context-dep.cc
13.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
// tree/context-dep.cc
// Copyright 2009-2011 Microsoft Corporation
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "tree/context-dep.h"
#include "base/kaldi-math.h"
#include "tree/build-tree.h"
namespace kaldi {
bool ContextDependency::Compute(const std::vector<int32> &phoneseq,
int32 pdf_class,
int32 *pdf_id) const {
KALDI_ASSERT(static_cast<int32>(phoneseq.size()) == N_);
EventType event_vec;
event_vec.reserve(N_+1);
event_vec.push_back(std::make_pair
(static_cast<EventKeyType>(kPdfClass), // -1
static_cast<EventValueType>(pdf_class)));
KALDI_COMPILE_TIME_ASSERT(kPdfClass < 0); // or it would not be sorted.
for (int32 i = 0;i < N_;i++) {
event_vec.push_back(std::make_pair
(static_cast<EventKeyType>(i),
static_cast<EventValueType>(phoneseq[i])));
KALDI_ASSERT(static_cast<EventAnswerType>(phoneseq[i]) >= 0);
}
KALDI_ASSERT(pdf_id != NULL);
return to_pdf_->Map(event_vec, pdf_id);
}
ContextDependency *GenRandContextDependency(const std::vector<int32> &phone_ids,
bool ensure_all_covered,
std::vector<int32> *hmm_lengths) {
KALDI_ASSERT(IsSortedAndUniq(phone_ids));
int32 num_phones = phone_ids.size();
int32 num_stats = 1 + (Rand() % 15) * (Rand() % 15); // up to 14^2 + 1 separate stats.
int32 N = 2 + Rand() % 3; // 2, 3 or 4.
int32 P = Rand() % N;
float ctx_dep_prob = 0.7 + 0.3*RandUniform();
int32 max_phone = *std::max_element(phone_ids.begin(), phone_ids.end());
hmm_lengths->clear();
hmm_lengths->resize(max_phone + 1, -1);
std::vector<bool> is_ctx_dep(max_phone + 1);
for (int32 i = 0; i <= max_phone; i++) {
(*hmm_lengths)[i] = 1 + Rand() % 3;
is_ctx_dep[i] = (RandUniform() < ctx_dep_prob); // true w.p. ctx_dep_prob.
}
for (size_t i = 0; i < (size_t) num_phones; i++)
KALDI_VLOG(2) << "For idx = " << i
<< ", (phone_id, hmm_length, is_ctx_dep) == "
<< (phone_ids[i]) << " " << ((*hmm_lengths)[phone_ids[i]])
<< " " << (is_ctx_dep[phone_ids[i]]);
// Generate rand stats.
BuildTreeStatsType stats;
size_t dim = 3 + Rand() % 20;
GenRandStats(dim, num_stats, N, P, phone_ids, *hmm_lengths,
is_ctx_dep, ensure_all_covered, &stats);
// Now build the tree.
Questions qopts;
int32 num_quest = Rand() % 10, num_iters = rand () % 5;
qopts.InitRand(stats, num_quest, num_iters, kAllKeysUnion); // This was tested in build-tree-utils-test.cc
float thresh = 100.0 * RandUniform();
EventMap *tree = NULL;
std::vector<std::vector<int32> > phone_sets(phone_ids.size());
for (size_t i = 0; i < phone_ids.size(); i++)
phone_sets[i].push_back(phone_ids[i]);
std::vector<bool> share_roots(phone_sets.size(), true),
do_split(phone_sets.size(), true);
tree = BuildTree(qopts, phone_sets, *hmm_lengths, share_roots,
do_split, stats, thresh, 1000, 0.0, P);
DeleteBuildTreeStats(&stats);
return new ContextDependency(N, P, tree);
}
ContextDependency *GenRandContextDependencyLarge(const std::vector<int32> &phone_ids,
int N, int P,
bool ensure_all_covered,
std::vector<int32> *hmm_lengths) {
KALDI_ASSERT(IsSortedAndUniq(phone_ids));
int32 num_phones = phone_ids.size();
int32 num_stats = 3000; // each is a separate context.
float ctx_dep_prob = 0.9;
KALDI_ASSERT(num_phones > 0);
hmm_lengths->clear();
int32 max_phone = *std::max_element(phone_ids.begin(), phone_ids.end());
hmm_lengths->resize(max_phone + 1, -1);
std::vector<bool> is_ctx_dep(max_phone + 1);
for (int32 i = 0; i <= max_phone; i++) {
(*hmm_lengths)[i] = 1 + Rand() % 3;
is_ctx_dep[i] = (RandUniform() < ctx_dep_prob); // true w.p. ctx_dep_prob.
}
for (size_t i = 0; i < (size_t) num_phones; i++) {
KALDI_VLOG(2) << "For idx = "<< i << ", (phone_id, hmm_length, is_ctx_dep) == " << (phone_ids[i]) << " " << ((*hmm_lengths)[phone_ids[i]]) << " " << (is_ctx_dep[phone_ids[i]]);
}
// Generate rand stats.
BuildTreeStatsType stats;
size_t dim = 3 + Rand() % 20;
GenRandStats(dim, num_stats, N, P, phone_ids, *hmm_lengths, is_ctx_dep, ensure_all_covered, &stats);
// Now build the tree.
Questions qopts;
int32 num_quest = 40, num_iters = 0;
qopts.InitRand(stats, num_quest, num_iters, kAllKeysUnion); // This was tested in build-tree-utils-test.cc
float thresh = 100.0 * RandUniform();
EventMap *tree = NULL;
std::vector<std::vector<int32> > phone_sets(phone_ids.size());
for (size_t i = 0; i < phone_ids.size(); i++)
phone_sets[i].push_back(phone_ids[i]);
std::vector<bool> share_roots(phone_sets.size(), true),
do_split(phone_sets.size(), true);
tree = BuildTree(qopts, phone_sets, *hmm_lengths, share_roots,
do_split, stats, thresh, 1000, 0.0, P);
DeleteBuildTreeStats(&stats);
return new ContextDependency(N, P, tree);
}
void ContextDependency::Write (std::ostream &os, bool binary) const {
WriteToken(os, binary, "ContextDependency");
WriteBasicType(os, binary, N_);
WriteBasicType(os, binary, P_);
WriteToken(os, binary, "ToPdf");
to_pdf_->Write(os, binary);
WriteToken(os, binary, "EndContextDependency");
}
void ContextDependency::Read (std::istream &is, bool binary) {
if (to_pdf_) {
delete to_pdf_;
to_pdf_ = NULL;
}
ExpectToken(is, binary, "ContextDependency");
ReadBasicType(is, binary, &N_);
ReadBasicType(is, binary, &P_);
EventMap *to_pdf = NULL;
std::string token;
ReadToken(is, binary, &token);
if (token == "ToLength") { // back-compat.
EventMap *to_num_pdf_classes = EventMap::Read(is, binary);
delete to_num_pdf_classes;
ReadToken(is, binary, &token);
}
if (token == "ToPdf") {
to_pdf = EventMap::Read(is , binary);
} else {
KALDI_ERR << "Got unexpected token " << token
<< " reading context-dependency object.";
}
ExpectToken(is, binary, "EndContextDependency");
to_pdf_ = to_pdf;
}
void ContextDependency::EnumeratePairs(
const std::vector<int32> &phones,
int32 self_loop_pdf_class, int32 forward_pdf_class,
const std::vector<int32> &phone_window,
unordered_set<std::pair<int32, int32>, PairHasher<int32> > *pairs) const {
std::vector<int32> new_phone_window(phone_window);
EventType vec;
std::vector<EventAnswerType> forward_pdfs, self_loop_pdfs;
// get list of possible forward pdfs
vec.clear();
for (size_t i = 0; i < N_; i++)
if (phone_window[i] >= 0)
vec.push_back(std::make_pair(static_cast<EventKeyType>(i),
static_cast<EventValueType>(phone_window[i])));
vec.push_back(std::make_pair(kPdfClass, static_cast<EventValueType>(forward_pdf_class)));
std::sort(vec.begin(), vec.end());
to_pdf_->MultiMap(vec, &forward_pdfs);
SortAndUniq(&forward_pdfs);
// get list of possible self-loop pdfs
vec.clear();
for (size_t i = 0; i < N_; i++)
if (phone_window[i] >= 0)
vec.push_back(std::make_pair(static_cast<EventKeyType>(i),
static_cast<EventValueType>(phone_window[i])));
vec.push_back(std::make_pair(kPdfClass, static_cast<EventValueType>(self_loop_pdf_class)));
std::sort(vec.begin(), vec.end());
to_pdf_->MultiMap(vec, &self_loop_pdfs);
SortAndUniq(&self_loop_pdfs);
if (forward_pdfs.size() == 1 || self_loop_pdfs.size() == 1) {
for (size_t m = 0; m < forward_pdfs.size(); m++)
for (size_t n = 0; n < self_loop_pdfs.size(); n++)
pairs->insert(std::make_pair(forward_pdfs[m], self_loop_pdfs[n]));
} else {
// Choose 'position' as a phone position in 'context' that's currently
// -1, and that is as close as possible to the central position P.
int32 position = 0;
int32 min_dist = N_ - 1;
for (int32 i = 0; i < N_; i++) {
int32 dist = (P_ - i > 0) ? (P_ - i) : (i - P_);
if (phone_window[i] == -1 && dist < min_dist) {
position = i;
min_dist = dist;
}
}
KALDI_ASSERT(min_dist < N_);
KALDI_ASSERT(position != P_);
// The next two lines have to do with how BOS/EOS effects are handled in
// phone context. Zero phone value in a non-central position (i.e. not
// position P_... and 'position' will never equal P_) means 'there is no
// phone here because we're at BOS or EOS'.
new_phone_window[position] = 0;
EnumeratePairs(phones, self_loop_pdf_class, forward_pdf_class,
new_phone_window, pairs);
for (size_t i = 0 ; i < phones.size(); i++) {
new_phone_window[position] = phones[i];
EnumeratePairs(phones, self_loop_pdf_class, forward_pdf_class,
new_phone_window, pairs);
}
}
}
void ContextDependency::GetPdfInfo(
const std::vector<int32> &phones,
const std::vector<std::vector<std::pair<int32, int32> > > &pdf_class_pairs,
std::vector<std::vector<std::vector<std::pair<int32, int32> > > > *pdf_info) const {
KALDI_ASSERT(pdf_info != NULL);
pdf_info->resize(1 + *std::max_element(phones.begin(), phones.end()));
std::vector<int32> phone_window(N_, -1);
EventType vec;
for (size_t i = 0 ; i < phones.size(); i++) {
// loop over phones
int32 phone = phones[i];
(*pdf_info)[phone].resize(pdf_class_pairs[phone].size());
for (size_t j = 0; j < pdf_class_pairs[phone].size(); j++) {
// loop over pdf_class pairs
int32 pdf_class = pdf_class_pairs[phone][j].first,
self_loop_pdf_class = pdf_class_pairs[phone][j].second;
phone_window[P_] = phone;
unordered_set<std::pair<int32, int32>, PairHasher<int32> > pairs;
EnumeratePairs(phones, self_loop_pdf_class, pdf_class, phone_window, &pairs);
unordered_set<std::pair<int32, int32>, PairHasher<int32> >::iterator iter = pairs.begin(),
end = pairs.end();
for (; iter != end; ++iter)
(*pdf_info)[phone][j].push_back(*iter);
std::sort( ((*pdf_info)[phone][j]).begin(), ((*pdf_info)[phone][j]).end());
}
}
}
void ContextDependency::GetPdfInfo(
const std::vector<int32> &phones,
const std::vector<int32> &num_pdf_classes, // indexed by phone,
std::vector<std::vector<std::pair<int32, int32> > > *pdf_info) const {
EventType vec;
KALDI_ASSERT(pdf_info != NULL);
pdf_info->resize(NumPdfs());
for (size_t i = 0 ; i < phones.size(); i++) {
int32 phone = phones[i];
vec.clear();
vec.push_back(std::make_pair(static_cast<EventKeyType>(P_),
static_cast<EventValueType>(phone)));
// Now get length.
KALDI_ASSERT(static_cast<size_t>(phone) < num_pdf_classes.size());
EventAnswerType len = num_pdf_classes[phone];
for (int32 pos = 0; pos < len; pos++) {
vec.resize(2);
vec[0] = std::make_pair(static_cast<EventKeyType>(P_),
static_cast<EventValueType>(phone));
vec[1] = std::make_pair(kPdfClass, static_cast<EventValueType>(pos));
std::sort(vec.begin(), vec.end());
std::vector<EventAnswerType> pdfs; // pdfs that can be at this pos as this phone.
to_pdf_->MultiMap(vec, &pdfs);
SortAndUniq(&pdfs);
if (pdfs.empty()) {
KALDI_WARN << "ContextDependency::GetPdfInfo, no pdfs returned for position "<< pos << " of phone " << phone << ". Continuing but this is a serious error.";
}
for (size_t j = 0; j < pdfs.size(); j++) {
KALDI_ASSERT(static_cast<size_t>(pdfs[j]) < pdf_info->size());
(*pdf_info)[pdfs[j]].push_back(std::make_pair(phone, pos));
}
}
}
for (size_t i = 0; i < pdf_info->size(); i++) {
std::sort( ((*pdf_info)[i]).begin(), ((*pdf_info)[i]).end());
KALDI_ASSERT(IsSortedAndUniq( ((*pdf_info)[i]))); // should have no dups.
}
}
ContextDependency*
MonophoneContextDependency(const std::vector<int32> &phones,
const std::vector<int32> &phone2num_pdf_classes) {
std::vector<std::vector<int32> > phone_sets(phones.size());
for (size_t i = 0; i < phones.size(); i++) phone_sets[i].push_back(phones[i]);
std::vector<bool> share_roots(phones.size(), false); // don't share roots.
// N is context size, P = position of central phone (must be 0).
int32 num_leaves = 0, P = 0, N = 1;
EventMap *pdf_map = GetStubMap(P, phone_sets, phone2num_pdf_classes, share_roots, &num_leaves);
return new ContextDependency(N, P, pdf_map);
}
ContextDependency*
MonophoneContextDependencyShared(const std::vector<std::vector<int32> > &phone_sets,
const std::vector<int32> &phone2num_pdf_classes) {
std::vector<bool> share_roots(phone_sets.size(), false); // don't share roots.
// N is context size, P = position of central phone (must be 0).
int32 num_leaves = 0, P = 0, N = 1;
EventMap *pdf_map = GetStubMap(P, phone_sets, phone2num_pdf_classes, share_roots, &num_leaves);
return new ContextDependency(N, P, pdf_map);
}
} // end namespace kaldi.