders;
  {  // set up "builders" [one for each current leaf].  This array is never extended.
    // the structures generated during splitting remain as trees at each array location.
    std::vector<BuildTreeStatsType> split_stats;
    SplitStatsByMap(stats, input_map, &split_stats);
    KALDI_ASSERT(split_stats.size() != 0);
    builders.resize(split_stats.size());  // size == #leaves.
    for (size_t i = 0;i < split_stats.size();i++) {
      EventAnswerType leaf = static_cast<EventAnswerType>(i);
      if (split_stats[i].size() == 0) num_empty_leaves++;
      builders[i] = new DecisionTreeSplitter(leaf, split_stats[i], q_opts);
    }
  }

  {  // Do the splitting.
    int32 count = 0;
    std::priority_queue<std::pair<BaseFloat, size_t> > queue;  // use size_t because logically these
    // are just indexes into the array, not leaf-ids (after splitting they are no longer leaf id's).
    // Initialize queue.
    for (size_t i = 0; i < builders.size(); i++)
      queue.push(std::make_pair(builders[i]->BestSplit(), i));
    // Note-- queue's size never changes from now.  All the alternatives leaves to split are
    // inside the "DecisionTreeSplitter*" objects, in a tree structure.
    while (queue.top().first > thresh
          && (max_leaves<=0 || *num_leaves < max_leaves)) {
      smallest_split_change = std::min(smallest_split_change, queue.top().first);
      size_t i = queue.top().second;
      like_impr += queue.top().first;
      builders[i]->DoSplit(num_leaves);
      queue.pop();
      queue.push(std::make_pair(builders[i]->BestSplit(), i));
      count++;
    }
    KALDI_LOG << "DoDecisionTreeSplit: split "<< count << " times, #leaves now " << (*num_leaves);
  }

  if (smallest_split_change_out)
    *smallest_split_change_out = smallest_split_change;

  EventMap *answer = NULL;

  {  // Create the output EventMap.
    std::vector<EventMap*> sub_trees(builders.size());
    for (size_t i = 0; i < sub_trees.size();i++) sub_trees[i] = builders[i]->GetMap();
    answer = input_map.Copy(sub_trees);
    for (size_t i = 0; i < sub_trees.size();i++) delete sub_trees[i];
  }
  // Free up memory.
  for (size_t i = 0;i < builders.size();i++) delete builders[i];

  if (obj_impr_out != NULL) *obj_impr_out = like_impr;
  return answer;
}


int ClusterEventMapGetMapping(const EventMap &e_in,
                              const BuildTreeStatsType &stats,
                              BaseFloat thresh,
                              std::vector<EventMap*> *mapping) {
  // First map stats
  KALDI_ASSERT(stats.size() != 0);
  std::vector<BuildTreeStatsType> split_stats;
  SplitStatsByMap(stats, e_in, &split_stats);
  std::vector<Clusterable*> summed_stats;
  SumStatsVec(split_stats, &summed_stats);

  std::vector<int32> indexes;
  std::vector<Clusterable*> summed_stats_contiguous;
  size_t max_index = 0;
  for (size_t i = 0;i < summed_stats.size();i++) {
    if (summed_stats[i] != NULL) {
      indexes.push_back(i);
      summed_stats_contiguous.push_back(summed_stats[i]);
      if (i > max_index) max_index = i;
    }
  }
  if (summed_stats_contiguous.empty()) {
    KALDI_WARN << "ClusterBottomUp: nothing to cluster.";
    return 0;  // nothing merged.
  }

  std::vector<int32> assignments;
  BaseFloat normalizer = SumClusterableNormalizer(summed_stats_contiguous),
      change;
  change = ClusterBottomUp(summed_stats_contiguous,
                           thresh,
                           0,  // no min-clust: use threshold for now.
                           NULL,  // don't need clusters out.
                           &assignments);  // this algorithm is quadratic, so might be quite slow.


  KALDI_ASSERT(assignments.size() == summed_stats_contiguous.size() && !assignments.empty());
  size_t num_clust = * std::max_element(assignments.begin(), assignments.end()) + 1;
  int32 num_combined = summed_stats_contiguous.size() - num_clust;
  KALDI_ASSERT(num_combined >= 0);

  KALDI_VLOG(2) <<  "ClusterBottomUp combined "<< num_combined
                << " leaves and gave a likelihood change of " << change
                << ", normalized = " << (change/normalizer)
                << ", normalizer = " << normalizer;
  KALDI_ASSERT(change < 0.0001);  // should be negative or zero.

  KALDI_ASSERT(mapping != NULL);
  if (max_index >= mapping->size()) mapping->resize(max_index+1, NULL);

  for (size_t i = 0;i < summed_stats_contiguous.size();i++) {
    size_t index = indexes[i];
    size_t new_index = indexes[assignments[i]];  // index assigned by clusterig-- map to existing indices in the map,
    // that we clustered from, so we don't conflict with indices in other parts
    // of the tree.
    KALDI_ASSERT((*mapping)[index] == NULL || "Error: Cluster seems to have been "
                 "called for different parts of the tree with overlapping sets of "
                 "indices.");
    (*mapping)[index] = new ConstantEventMap(new_index);
  }
  DeletePointers(&summed_stats);
  return num_combined;
}


EventMap *RenumberEventMap(const EventMap &e_in, int32 *num_leaves) {
  EventType empty_vec;
  std::vector<EventAnswerType> initial_leaves;  // before renumbering.
  e_in.MultiMap(empty_vec, &initial_leaves);
  if (initial_leaves.empty()) {
    KALDI_ASSERT(num_leaves);
    if (num_leaves) *num_leaves = 0;
    return e_in.Copy();
  }
  SortAndUniq(&initial_leaves);
  EventAnswerType max_leaf_plus_one = initial_leaves.back() + 1;  // will typically, but not always, equal *num_leaves.
  std::vector<EventMap*> mapping(max_leaf_plus_one, (EventMap*)NULL);
  std::vector<EventAnswerType>::iterator iter = initial_leaves.begin(), end = initial_leaves.end();
  EventAnswerType cur_leaf = 0;
  for (; iter != end; ++iter) {
    KALDI_ASSERT(*iter >= 0 && *iter<max_leaf_plus_one);
    mapping[*iter] = new ConstantEventMap(cur_leaf++);
  }
  EventMap *ans = e_in.Copy(mapping);
  DeletePointers(&mapping);
  KALDI_ASSERT((size_t)cur_leaf == initial_leaves.size());
  if (num_leaves) *num_leaves = cur_leaf;
  return ans;
}

EventMap *MapEventMapLeaves(const EventMap &e_in,
                            const std::vector<int32> &mapping_in) {
  std::vector<EventMap*> mapping(mapping_in.size());
  for (size_t i = 0; i < mapping_in.size(); i++)
    mapping[i] = new ConstantEventMap(mapping_in[i]);
  EventMap *ans = e_in.Copy(mapping);
  DeletePointers(&mapping);
  return ans;
}

EventMap *ClusterEventMap(const EventMap &e_in, const BuildTreeStatsType &stats,
                          BaseFloat thresh, int32 *num_removed_ptr) {
  std::vector<EventMap*> mapping;
  int32 num_removed = ClusterEventMapGetMapping(e_in, stats, thresh, &mapping);
  EventMap *ans = e_in.Copy(mapping);
  DeletePointers(&mapping);
  if (num_removed_ptr != NULL) *num_removed_ptr = num_removed;
  return ans;

}

EventMap *ShareEventMapLeaves(const EventMap &e_in, EventKeyType key,
                              std::vector<std::vector<EventValueType> > &values,
                              int32 *num_leaves) {
  // the use of "pdfs" as the name of the next variable reflects the anticipated
  // use of this function.
  std::vector<std::vector<EventAnswerType> > pdfs(values.size());
  for (size_t i = 0; i < values.size(); i++) {
    EventType evec;
    for (size_t j = 0; j < values[i].size(); j++) {
      evec.push_back(MakeEventPair(key, values[i][j]));
      size_t size_at_start = pdfs[i].size();
      e_in.MultiMap(evec, &(pdfs[i]));  // append any corresponding pdfs to pdfs[i].
      if (pdfs[i].size() == size_at_start) {  // Nothing added... unexpected.
        KALDI_WARN << "ShareEventMapLeaves: had no leaves for key = " << key
                   << ", value = " << (values[i][j]);
      }
    }
    SortAndUniq(&(pdfs[i]));
  }
  std::vector<EventMap*> remapping;
  for (size_t i = 0; i < values.size(); i++) {
    if (pdfs[i].empty())
      KALDI_WARN << "ShareEventMapLeaves: no leaves in one bucket.";  // not expected.
    else {
      EventAnswerType map_to_this = pdfs[i][0];  // map all in this bucket
      // to this value.
      for (size_t j = 1; j < pdfs[i].size(); j++) {
        EventAnswerType leaf = pdfs[i][j];
        KALDI_ASSERT(leaf>=0);
        if (remapping.size() <= static_cast<size_t>(leaf))
          remapping.resize(leaf+1, NULL);
        KALDI_ASSERT(remapping[leaf] == NULL);
        remapping[leaf] = new ConstantEventMap(map_to_this);
      }
    }
  }
  EventMap *shared = e_in.Copy(remapping);
  DeletePointers(&remapping);
  EventMap *renumbered = RenumberEventMap(*shared, num_leaves);
  delete shared;
  return renumbered;
}


void DeleteBuildTreeStats(BuildTreeStatsType *stats) {
  KALDI_ASSERT(stats != NULL);
  BuildTreeStatsType::iterator iter = stats->begin(), end = stats->end();
  for (; iter!= end; ++iter) if (iter->second != NULL) { delete iter->second; iter->second = NULL; } // set to NULL for extra safety.
}

EventMap *GetToLengthMap(const BuildTreeStatsType &stats, int32 P,
                         const std::vector<EventValueType> *phones,
                         int32 default_length) {
  std::vector<BuildTreeStatsType> stats_by_phone;
  try {
    SplitStatsByKey(stats, P, &stats_by_phone);
  } catch(const KaldiFatalError &) {
    KALDI_ERR <<
        "You seem to have provided invalid stats [no central-phone key].";
  }
  std::map<EventValueType, EventAnswerType> phone_to_length;
  for (size_t p = 0; p < stats_by_phone.size(); p++) {
    if (! stats_by_phone[p].empty()) {
      std::vector<BuildTreeStatsType> stats_by_length;
      try {
        SplitStatsByKey(stats_by_phone[p], kPdfClass, &stats_by_length);
      } catch(const KaldiFatalError &) {
        KALDI_ERR <<
            "You seem to have provided invalid stats [no position key].";
      }
      size_t length = stats_by_length.size();
      for (size_t i = 0; i < length; i++) {
        if (stats_by_length[i].empty()) {
          KALDI_ERR << "There are no stats available for position " << i
                    << " of phone " << p;
        }
      }
      phone_to_length[p] = length;
    }
  }
  if (phones != NULL) {  // set default length for unseen phones.
    for (size_t i = 0; i < phones->size(); i++) {
      if (phone_to_length.count( (*phones)[i] ) == 0) {  // unseen.
        phone_to_length[(*phones)[i]] = default_length;
      }
    }
  }
  EventMap *ans = new TableEventMap(P, phone_to_length);
  return ans;
}

// Recursive routine that is a helper to ClusterEventMapRestricted.
// returns number removed.
static int32 ClusterEventMapRestrictedHelper(const EventMap &e_in,
                                             const BuildTreeStatsType &stats,
                                             BaseFloat thresh,
                                             std::vector<EventKeyType> keys,
                                             std::vector<EventMap*> *leaf_mapping) {
  if (keys.size() == 0) {
    return ClusterEventMapGetMapping(e_in, stats, thresh, leaf_mapping);
  } else {  // split on the key.
    int32 ans = 0;
    std::vector<BuildTreeStatsType> split_stats;
    SplitStatsByKey(stats, keys.back(), &split_stats);
    keys.pop_back();
    for (size_t i = 0; i< split_stats.size(); i++)
      if (split_stats[i].size() != 0)
        ans += ClusterEventMapRestrictedHelper(e_in, split_stats[i], thresh, keys, leaf_mapping);
    return ans;
  }
}

EventMap *ClusterEventMapRestrictedByKeys(const EventMap &e_in,
                                          const BuildTreeStatsType &stats,
                                          BaseFloat thresh,
                                          const std::vector<EventKeyType> &keys,
                                          int32 *num_removed) {
  std::vector<EventMap*> leaf_mapping;  // For output of ClusterEventMapGetMapping.

  int32 nr = ClusterEventMapRestrictedHelper(e_in, stats, thresh, keys, &leaf_mapping);
  if (num_removed != NULL) *num_removed = nr;

  EventMap *ans = e_in.Copy(leaf_mapping);
  DeletePointers(&leaf_mapping);
  return ans;
}


EventMap *ClusterEventMapRestrictedByMap(const EventMap &e_in,
                                         const BuildTreeStatsType &stats,
                                         BaseFloat thresh,
                                         const EventMap &e_restrict,
                                         int32 *num_removed_ptr) {
  std::vector<EventMap*> leaf_mapping;

  std::vector<BuildTreeStatsType> split_stats;
  int num_removed = 0;
  SplitStatsByMap(stats, e_restrict, &split_stats);
  for (size_t i = 0; i < split_stats.size(); i++) {
    if (!split_stats[i].empty())
      num_removed += ClusterEventMapGetMapping(e_in, split_stats[i], thresh,
                                               &leaf_mapping);
  }

  if (num_removed_ptr != NULL) *num_removed_ptr = num_removed;

  EventMap *ans = e_in.Copy(leaf_mapping);
  DeletePointers(&leaf_mapping);
  return ans;
}

EventMap *ClusterEventMapToNClustersRestrictedByMap(
    const EventMap &e_in,
    const BuildTreeStatsType &stats,
    int32 num_clusters_required,
    const EventMap &e_restrict,
    int32 *num_removed_ptr) {
  std::vector<BuildTreeStatsType> split_stats;
  SplitStatsByMap(stats, e_restrict, &split_stats);

  if (num_clusters_required < split_stats.size()) {
    KALDI_WARN << "num-clusters-required is less than size of map. Not doing anything.";
    if (num_removed_ptr) *num_removed_ptr = 0;
    return e_in.Copy();
  }

  std::vector<std::vector<int32> > indexes(split_stats.size());
  std::vector<std::vector<Clusterable*> > summed_stats_contiguous(split_stats.size());

  BaseFloat normalizer = 0.0;

  size_t max_index = 0;

  int32 num_non_empty_clusters_required = num_clusters_required;

  int32 num_non_empty_clusters_in_map = 0;
  int32 num_non_empty_clusters = 0;

  for (size_t i = 0; i < split_stats.size(); i++) {
    if (!split_stats[i].empty()) {
      num_non_empty_clusters_in_map++;

      std::vector<BuildTreeStatsType> split_stats_i;
      SplitStatsByMap(split_stats[i], e_in, &split_stats_i);
      std::vector<Clusterable*> summed_stats_i;
      SumStatsVec(split_stats_i, &summed_stats_i);

      for (size_t j = 0; j < summed_stats_i.size(); j++) {
        if (summed_stats_i[j] != NULL) {
          num_non_empty_clusters++;
          indexes[i].push_back(j);
          summed_stats_contiguous[i].push_back(summed_stats_i[j]);
          if (j > max_index) max_index = j;
        }
      }

      normalizer += SumClusterableNormalizer(summed_stats_contiguous[i]);
    } else {
      // Even if split_stats[i] is empty, a cluster will be assigned to
      // that. To compensate, we decrease the num-clusters required.
      num_non_empty_clusters_required--;
    }
  }

  KALDI_VLOG(1) << "Number of non-empty clusters in map = " << num_non_empty_clusters_in_map;
  KALDI_VLOG(1) << "Number of non-empty clusters = " << num_non_empty_clusters;

  if (num_non_empty_clusters_required > num_non_empty_clusters) {
    KALDI_WARN << "Cannot get required num-clusters " << num_clusters_required
               << " as number of non-empty clusters required is larger than "
               << " number of non-empty clusters: " << num_non_empty_clusters_required
               << " > " << num_non_empty_clusters;
    if (num_removed_ptr) *num_removed_ptr = 0;
    return e_in.Copy();
  }

  std::vector<std::vector<int32> > assignments;
  BaseFloat change = ClusterBottomUpCompartmentalized(
      summed_stats_contiguous,
      std::numeric_limits<BaseFloat>::infinity(),
      num_non_empty_clusters_required,
      NULL,  // don't need clusters out.
      &assignments);  // this algorithm is quadratic, so might be quite slow.

  KALDI_ASSERT(assignments.size() == split_stats.size());

  int32 num_combined = 0;
  for (size_t i = 0; i < split_stats.size(); i++) {
    KALDI_ASSERT(assignments[i].size() == summed_stats_contiguous[i].size());
    if (assignments[i].size() == 0) continue;
    size_t num_clust_i = *std::max_element(assignments[i].begin(),
                                           assignments[i].end()) + 1;
    num_combined += summed_stats_contiguous[i].size() - num_clust_i;
  }

  KALDI_VLOG(2) << "ClusterBottomUpCompartmentalized combined " << num_combined
                << " leaves and gave a likelihood change of " << change
                << ", normalized = " << (change / normalizer)
                << ", normalizer = " << normalizer;
  KALDI_ASSERT(change < 0.0001);  // should be negative or zero.

  std::vector<EventMap*> leaf_mapping(max_index + 1, NULL);

  for (size_t i = 0; i < split_stats.size(); i++) {
    for (size_t j = 0; j < summed_stats_contiguous[i].size(); j++) {
      size_t index = indexes[i][j];
      size_t new_index = indexes[i][assignments[i][j]];
      // index assigned by clusterig-- map to existing indices in the map,
      // that we clustered from, so we don't conflict with indices in other parts
      // of the tree.
      KALDI_ASSERT(leaf_mapping[index] == NULL || "Error: Cluster seems to have been "
                   "called for different parts of the tree with overlapping sets of "
                   "indices.");
      leaf_mapping[index] = new ConstantEventMap(new_index);
    }
    DeletePointers(&summed_stats_contiguous[i]);
  }

  if (num_removed_ptr) *num_removed_ptr = num_combined;

  EventMap *ans = e_in.Copy(leaf_mapping);
  DeletePointers(&leaf_mapping);
  return ans;
}

EventMap *GetStubMap(int32 P,
                     const std::vector<std::vector<int32> > &phone_sets,
                     const std::vector<int32> &phone2num_pdf_classes,
                     const std::vector<bool> &share_roots,
                     int32 *num_leaves_out) {

  {  // Checking inputs.
    KALDI_ASSERT(!phone_sets.empty() && share_roots.size() == phone_sets.size());
    std::set<int32> all_phones;
    for (size_t i = 0; i < phone_sets.size(); i++) {
      KALDI_ASSERT(IsSortedAndUniq(phone_sets[i]));
      KALDI_ASSERT(!phone_sets[i].empty());
      for (size_t j = 0; j < phone_sets[i].size(); j++) {
        KALDI_ASSERT(all_phones.count(phone_sets[i][j]) == 0);  // check not present.
        all_phones.insert(phone_sets[i][j]);
      }
    }
  }

  // Initially create a single leaf for each phone set.

  size_t max_set_size = 0;
  int32 highest_numbered_phone = 0;
  for (size_t i = 0; i < phone_sets.size(); i++) {
    max_set_size = std::max(max_set_size, phone_sets[i].size());
    highest_numbered_phone =
        std::max(highest_numbered_phone,
                 * std::max_element(phone_sets[i].begin(), phone_sets[i].end()));
  }

  if (phone_sets.size() == 1) {  // there is only one set so the recursion finishes.
    if (share_roots[0]) {  // if "shared roots" return a single leaf.
      return new ConstantEventMap( (*num_leaves_out)++ );
    } else {  // not sharing roots -> work out the length and return a
             // TableEventMap splitting on length.
      EventAnswerType max_len = 0;
      for (size_t i = 0; i < phone_sets[0].size(); i++) {
        EventAnswerType len;
        EventValueType phone = phone_sets[0][i];
        KALDI_ASSERT(static_cast<size_t>(phone) < phone2num_pdf_classes.size());
        len = phone2num_pdf_classes[phone];
        KALDI_ASSERT(len > 0);
        if (i == 0) max_len = len;
        else {
          if (len != max_len) {
            KALDI_WARN << "Mismatching lengths within a phone set: " << len
                       << " vs. " << max_len << " [unusual, but not necessarily fatal]. ";
            max_len = std::max(len, max_len);
          }
        }
      }
      std::map<EventValueType, EventAnswerType> m;
      for (EventAnswerType p = 0; p < max_len; p++)
        m[p] = (*num_leaves_out)++;
      return new TableEventMap(kPdfClass,  // split on hmm-position
                               m);
    }
  } else if (max_set_size == 1
            && static_cast<int32>(phone_sets.size()) <= 2*highest_numbered_phone) {
    // create table map splitting on phone-- more efficient.
    // the part after the && checks that this would not contain a very sparse vector.
    std::map<EventValueType, EventMap*> m;
    for (size_t i = 0; i < phone_sets.size(); i++) {
      std::vector<std::vector<int32> > phone_sets_tmp;
      phone_sets_tmp.push_back(phone_sets[i]);
      std::vector<bool> share_roots_tmp;
      share_roots_tmp.push_back(share_roots[i]);
      EventMap *this_stub = GetStubMap(P, phone_sets_tmp, phone2num_pdf_classes,
                                       share_roots_tmp,
                                       num_leaves_out);
      KALDI_ASSERT(m.count(phone_sets_tmp[0][0]) == 0);
      m[phone_sets_tmp[0][0]] = this_stub;
    }
    return new TableEventMap(P, m);
  } else {
    // Do a split.  Recurse.
    size_t half_sz = phone_sets.size() / 2;
    std::vector<std::vector<int32> >::const_iterator half_phones =
        phone_sets.begin() + half_sz;
    std::vector<bool>::const_iterator half_share =
        share_roots.begin() + half_sz;
    std::vector<std::vector<int32> > phone_sets_1, phone_sets_2;
    std::vector<bool> share_roots_1, share_roots_2;
    phone_sets_1.insert(phone_sets_1.end(), phone_sets.begin(), half_phones);
    phone_sets_2.insert(phone_sets_2.end(), half_phones, phone_sets.end());
    share_roots_1.insert(share_roots_1.end(), share_roots.begin(), half_share);
    share_roots_2.insert(share_roots_2.end(), half_share, share_roots.end());

    EventMap *map1 = GetStubMap(P, phone_sets_1, phone2num_pdf_classes, share_roots_1, num_leaves_out);
    EventMap *map2 = GetStubMap(P, phone_sets_2, phone2num_pdf_classes, share_roots_2, num_leaves_out);

    std::vector<EventKeyType> all_in_first_set;
    for (size_t i = 0; i < half_sz; i++)
      for (size_t j = 0; j < phone_sets[i].size(); j++)
        all_in_first_set.push_back(phone_sets[i][j]);
    std::sort(all_in_first_set.begin(), all_in_first_set.end());
    KALDI_ASSERT(IsSortedAndUniq(all_in_first_set));
    return new SplitEventMap(P, all_in_first_set, map1, map2);
  }
}

// convert stats to different (possibly smaller) context-window size.
bool ConvertStats(int32 oldN, int32 oldP, int32 newN, int32 newP,
                  BuildTreeStatsType *stats) {
  bool warned = false;
  KALDI_ASSERT(stats != NULL && oldN > 0 && newN > 0 && oldP >= 0
               && newP >= 0 && newP < newN && oldP < oldN);
  if (newN > oldN) {  // can't add unseen context.
    KALDI_WARN << "Cannot convert stats to larger context: " << newN
               << " > " << oldN;
    return false;
  }
  if (newP > oldP) {
    KALDI_WARN << "Cannot convert stats to have more left-context: " << newP
               << " > " << oldP;
  }
  if (newN-newP-1 > oldN-oldP-1) {
    KALDI_WARN << "Cannot convert stats to have more right-context: " << (newN-newP-1)
               << " > " << (oldN-oldP-1);
  }
  // if shift < 0, this is by how much we "shift down" key
  // values.
  int32 shift = newP - oldP;  // shift <= 0.

  for (size_t i = 0; i < stats->size(); i++) {
    EventType &evec = (*stats)[i].first;
    EventType evec_new;
    for (size_t j = 0; j < evec.size(); j++) {
      EventKeyType key = evec[j].first;
      if (key >= 0 && key < oldN) {  //
        key += shift;
        if (key >= 0 && key < newN) // within new context window...
          evec_new.push_back(std::make_pair(key, evec[j].second));
      } else {
        if (key != -1) {
          // don't understand this key value but assume for now
          // it's something that doesn't interact with the context window.
          if (!warned) {
            KALDI_WARN << "Stats had keys defined that we cannot interpret";
            warned = true;
          }
        }
        evec_new.push_back(evec[j]);
      }
    }
    evec = evec_new;  // Assign the modified EventVector with possibly
    // deleted keys.
  }
  return true;
}


} // end namespace kaldi