cluster-utils.cc
49.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
// tree/cluster-utils.cc
// Copyright 2012 Arnab Ghoshal
// Copyright 2009-2011 Microsoft Corporation; Saarland University
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <functional>
#include <queue>
#include <vector>
using std::vector;
#include "base/kaldi-math.h"
#include "util/stl-utils.h"
#include "tree/cluster-utils.h"
namespace kaldi {
typedef uint16 uint_smaller;
typedef int16 int_smaller;
// ============================================================================
// Some convenience functions used in the clustering routines
// ============================================================================
BaseFloat SumClusterableObjf(const std::vector<Clusterable*> &vec) {
BaseFloat ans = 0.0;
for (size_t i = 0; i < vec.size(); i++) {
if (vec[i] != NULL) {
BaseFloat objf = vec[i]->Objf();
if (KALDI_ISNAN(objf)) {
KALDI_WARN << "SumClusterableObjf, NaN objf";
} else {
ans += objf;
}
}
}
return ans;
}
BaseFloat SumClusterableNormalizer(const std::vector<Clusterable*> &vec) {
BaseFloat ans = 0.0;
for (size_t i = 0; i < vec.size(); i++) {
if (vec[i] != NULL) {
BaseFloat objf = vec[i]->Normalizer();
if (KALDI_ISNAN(objf)) {
KALDI_WARN << "SumClusterableObjf, NaN objf";
} else {
ans += objf;
}
}
}
return ans;
}
Clusterable* SumClusterable(const std::vector<Clusterable*> &vec) {
Clusterable *ans = NULL;
for (size_t i = 0; i < vec.size(); i++) {
if (vec[i] != NULL) {
if (ans == NULL)
ans = vec[i]->Copy();
else
ans->Add(*(vec[i]));
}
}
return ans;
}
void EnsureClusterableVectorNotNull(std::vector<Clusterable*> *stats) {
KALDI_ASSERT(stats != NULL);
std::vector<Clusterable*>::iterator itr = stats->begin(), end = stats->end();
if (itr == end) return; // Nothing to do.
Clusterable *nonNullExample = NULL;
for (; itr != end; ++itr) {
if (*itr != NULL) {
nonNullExample = *itr;
break;
}
}
if (nonNullExample == NULL) {
KALDI_ERR << "All stats are NULL."; // crash. logic error.
}
itr = stats->begin();
Clusterable *nonNullExampleCopy = nonNullExample->Copy();
// sets stats to zero. do this just once (on copy) for efficiency.
nonNullExampleCopy->SetZero();
for (; itr != end; ++itr) {
if (*itr == NULL) {
*itr = nonNullExampleCopy->Copy();
}
}
delete nonNullExampleCopy;
}
void AddToClusters(const std::vector<Clusterable*> &stats,
const std::vector<int32> &assignments,
std::vector<Clusterable*> *clusters) {
KALDI_ASSERT(assignments.size() == stats.size());
int32 size = stats.size();
if (size == 0) return; // Nothing to do.
KALDI_ASSERT(clusters != NULL);
int32 max_assignment = *std::max_element(assignments.begin(),
assignments.end());
if (static_cast<int32> (clusters->size()) <= max_assignment)
clusters->resize(max_assignment + 1, NULL); // extend with NULLs.
for (int32 i = 0; i < size; i++) {
if (stats[i] != NULL) {
if ((*clusters)[assignments[i]] == NULL)
(*clusters)[assignments[i]] = stats[i]->Copy();
else
(*clusters)[assignments[i]]->Add(*(stats[i]));
}
}
}
void AddToClustersOptimized(const std::vector<Clusterable*> &stats,
const std::vector<int32> &assignments,
const Clusterable &total,
std::vector<Clusterable*> *clusters) {
#ifdef KALDI_PARANOID
// Make sure "total" is actually the sum of stats in "stats".
{
BaseFloat stats_norm = SumClusterableNormalizer(stats),
tot_norm = total.Normalizer();
AssertEqual(stats_norm, tot_norm, 0.01);
}
#endif
KALDI_ASSERT(assignments.size() == stats.size());
int32 size = stats.size();
if (size == 0) return; // Nothing to do.
KALDI_ASSERT(clusters != NULL);
int32 num_clust = 1 + *std::max_element(assignments.begin(),
assignments.end());
if (static_cast<int32> (clusters->size()) < num_clust)
clusters->resize(num_clust, NULL); // extend with NULLs.
std::vector<int32> num_stats_for_cluster(num_clust, 0);
int32 num_total_stats = 0;
for (int32 i = 0; i < size; i++) {
if (stats[i] != NULL) {
num_total_stats++;
num_stats_for_cluster[assignments[i]]++;
}
}
if (num_total_stats == 0) return; // Nothing to do.
// it will only ever be efficient to subtract for at most one index.
int32 subtract_index = -1;
for (int32 c = 0; c < num_clust; c++) {
if (num_stats_for_cluster[c] > num_total_stats - num_stats_for_cluster[c]) {
subtract_index = c;
if ((*clusters)[c] == NULL)
(*clusters)[c] = total.Copy();
else
(*clusters)[c]->Add(total);
break;
}
}
for (int32 i = 0; i < size; i++) {
if (stats[i] != NULL) {
int32 assignment = assignments[i];
if (assignment != (int32) subtract_index) {
if ((*clusters)[assignment] == NULL)
(*clusters)[assignment] = stats[i]->Copy();
else
(*clusters)[assignment]->Add(*(stats[i]));
}
if (subtract_index != -1 && assignment != subtract_index)
(*clusters)[subtract_index]->Sub(*(stats[i]));
}
}
}
// ============================================================================
// Bottom-up clustering routines
// ============================================================================
class BottomUpClusterer {
public:
BottomUpClusterer(const std::vector<Clusterable*> &points,
BaseFloat max_merge_thresh,
int32 min_clust,
std::vector<Clusterable*> *clusters_out,
std::vector<int32> *assignments_out)
: ans_(0.0), points_(points), max_merge_thresh_(max_merge_thresh),
min_clust_(min_clust), clusters_(clusters_out != NULL? clusters_out
: &tmp_clusters_), assignments_(assignments_out != NULL ?
assignments_out : &tmp_assignments_) {
nclusters_ = npoints_ = points.size();
dist_vec_.resize((npoints_ * (npoints_ - 1)) / 2);
}
BaseFloat Cluster();
~BottomUpClusterer() { DeletePointers(&tmp_clusters_); }
private:
void Renumber();
void InitializeAssignments();
void SetInitialDistances(); ///< Sets up distances and queue.
/// CanMerge returns true if i and j are existing clusters, and the distance
/// (negated objf-change) "dist" is accurate (i.e. not outdated).
bool CanMerge(int32 i, int32 j, BaseFloat dist);
/// Merge j into i and delete j.
void MergeClusters(int32 i, int32 j);
/// Reconstructs the priority queue from the distances.
void ReconstructQueue();
void SetDistance(int32 i, int32 j);
BaseFloat& Distance(int32 i, int32 j) {
KALDI_ASSERT(i < npoints_ && j < i);
return dist_vec_[(i * (i - 1)) / 2 + j];
}
BaseFloat ans_;
const std::vector<Clusterable*> &points_;
BaseFloat max_merge_thresh_;
int32 min_clust_;
std::vector<Clusterable*> *clusters_;
std::vector<int32> *assignments_;
std::vector<Clusterable*> tmp_clusters_;
std::vector<int32> tmp_assignments_;
std::vector<BaseFloat> dist_vec_;
int32 nclusters_;
int32 npoints_;
typedef std::pair<BaseFloat, std::pair<uint_smaller, uint_smaller> > QueueElement;
// Priority queue using greater (lowest distances are highest priority).
typedef std::priority_queue<QueueElement, std::vector<QueueElement>,
std::greater<QueueElement> > QueueType;
QueueType queue_;
};
BaseFloat BottomUpClusterer::Cluster() {
KALDI_VLOG(2) << "Initializing cluster assignments.";
InitializeAssignments();
KALDI_VLOG(2) << "Setting initial distances.";
SetInitialDistances();
KALDI_VLOG(2) << "Clustering...";
while (nclusters_ > min_clust_ && !queue_.empty()) {
std::pair<BaseFloat, std::pair<uint_smaller, uint_smaller> > pr = queue_.top();
BaseFloat dist = pr.first;
int32 i = (int32) pr.second.first, j = (int32) pr.second.second;
queue_.pop();
if (CanMerge(i, j, dist)) MergeClusters(i, j);
}
KALDI_VLOG(2) << "Renumbering clusters to contiguous numbers.";
Renumber();
return ans_;
}
void BottomUpClusterer::Renumber() {
KALDI_VLOG(2) << "Freeing up distance vector.";
{
vector<BaseFloat> tmp;
tmp.swap(dist_vec_);
}
// Commented the following out since it was causing the process to take up too
// much memory with larger models. While the swap() method of STL types swaps
// the data pointers, std::swap() creates a temporary copy. -Arnab
// KALDI_VLOG(2) << "Freeing up the queue";
// // first free up memory by getting rid of queue. this is a special trick
// // to force STL to free memory.
// {
// QueueType tmp;
// std::swap(tmp, queue_);
// }
// called after clustering, renumbers to make clusters contiguously
// numbered. also processes assignments_ to remove chains of references.
KALDI_VLOG(2) << "Creating new copy of non-NULL clusters.";
std::vector<uint_smaller> mapping(npoints_, static_cast<uint_smaller> (-1)); // mapping from intermediate to final clusters.
std::vector<Clusterable*> new_clusters(nclusters_);
int32 clust = 0;
for (int32 i = 0; i < npoints_; i++) {
if ((*clusters_)[i] != NULL) {
KALDI_ASSERT(clust < nclusters_);
new_clusters[clust] = (*clusters_)[i];
mapping[i] = clust;
clust++;
}
}
KALDI_ASSERT(clust == nclusters_);
KALDI_VLOG(2) << "Creating new copy of assignments.";
std::vector<int32> new_assignments(npoints_);
for (int32 i = 0; i < npoints_; i++) { // now reprocess assignments_.
int32 ii = i;
while ((*assignments_)[ii] != ii)
ii = (*assignments_)[ii]; // follow the chain.
KALDI_ASSERT((*clusters_)[ii] != NULL); // cannot have assignment to nonexistent cluster.
KALDI_ASSERT(mapping[ii] != static_cast<uint_smaller>(-1));
new_assignments[i] = mapping[ii];
}
clusters_->swap(new_clusters);
assignments_->swap(new_assignments);
}
void BottomUpClusterer::InitializeAssignments() {
clusters_->resize(npoints_);
assignments_->resize(npoints_);
for (int32 i = 0; i < npoints_; i++) { // initialize as 1-1 mapping.
(*clusters_)[i] = points_[i]->Copy();
(*assignments_)[i] = i;
}
}
void BottomUpClusterer::SetInitialDistances() {
for (int32 i = 0; i < npoints_; i++) {
for (int32 j = 0; j < i; j++) {
BaseFloat dist = (*clusters_)[i]->Distance(*((*clusters_)[j]));
dist_vec_[(i * (i - 1)) / 2 + j] = dist;
if (dist <= max_merge_thresh_)
queue_.push(std::make_pair(dist, std::make_pair(static_cast<uint_smaller>(i),
static_cast<uint_smaller>(j))));
}
}
}
bool BottomUpClusterer::CanMerge(int32 i, int32 j, BaseFloat dist) {
KALDI_ASSERT(i != j && i < npoints_ && j < npoints_);
if ((*clusters_)[i] == NULL || (*clusters_)[j] == NULL)
return false;
BaseFloat cached_dist = dist_vec_[(i * (i - 1)) / 2 + j];
return (std::fabs(cached_dist - dist) <= 1.0e-05 * std::fabs(dist));
}
void BottomUpClusterer::MergeClusters(int32 i, int32 j) {
KALDI_ASSERT(i != j && i < npoints_ && j < npoints_);
(*clusters_)[i]->Add(*((*clusters_)[j]));
delete (*clusters_)[j];
(*clusters_)[j] = NULL;
// note that we may have to follow the chain within "assignment_" to get
// final assignments.
(*assignments_)[j] = i;
// subtract negated objective function change, i.e. add objective function
// change.
ans_ -= dist_vec_[(i * (i - 1)) / 2 + j];
nclusters_--;
// Now update "distances".
for (int32 k = 0; k < npoints_; k++) {
if (k != i && (*clusters_)[k] != NULL) {
if (k < i)
SetDistance(i, k); // SetDistance requires k < i.
else
SetDistance(k, i);
}
}
}
void BottomUpClusterer::ReconstructQueue() {
// empty queue [since there is no clear()]
{
QueueType tmp;
std::swap(tmp, queue_);
}
for (int32 i = 0; i < npoints_; i++) {
if ((*clusters_)[i] != NULL) {
for (int32 j = 0; j < i; j++) {
if ((*clusters_)[j] != NULL) {
BaseFloat dist = dist_vec_[(i * (i - 1)) / 2 + j];
if (dist <= max_merge_thresh_) {
queue_.push(std::make_pair(dist, std::make_pair(
static_cast<uint_smaller>(i), static_cast<uint_smaller>(j))));
}
}
}
}
}
}
void BottomUpClusterer::SetDistance(int32 i, int32 j) {
KALDI_ASSERT(i < npoints_ && j < i && (*clusters_)[i] != NULL
&& (*clusters_)[j] != NULL);
BaseFloat dist = (*clusters_)[i]->Distance(*((*clusters_)[j]));
dist_vec_[(i * (i - 1)) / 2 + j] = dist; // set the distance in the array.
if (dist < max_merge_thresh_) {
queue_.push(std::make_pair(dist, std::make_pair(static_cast<uint_smaller>(i),
static_cast<uint_smaller>(j))));
}
// every time it's at least twice the maximum possible size.
if (queue_.size() >= static_cast<size_t> (npoints_ * npoints_)) {
// Control memory use by getting rid of orphaned queue entries
ReconstructQueue();
}
}
BaseFloat ClusterBottomUp(const std::vector<Clusterable*> &points,
BaseFloat max_merge_thresh,
int32 min_clust,
std::vector<Clusterable*> *clusters_out,
std::vector<int32> *assignments_out) {
KALDI_ASSERT(max_merge_thresh >= 0.0 && min_clust >= 0);
KALDI_ASSERT(!ContainsNullPointers(points));
int32 npoints = points.size();
// make sure fits in uint_smaller and does not hit the -1 which is reserved.
KALDI_ASSERT(sizeof(uint_smaller)==sizeof(uint32) ||
npoints < static_cast<int32>(static_cast<uint_smaller>(-1)));
KALDI_VLOG(2) << "Initializing clustering object.";
BottomUpClusterer bc(points, max_merge_thresh, min_clust, clusters_out, assignments_out);
BaseFloat ans = bc.Cluster();
if (clusters_out) KALDI_ASSERT(!ContainsNullPointers(*clusters_out));
return ans;
}
// ============================================================================
// Compartmentalized bottom-up clustering routines
// ============================================================================
struct CompBotClustElem {
BaseFloat dist;
int32 compartment, point1, point2;
CompBotClustElem(BaseFloat d, int32 comp, int32 i, int32 j)
: dist(d), compartment(comp), point1(i), point2(j) {}
};
bool operator > (const CompBotClustElem &a, const CompBotClustElem &b) {
return a.dist > b.dist;
}
class CompartmentalizedBottomUpClusterer {
public:
CompartmentalizedBottomUpClusterer(
const vector< vector<Clusterable*> > &points, BaseFloat max_merge_thresh,
int32 min_clust)
: points_(points), max_merge_thresh_(max_merge_thresh),
min_clust_(min_clust) {
ncompartments_ = points.size();
nclusters_ = 0;
npoints_.resize(ncompartments_);
for (int32 comp = 0; comp < ncompartments_; comp++) {
npoints_[comp] = points[comp].size();
nclusters_ += npoints_[comp];
}
}
BaseFloat Cluster(vector< vector<Clusterable*> > *clusters_out,
vector< vector<int32> > *assignments_out);
~CompartmentalizedBottomUpClusterer() {
for (vector< vector<Clusterable*> >::iterator itr = clusters_.begin(),
end = clusters_.end(); itr != end; ++itr)
DeletePointers(&(*itr));
}
private:
// Renumbers to make clusters contiguously numbered. Called after clustering.
// Also processes assignments_ to remove chains of references.
void Renumber(int32 compartment);
void InitializeAssignments();
void SetInitialDistances(); ///< Sets up distances and queue.
/// CanMerge returns true if i and j are existing clusters, and the distance
/// (negated objf-change) "dist" is accurate (i.e. not outdated).
bool CanMerge(int32 compartment, int32 i, int32 j, BaseFloat dist);
/// Merge j into i and delete j. Returns obj function change.
BaseFloat MergeClusters(int32 compartment, int32 i, int32 j);
/// Reconstructs the priority queue from the distances.
void ReconstructQueue();
void SetDistance(int32 compartment, int32 i, int32 j);
const vector< vector<Clusterable*> > &points_;
BaseFloat max_merge_thresh_;
int32 min_clust_;
vector< vector<Clusterable*> > clusters_;
vector< vector<int32> > assignments_;
vector< vector<BaseFloat> > dist_vec_;
int32 ncompartments_, nclusters_;
vector<int32> npoints_;
// Priority queue using greater (lowest distances are highest priority).
typedef std::priority_queue< CompBotClustElem, std::vector<CompBotClustElem>,
std::greater<CompBotClustElem> > QueueType;
QueueType queue_;
};
BaseFloat CompartmentalizedBottomUpClusterer::Cluster(
vector< vector<Clusterable*> > *clusters_out,
vector< vector<int32> > *assignments_out) {
InitializeAssignments();
SetInitialDistances();
BaseFloat total_obj_change = 0;
while (nclusters_ > min_clust_ && !queue_.empty()) {
CompBotClustElem qelem = queue_.top();
queue_.pop();
if (CanMerge(qelem.compartment, qelem.point1, qelem.point2, qelem.dist))
total_obj_change += MergeClusters(qelem.compartment, qelem.point1,
qelem.point2);
}
for (int32 comp = 0; comp < ncompartments_; comp++)
Renumber(comp);
if (clusters_out != NULL) clusters_out->swap(clusters_);
if (assignments_out != NULL) assignments_out->swap(assignments_);
return total_obj_change;
}
void CompartmentalizedBottomUpClusterer::Renumber(int32 comp) {
// first free up memory by getting rid of queue. this is a special trick
// to force STL to free memory.
{
QueueType tmp;
std::swap(tmp, queue_);
}
// First find the number of surviving clusters in the compartment.
int32 clusts_in_compartment = 0;
for (int32 i = 0; i < npoints_[comp]; i++) {
if (clusters_[comp][i] != NULL)
clusts_in_compartment++;
}
KALDI_ASSERT(clusts_in_compartment <= nclusters_);
// mapping from intermediate to final clusters.
vector<uint_smaller> mapping(npoints_[comp], static_cast<uint_smaller> (-1));
vector<Clusterable*> new_clusters(clusts_in_compartment);
// Now copy the surviving clusters in a fresh array.
clusts_in_compartment = 0;
for (int32 i = 0; i < npoints_[comp]; i++) {
if (clusters_[comp][i] != NULL) {
new_clusters[clusts_in_compartment] = clusters_[comp][i];
mapping[i] = clusts_in_compartment;
clusts_in_compartment++;
}
}
// Next, process the assignments.
std::vector<int32> new_assignments(npoints_[comp]);
for (int32 i = 0; i < npoints_[comp]; i++) {
int32 ii = i;
while (assignments_[comp][ii] != ii)
ii = assignments_[comp][ii]; // follow the chain.
// cannot assign to nonexistent cluster.
KALDI_ASSERT(clusters_[comp][ii] != NULL);
KALDI_ASSERT(mapping[ii] != static_cast<uint_smaller>(-1));
new_assignments[i] = mapping[ii];
}
clusters_[comp].swap(new_clusters);
assignments_[comp].swap(new_assignments);
}
void CompartmentalizedBottomUpClusterer::InitializeAssignments() {
clusters_.resize(ncompartments_);
assignments_.resize(ncompartments_);
for (int32 comp = 0; comp < ncompartments_; comp++) {
clusters_[comp].resize(npoints_[comp]);
assignments_[comp].resize(npoints_[comp]);
for (int32 i = 0; i < npoints_[comp]; i++) { // initialize as 1-1 mapping.
clusters_[comp][i] = points_[comp][i]->Copy();
assignments_[comp][i] = i;
}
}
}
void CompartmentalizedBottomUpClusterer::SetInitialDistances() {
dist_vec_.resize(ncompartments_);
for (int32 comp = 0; comp < ncompartments_; comp++) {
dist_vec_[comp].resize((npoints_[comp] * (npoints_[comp] - 1)) / 2);
for (int32 i = 0; i < npoints_[comp]; i++)
for (int32 j = 0; j < i; j++)
SetDistance(comp, i, j);
}
}
bool CompartmentalizedBottomUpClusterer::CanMerge(int32 comp, int32 i, int32 j,
BaseFloat dist) {
KALDI_ASSERT(comp < ncompartments_ && i < npoints_[comp] && j < i);
if (clusters_[comp][i] == NULL || clusters_[comp][j] == NULL)
return false;
BaseFloat cached_dist = dist_vec_[comp][(i * (i - 1)) / 2 + j];
return (std::fabs(cached_dist - dist) <= 1.0e-05 * std::fabs(dist));
}
BaseFloat CompartmentalizedBottomUpClusterer::MergeClusters(int32 comp, int32 i,
int32 j) {
KALDI_ASSERT(comp < ncompartments_ && i < npoints_[comp] && j < i);
clusters_[comp][i]->Add(*(clusters_[comp][j]));
delete clusters_[comp][j];
clusters_[comp][j] = NULL;
// note that we may have to follow the chain within "assignment_" to get
// final assignments.
assignments_[comp][j] = i;
// objective function change.
BaseFloat ans = -dist_vec_[comp][(i * (i - 1)) / 2 + j];
nclusters_--;
// Now update "distances".
for (int32 k = 0; k < npoints_[comp]; k++) {
if (k != i && clusters_[comp][k] != NULL) {
if (k < i)
SetDistance(comp, i, k); // SetDistance requires k < i.
else
SetDistance(comp, k, i);
}
}
// Control memory use by getting rid of orphaned queue entries every time
// it's at least twice the maximum possible size.
if (queue_.size() >= static_cast<size_t> (nclusters_ * nclusters_)) {
ReconstructQueue();
}
return ans;
}
void CompartmentalizedBottomUpClusterer::ReconstructQueue() {
// empty queue [since there is no clear()]
{
QueueType tmp;
std::swap(tmp, queue_);
}
for (int32 comp = 0; comp < ncompartments_; comp++) {
for (int32 i = 0; i < npoints_[comp]; i++) {
if (clusters_[comp][i] == NULL) continue;
for (int32 j = 0; j < i; j++) {
if (clusters_[comp][j] == NULL) continue;
SetDistance(comp, i, j);
}
}
}
}
void CompartmentalizedBottomUpClusterer::SetDistance(int32 comp,
int32 i, int32 j) {
KALDI_ASSERT(comp < ncompartments_ && i < npoints_[comp] && j < i);
KALDI_ASSERT(clusters_[comp][i] != NULL && clusters_[comp][j] != NULL);
BaseFloat dist = clusters_[comp][i]->Distance(*(clusters_[comp][j]));
dist_vec_[comp][(i * (i - 1)) / 2 + j] = dist;
if (dist < max_merge_thresh_) {
queue_.push(CompBotClustElem(dist, comp, static_cast<uint_smaller>(i),
static_cast<uint_smaller>(j)));
}
}
BaseFloat ClusterBottomUpCompartmentalized(
const std::vector< std::vector<Clusterable*> > &points, BaseFloat thresh,
int32 min_clust, std::vector< std::vector<Clusterable*> > *clusters_out,
std::vector< std::vector<int32> > *assignments_out) {
KALDI_ASSERT(thresh >= 0.0 && min_clust >= 0);
int32 npoints = 0, num_non_empty_compartments = 0;
for (vector< vector<Clusterable*> >::const_iterator itr = points.begin(),
end = points.end(); itr != end; ++itr) {
KALDI_ASSERT(!ContainsNullPointers(*itr));
npoints += itr->size();
if (itr->size() > 0) num_non_empty_compartments++;
}
KALDI_ASSERT(min_clust >= num_non_empty_compartments); // Code does not merge compartments.
// make sure fits in uint_smaller and does not hit the -1 which is reserved.
KALDI_ASSERT(sizeof(uint_smaller)==sizeof(uint32) ||
npoints < static_cast<int32>(static_cast<uint_smaller>(-1)));
CompartmentalizedBottomUpClusterer bc(points, thresh, min_clust);
BaseFloat ans = bc.Cluster(clusters_out, assignments_out);
if (clusters_out) {
for (vector< vector<Clusterable*> >::iterator itr = clusters_out->begin(),
end = clusters_out->end(); itr != end; ++itr) {
KALDI_ASSERT(!ContainsNullPointers(*itr));
}
}
return ans;
}
// ============================================================================
// Clustering through refinement routines
// ============================================================================
class RefineClusterer {
public:
// size used in point_info structure (we store a lot of these so don't want
// to just make it int32). Also used as a time-id (cannot have more moves of
// points, than can fit in this time). Must be big enough to store num-clust.
typedef int32 LocalInt;
typedef uint_smaller ClustIndexInt;
RefineClusterer(const std::vector<Clusterable*> &points,
std::vector<Clusterable*> *clusters,
std::vector<int32> *assignments,
RefineClustersOptions cfg)
: points_(points), clusters_(clusters), assignments_(assignments),
cfg_(cfg) {
KALDI_ASSERT(cfg_.top_n >= 2);
num_points_ = points_.size();
num_clust_ = static_cast<int32> (clusters->size());
// so can fit clust-id in LocalInt
if (cfg_.top_n > (int32) num_clust_) cfg_.top_n
= static_cast<int32> (num_clust_);
KALDI_ASSERT(cfg_.top_n == static_cast<int32>(static_cast<ClustIndexInt>(cfg_.top_n)));
t_ = 0;
my_clust_index_.resize(num_points_);
// will set all PointInfo's to 0 too (they will be up-to-date).
clust_time_.resize(num_clust_, 0);
clust_objf_.resize(num_clust_);
for (int32 i = 0; i < num_clust_; i++)
clust_objf_[i] = (*clusters_)[i]->Objf();
info_.resize(num_points_ * cfg_.top_n);
ans_ = 0;
InitPoints();
}
BaseFloat Refine() {
if (cfg_.top_n <= 1) return 0.0; // nothing to do.
Iterate();
return ans_;
}
// at some point check cfg_.top_n > 1 after maxing to num_clust_.
private:
void InitPoint(int32 point) {
// Find closest clusters to this point.
// distances are really negated objf changes, ignoring terms that don't vary with the "other" cluster.
std::vector<std::pair<BaseFloat, LocalInt> > distances;
distances.reserve(num_clust_-1);
int32 my_clust = (*assignments_)[point];
Clusterable *point_cl = points_[point];
for (int32 clust = 0;clust < num_clust_;clust++) {
if (clust != my_clust) {
Clusterable *tmp = (*clusters_)[clust]->Copy();
tmp->Add(*point_cl);
BaseFloat other_clust_objf = clust_objf_[clust];
BaseFloat other_clust_plus_me_objf = (*clusters_)[clust]->ObjfPlus(* (points_[point]));
BaseFloat distance = other_clust_objf-other_clust_plus_me_objf; // negated delta-objf, with only "varying" terms.
distances.push_back(std::make_pair(distance, (LocalInt)clust));
delete tmp;
}
}
if ((cfg_.top_n-1-1) >= 0) {
std::nth_element(distances.begin(), distances.begin()+(cfg_.top_n-1-1), distances.end());
}
// top_n-1 is the # of elements we want to retain. -1 because we need the iterator
// that points to the end of that range (i.e. not potentially off the end of the array).
for (int32 index = 0;index < cfg_.top_n-1;index++) {
point_info &info = GetInfo(point, index);
int32 clust = distances[index].second;
info.clust = clust;
BaseFloat distance = distances[index].first;
BaseFloat other_clust_objf = clust_objf_[clust];
BaseFloat other_clust_plus_me_objf = -(distance - other_clust_objf);
info.objf = other_clust_plus_me_objf;
info.time = 0;
}
// now put the last element in, which is my current cluster.
point_info &info = GetInfo(point, cfg_.top_n-1);
info.clust = my_clust;
info.time = 0;
info.objf = (*clusters_)[my_clust]->ObjfMinus(*(points_[point]));
my_clust_index_[point] = cfg_.top_n-1;
}
void InitPoints() {
// finds, for each point, the closest cfg_.top_n clusters (including its own cluster).
// this may be the most time-consuming step of the algorithm.
for (int32 p = 0;p < num_points_;p++) InitPoint(p);
}
void Iterate() {
int32 iter, num_iters = cfg_.num_iters;
for (iter = 0;iter < num_iters;iter++) {
int32 cur_t = t_;
for (int32 point = 0;point < num_points_;point++) {
if (t_+1 == 0) {
KALDI_WARN << "Stopping iterating at int32 moves";
return; // once we use up all time points, must return-- this
// should rarely happen as int32 is large.
}
ProcessPoint(point);
}
if (t_ == cur_t) break; // nothing changed so we converged.
}
}
void MovePoint(int32 point, int32 new_index) {
// move point to a different cluster.
t_++;
int32 old_index = my_clust_index_[point]; // index into info
// array corresponding to current cluster.
KALDI_ASSERT(new_index < cfg_.top_n && new_index != old_index);
point_info &old_info = GetInfo(point, old_index),
&new_info = GetInfo(point, new_index);
my_clust_index_[point] = new_index; // update to new index.
int32 old_clust = old_info.clust, new_clust = new_info.clust;
KALDI_ASSERT( (*assignments_)[point] == old_clust);
(*assignments_)[point] = new_clust;
(*clusters_)[old_clust]->Sub( *(points_[point]) );
(*clusters_)[new_clust]->Add( *(points_[point]) );
UpdateClust(old_clust);
UpdateClust(new_clust);
}
void UpdateClust(int32 clust) {
KALDI_ASSERT(clust < num_clust_);
clust_objf_[clust] = (*clusters_)[clust]->Objf();
clust_time_[clust] = t_;
}
void ProcessPoint(int32 point) {
// note: calling code uses the fact
// that it only ever increases t_ by one.
KALDI_ASSERT(point < num_points_);
// (1) Make sure own-cluster like is updated.
int32 self_index = my_clust_index_[point]; // index <cfg_.top_n of own cluster.
point_info &self_info = GetInfo(point, self_index);
int32 self_clust = self_info.clust; // cluster index of own cluster.
KALDI_ASSERT(self_index < cfg_.top_n);
UpdateInfo(point, self_index);
float own_clust_objf = clust_objf_[self_clust];
float own_clust_minus_me_objf = self_info.objf; // objf of own cluster minus self.
// Now check the other "close" clusters and see if we want to move there.
for (int32 index = 0;index < cfg_.top_n;index++) {
if (index != self_index) {
UpdateInfo(point, index);
point_info &other_info = GetInfo(point, index);
BaseFloat other_clust_objf = clust_objf_[other_info.clust];
BaseFloat other_clust_plus_me_objf = other_info.objf;
BaseFloat impr = other_clust_plus_me_objf + own_clust_minus_me_objf
- other_clust_objf - own_clust_objf;
if (impr > 0) { // better to switch...
ans_ += impr;
MovePoint(point, index);
return; // the stuff we precomputed at the top is invalidated now, and it's
// easiest just to wait till next time we visit this point.
}
}
}
}
void UpdateInfo(int32 point, int32 idx) {
point_info &pinfo = GetInfo(point, idx);
if (pinfo.time < clust_time_[pinfo.clust]) { // it's not up-to-date...
Clusterable *tmp_cl = (*clusters_)[pinfo.clust]->Copy();
if (idx == my_clust_index_[point]) {
tmp_cl->Sub( *(points_[point]) );
} else{
tmp_cl->Add( *(points_[point]) );
}
pinfo.time = t_;
pinfo.objf = tmp_cl->Objf();
delete tmp_cl;
}
}
typedef struct {
LocalInt clust;
LocalInt time;
BaseFloat objf; // Objf of this cluster plus this point (or minus, if own cluster).
} point_info;
point_info &GetInfo(int32 point, int32 idx) {
KALDI_ASSERT(point < num_points_ && idx < cfg_.top_n);
int32 i = point*cfg_.top_n + idx;
KALDI_PARANOID_ASSERT(i < static_cast<int32>(info_.size()));
return info_[i];
}
const std::vector<Clusterable*> &points_;
std::vector<Clusterable*> *clusters_;
std::vector<int32> *assignments_;
std::vector<point_info> info_; // size is [num_points_ * cfg_.top_n].
std::vector<ClustIndexInt> my_clust_index_; // says for each point, which index 0...cfg_.top_n-1 currently
// corresponds to its own cluster.
std::vector<LocalInt> clust_time_; // Modification time of cluster.
std::vector<BaseFloat> clust_objf_; // [clust], objf for cluster.
BaseFloat ans_; // objf improvement.
int32 num_clust_;
int32 num_points_;
int32 t_;
RefineClustersOptions cfg_; // note, we change top_n in config; don't make this member a reference member.
};
BaseFloat RefineClusters(const std::vector<Clusterable*> &points,
std::vector<Clusterable*> *clusters,
std::vector<int32> *assignments,
RefineClustersOptions cfg) {
#ifndef KALDI_PARANOID // don't do this check in "paranoid" mode as we want to expose bugs.
if (cfg.num_iters <= 0) { return 0.0; } // nothing to do.
#endif
KALDI_ASSERT(clusters != NULL && assignments != NULL);
KALDI_ASSERT(!ContainsNullPointers(points) && !ContainsNullPointers(*clusters));
RefineClusterer rc(points, clusters, assignments, cfg);
BaseFloat ans = rc.Refine();
KALDI_ASSERT(!ContainsNullPointers(*clusters));
return ans;
}
// ============================================================================
// K-means like clustering routines
// ============================================================================
/// ClusterKMeansOnce is called internally by ClusterKMeans; it is equivalent
/// to calling ClusterKMeans with cfg.num_tries == 1. It returns the objective
/// function improvement versus everything being in one cluster.
BaseFloat ClusterKMeansOnce(const std::vector<Clusterable*> &points,
int32 num_clust,
std::vector<Clusterable*> *clusters_out,
std::vector<int32> *assignments_out,
ClusterKMeansOptions &cfg) {
std::vector<int32> my_assignments;
int32 num_points = points.size();
KALDI_ASSERT(clusters_out != NULL);
KALDI_ASSERT(num_points != 0);
KALDI_ASSERT(num_clust <= num_points);
KALDI_ASSERT(clusters_out->empty()); // or we wouldn't know what to do with pointers in there.
clusters_out->resize(num_clust, (Clusterable*)NULL);
assignments_out->resize(num_points);
{ // This block assigns points to clusters.
// This is done pseudo-randomly using Rand() so that
// if we call ClusterKMeans multiple times we get different answers (so we can choose
// the best if we want).
int32 skip; // randomly choose a "skip" that's coprime to num_points.
if (num_points == 1) {
skip = 1;
} else {
skip = 1 + (Rand() % (num_points-1)); // a number between 1 and num_points-1.
while (Gcd(skip, num_points) != 1) { // while skip is not coprime to num_points...
if (skip == num_points-1) skip = 0;
skip++; // skip is now still betweeen 1 and num_points-1. will cycle through
// all of 1...num_points-1.
}
}
int32 i, j, count = 0;
for (i = 0, j = 0; count != num_points;i = (i+skip)%num_points, j = (j+1)%num_clust, count++) {
// i cycles pseudo-randomly through all points; j skips ahead by 1 each time
// modulo num_points.
// assign point i to cluster j.
if ((*clusters_out)[j] == NULL) (*clusters_out)[j] = points[i]->Copy();
else (*clusters_out)[j]->Add(*(points[i]));
(*assignments_out)[i] = j;
}
}
BaseFloat normalizer = SumClusterableNormalizer(*clusters_out);
BaseFloat ans;
{ // work out initial value of "ans" (objective function improvement).
Clusterable *all_stats = SumClusterable(*clusters_out);
ans = SumClusterableObjf(*clusters_out) - all_stats->Objf(); // improvement just from the random
// initialization.
if (ans < -0.01 && ans < -0.01 * fabs(all_stats->Objf())) { // something bad happend.
KALDI_WARN << "ClusterKMeans: objective function after random assignment to clusters is worse than in single cluster: "<< (all_stats->Objf()) << " changed by " << ans << ". Perhaps your stats class has the wrong properties?";
}
delete all_stats;
}
for (int32 iter = 0;iter < cfg.num_iters;iter++) {
// Keep refining clusters by reassigning points.
BaseFloat objf_before;
if (cfg.verbose) objf_before =SumClusterableObjf(*clusters_out);
BaseFloat impr = RefineClusters(points, clusters_out, assignments_out, cfg.refine_cfg);
BaseFloat objf_after;
if (cfg.verbose) objf_after = SumClusterableObjf(*clusters_out);
ans += impr;
if (cfg.verbose)
KALDI_LOG << "ClusterKMeans: on iteration "<<(iter)<<", objf before = "<<(objf_before)<<", impr = "<<(impr)<<", objf after = "<<(objf_after)<<", normalized by "<<(normalizer)<<" = "<<(objf_after/normalizer);
if (impr == 0) break;
}
return ans;
}
BaseFloat ClusterKMeans(const std::vector<Clusterable*> &points,
int32 num_clust,
std::vector<Clusterable*> *clusters_out,
std::vector<int32> *assignments_out,
ClusterKMeansOptions cfg) {
if (points.size() == 0) {
if (clusters_out) KALDI_ASSERT(clusters_out->empty()); // or we wouldn't know whether to free the pointers.
if (assignments_out) assignments_out->clear();
return 0.0;
}
KALDI_ASSERT(cfg.num_tries>=1 && cfg.num_iters>=1);
if (clusters_out) KALDI_ASSERT(clusters_out->empty()); // or we wouldn't know whether to deallocate.
if (cfg.num_tries == 1) {
std::vector<int32> assignments;
return ClusterKMeansOnce(points, num_clust, clusters_out, (assignments_out != NULL?assignments_out:&assignments), cfg);
} else { // multiple tries.
if (clusters_out) {
KALDI_ASSERT(clusters_out->empty()); // we don't know the ownership of any pointers in there, otherwise.
}
BaseFloat best_ans = 0.0;
for (int32 i = 0;i < cfg.num_tries;i++) {
std::vector<Clusterable*> clusters_tmp;
std::vector<int32> assignments_tmp;
BaseFloat ans = ClusterKMeansOnce(points, num_clust, &clusters_tmp, &assignments_tmp, cfg);
KALDI_ASSERT(!ContainsNullPointers(clusters_tmp));
if (i == 0 || ans > best_ans) {
best_ans = ans;
if (clusters_out) {
if (clusters_out->size()) DeletePointers(clusters_out);
*clusters_out = clusters_tmp;
clusters_tmp.clear(); // suppress deletion of pointers.
}
if (assignments_out) *assignments_out = assignments_tmp;
}
// delete anything remaining in clusters_tmp (we cleared it if we used
// the pointers.
DeletePointers(&clusters_tmp);
}
return best_ans;
}
}
// ============================================================================
// Routines for clustering using a top-down tree
// ============================================================================
class TreeClusterer {
public:
TreeClusterer(const std::vector<Clusterable*> &points,
int32 max_clust,
TreeClusterOptions cfg):
points_(points), max_clust_(max_clust), ans_(0.0), cfg_(cfg)
{
KALDI_ASSERT(cfg_.branch_factor > 1);
Init();
}
BaseFloat Cluster(std::vector<Clusterable*> *clusters_out,
std::vector<int32> *assignments_out,
std::vector<int32> *clust_assignments_out,
int32 *num_leaves_out) {
while (static_cast<int32>(leaf_nodes_.size()) < max_clust_ && !queue_.empty()) {
std::pair<BaseFloat, Node*> pr = queue_.top();
queue_.pop();
ans_ += pr.first;
DoSplit(pr.second);
}
CreateOutput(clusters_out, assignments_out, clust_assignments_out,
num_leaves_out);
return ans_;
}
~TreeClusterer() {
for (int32 leaf = 0; leaf < static_cast<int32>(leaf_nodes_.size());leaf++) {
delete leaf_nodes_[leaf]->node_total;
DeletePointers(&(leaf_nodes_[leaf]->leaf.clusters));
delete leaf_nodes_[leaf];
}
for (int32 nonleaf = 0; nonleaf < static_cast<int32>(nonleaf_nodes_.size()); nonleaf++) {
delete nonleaf_nodes_[nonleaf]->node_total;
delete nonleaf_nodes_[nonleaf];
}
}
private:
struct Node {
bool is_leaf;
int32 index; // index into leaf_nodes or nonleaf_nodes as applicable.
Node *parent;
Clusterable *node_total; // sum of all data with this node.
struct {
std::vector<Clusterable*> points;
std::vector<int32> point_indices;
BaseFloat best_split;
std::vector<Clusterable*> clusters; // [branch_factor]... if we do split.
std::vector<int32> assignments; // assignments of points to clusters.
} leaf;
std::vector<Node*> children; // vector of size branch_factor. if non-leaf.
// pointers not owned here but in vectors leaf_nodes_, nonleaf_nodes_.
};
void CreateOutput(std::vector<Clusterable*> *clusters_out,
std::vector<int32> *assignments_out,
std::vector<int32> *clust_assignments_out,
int32 *num_leaves_out) {
if (num_leaves_out) *num_leaves_out = leaf_nodes_.size();
if (assignments_out)
CreateAssignmentsOutput(assignments_out);
if (clust_assignments_out)
CreateClustAssignmentsOutput(clust_assignments_out);
if (clusters_out)
CreateClustersOutput(clusters_out);
}
// This creates the output index corresponding to an index "index" into the array nonleaf_nodes_.
// reverse numbering so root node is last.
int32 NonleafOutputIndex(int32 index) {
return leaf_nodes_.size() + nonleaf_nodes_.size() - 1 - index;
}
void CreateAssignmentsOutput(std::vector<int32> *assignments_out) {
assignments_out->clear();
assignments_out->resize(points_.size(), (int32)(-1)); // fill with -1.
for (int32 leaf = 0; leaf < static_cast<int32>(leaf_nodes_.size()); leaf++) {
std::vector<int32> &indices = leaf_nodes_[leaf]->leaf.point_indices;
for (int32 i = 0; i < static_cast<int32>(indices.size()); i++) {
KALDI_ASSERT(static_cast<size_t>(indices[i]) < points_.size());
KALDI_ASSERT((*assignments_out)[indices[i]] == (int32)(-1)); // check we're not assigning twice.
(*assignments_out)[indices[i]] = leaf;
}
}
#ifdef KALDI_PARANOID
for (size_t i = 0;i<assignments_out->size();i++) KALDI_ASSERT((*assignments_out)[i] != (int32)(-1));
#endif
}
void CreateClustAssignmentsOutput(std::vector<int32> *clust_assignments_out) {
clust_assignments_out->resize(leaf_nodes_.size() + nonleaf_nodes_.size());
for (int32 leaf = 0; leaf < static_cast<int32>(leaf_nodes_.size()); leaf++) {
int32 parent_index;
if (leaf_nodes_[leaf]->parent == NULL) { // tree with only one node.
KALDI_ASSERT(leaf_nodes_.size() == 1&&nonleaf_nodes_.size() == 0 && leaf == 0);
parent_index = 0;
} else {
if (leaf_nodes_[leaf]->parent->is_leaf) parent_index = leaf_nodes_[leaf]->parent->index;
else parent_index = NonleafOutputIndex(leaf_nodes_[leaf]->parent->index);
}
(*clust_assignments_out)[leaf] = parent_index;
}
for (int32 nonleaf = 0; nonleaf < static_cast<int32>(nonleaf_nodes_.size()); nonleaf++) {
int32 index = NonleafOutputIndex(nonleaf);
int32 parent_index;
if (nonleaf_nodes_[nonleaf]->parent == NULL) parent_index = index; // top node. make it own parent.
else {
KALDI_ASSERT(! nonleaf_nodes_[nonleaf]->parent->is_leaf); // parent is nonleaf since child is nonleaf.
parent_index = NonleafOutputIndex(nonleaf_nodes_[nonleaf]->parent->index);
}
(*clust_assignments_out)[index] = parent_index;
}
}
void CreateClustersOutput(std::vector<Clusterable*> *clusters_out) {
clusters_out->resize(leaf_nodes_.size() + nonleaf_nodes_.size());
for (int32 leaf = 0; leaf < static_cast<int32>(leaf_nodes_.size()); leaf++) {
(*clusters_out)[leaf] = leaf_nodes_[leaf]->node_total;
leaf_nodes_[leaf]->node_total = NULL; // suppress delete.
}
for (int32 nonleaf = 0; nonleaf < static_cast<int32>(nonleaf_nodes_.size()); nonleaf++) {
int32 index = NonleafOutputIndex(nonleaf);
(*clusters_out)[index] = nonleaf_nodes_[nonleaf]->node_total;
nonleaf_nodes_[nonleaf]->node_total = NULL; // suppress delete.
}
}
void DoSplit(Node *node) {
KALDI_ASSERT(node->is_leaf && node->leaf.best_split > cfg_.thresh*0.999); // 0.999 is to avoid potential floating-point weirdness under compiler optimizations.
KALDI_ASSERT(node->children.size() == 0);
node->children.resize(cfg_.branch_factor);
for (int32 i = 0;i < cfg_.branch_factor;i++) {
Node *child = new Node;
node->children[i] = child;
child->is_leaf = true;
child->parent = node;
child->node_total = node->leaf.clusters[i];
if (i == 0) {
child->index = node->index; // assign node's own index in leaf_nodes_ to 1st child.
leaf_nodes_[child->index] = child;
} else {
child->index = leaf_nodes_.size(); // generate new indices for other children.
leaf_nodes_.push_back(child);
}
}
KALDI_ASSERT(node->leaf.assignments.size() == node->leaf.points.size());
KALDI_ASSERT(node->leaf.point_indices.size() == node->leaf.points.size());
for (int32 i = 0; i < static_cast<int32>(node->leaf.points.size()); i++) {
int32 child_index = node->leaf.assignments[i];
KALDI_ASSERT(child_index < static_cast<int32>(cfg_.branch_factor));
node->children[child_index]->leaf.points.push_back(node->leaf.points[i]);
node->children[child_index]->leaf.point_indices.push_back(node->leaf.point_indices[i]);
}
node->leaf.points.clear();
node->leaf.point_indices.clear();
node->leaf.clusters.clear(); // already assigned pointers to children.
node->leaf.assignments.clear();
node->is_leaf = false;
node->index = nonleaf_nodes_.size(); // new index at end of nonleaf_nodes_.
nonleaf_nodes_.push_back(node);
for (int32 i = 0;i < static_cast<int32>(cfg_.branch_factor);i++)
FindBestSplit(node->children[i]);
}
void FindBestSplit(Node *node) {
// takes a leaf node that has just been set up, and does ClusterKMeans with k = cfg_branch_factor.
KALDI_ASSERT(node->is_leaf);
if (node->leaf.points.size() == 0) {
KALDI_WARN << "Warning: tree clustering: leaf with no data";
node->leaf.best_split = 0; return;
}
if (node->leaf.points.size()<=1) { node->leaf.best_split = 0; return; }
else {
// use kmeans.
BaseFloat impr = ClusterKMeans(node->leaf.points,
cfg_.branch_factor,
&node->leaf.clusters,
&node->leaf.assignments,
cfg_.kmeans_cfg);
node->leaf.best_split = impr;
if (impr > cfg_.thresh)
queue_.push(std::make_pair(impr, node));
}
}
void Init() { // Initializes top node.
Node *top_node = new Node;
top_node->index = leaf_nodes_.size(); // == 0 currently.
top_node->parent = NULL; // no parent since root of tree.
top_node->is_leaf = true;
leaf_nodes_.push_back(top_node);
top_node->leaf.points = points_;
top_node->node_total = SumClusterable(points_);
top_node->leaf.point_indices.resize(points_.size());
for (size_t i = 0;i<points_.size();i++) top_node->leaf.point_indices[i] = i;
FindBestSplit(top_node); // this should always be called when new node is created.
}
std::vector<Node*> leaf_nodes_;
std::vector<Node*> nonleaf_nodes_;
const std::vector<Clusterable*> &points_;
int32 max_clust_;
BaseFloat ans_; // objf improvement.
std::priority_queue<std::pair<BaseFloat, Node*> > queue_; // contains leaves.
TreeClusterOptions cfg_;
};
BaseFloat TreeCluster(const std::vector<Clusterable*> &points,
int32 max_clust, // this is a max only.
std::vector<Clusterable*> *clusters_out,
std::vector<int32> *assignments_out,
std::vector<int32> *clust_assignments_out,
int32 *num_leaves_out,
TreeClusterOptions cfg) {
if (points.size() == 0) {
if (clusters_out) clusters_out->clear();
if (assignments_out) assignments_out->clear();
if (clust_assignments_out) clust_assignments_out->clear();
if (num_leaves_out) *num_leaves_out = 0;
return 0.0;
}
TreeClusterer tc(points, max_clust, cfg);
BaseFloat ans = tc.Cluster(clusters_out, assignments_out, clust_assignments_out, num_leaves_out);
if (clusters_out) KALDI_ASSERT(!ContainsNullPointers(*clusters_out));
return ans;
}
BaseFloat ClusterTopDown(const std::vector<Clusterable*> &points,
int32 max_clust, // max # of clusters.
std::vector<Clusterable*> *clusters_out,
std::vector<int32> *assignments_out,
TreeClusterOptions cfg) {
int32 num_leaves = 0;
BaseFloat ans = TreeCluster(points, max_clust, clusters_out, assignments_out, NULL, &num_leaves, cfg);
if (clusters_out != NULL) {
for (size_t j = num_leaves;j<clusters_out->size();j++) delete (*clusters_out)[j];
clusters_out->resize(num_leaves); // number of leaf-level clusters in tree.
}
return ans;
}
void RefineClustersOptions::Write(std::ostream &os, bool binary) const {
WriteToken(os, binary, "<RefineClustersOptions>");
WriteBasicType(os, binary, num_iters);
WriteBasicType(os, binary, top_n);
WriteToken(os, binary, "</RefineClustersOptions>");
}
void RefineClustersOptions::Read(std::istream &is, bool binary) {
ExpectToken(is, binary, "<RefineClustersOptions>");
ReadBasicType(is, binary, &num_iters);
ReadBasicType(is, binary, &top_n);
ExpectToken(is, binary, "</RefineClustersOptions>");
}
} // end namespace kaldi.