agent_reduce_by_key.cuh 24.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
/******************************************************************************
 * Copyright (c) 2011, Duane Merrill.  All rights reserved.
 * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

/**
 * \file
 * cub::AgentReduceByKey implements a stateful abstraction of CUDA thread blocks for participating in device-wide reduce-value-by-key.
 */

#pragma once

#include <iterator>

#include "single_pass_scan_operators.cuh"
#include "../block/block_load.cuh"
#include "../block/block_store.cuh"
#include "../block/block_scan.cuh"
#include "../block/block_discontinuity.cuh"
#include "../iterator/cache_modified_input_iterator.cuh"
#include "../iterator/constant_input_iterator.cuh"
#include "../util_namespace.cuh"

/// Optional outer namespace(s)
CUB_NS_PREFIX

/// CUB namespace
namespace cub {


/******************************************************************************
 * Tuning policy types
 ******************************************************************************/

/**
 * Parameterizable tuning policy type for AgentReduceByKey
 */
template <
    int                         _BLOCK_THREADS,                 ///< Threads per thread block
    int                         _ITEMS_PER_THREAD,              ///< Items per thread (per tile of input)
    BlockLoadAlgorithm          _LOAD_ALGORITHM,                ///< The BlockLoad algorithm to use
    CacheLoadModifier           _LOAD_MODIFIER,                 ///< Cache load modifier for reading input elements
    BlockScanAlgorithm          _SCAN_ALGORITHM>                ///< The BlockScan algorithm to use
struct AgentReduceByKeyPolicy
{
    enum
    {
        BLOCK_THREADS           = _BLOCK_THREADS,               ///< Threads per thread block
        ITEMS_PER_THREAD        = _ITEMS_PER_THREAD,            ///< Items per thread (per tile of input)
    };

    static const BlockLoadAlgorithm     LOAD_ALGORITHM          = _LOAD_ALGORITHM;      ///< The BlockLoad algorithm to use
    static const CacheLoadModifier      LOAD_MODIFIER           = _LOAD_MODIFIER;       ///< Cache load modifier for reading input elements
    static const BlockScanAlgorithm     SCAN_ALGORITHM          = _SCAN_ALGORITHM;      ///< The BlockScan algorithm to use
};


/******************************************************************************
 * Thread block abstractions
 ******************************************************************************/

/**
 * \brief AgentReduceByKey implements a stateful abstraction of CUDA thread blocks for participating in device-wide reduce-value-by-key
 */
template <
    typename    AgentReduceByKeyPolicyT,        ///< Parameterized AgentReduceByKeyPolicy tuning policy type
    typename    KeysInputIteratorT,             ///< Random-access input iterator type for keys
    typename    UniqueOutputIteratorT,          ///< Random-access output iterator type for keys
    typename    ValuesInputIteratorT,           ///< Random-access input iterator type for values
    typename    AggregatesOutputIteratorT,      ///< Random-access output iterator type for values
    typename    NumRunsOutputIteratorT,         ///< Output iterator type for recording number of items selected
    typename    EqualityOpT,                    ///< KeyT equality operator type
    typename    ReductionOpT,                   ///< ValueT reduction operator type
    typename    OffsetT>                        ///< Signed integer type for global offsets
struct AgentReduceByKey
{
    //---------------------------------------------------------------------
    // Types and constants
    //---------------------------------------------------------------------

    // The input keys type
    typedef typename std::iterator_traits<KeysInputIteratorT>::value_type KeyInputT;

    // The output keys type
    typedef typename If<(Equals<typename std::iterator_traits<UniqueOutputIteratorT>::value_type, void>::VALUE),    // KeyOutputT =  (if output iterator's value type is void) ?
        typename std::iterator_traits<KeysInputIteratorT>::value_type,                                              // ... then the input iterator's value type,
        typename std::iterator_traits<UniqueOutputIteratorT>::value_type>::Type KeyOutputT;                         // ... else the output iterator's value type

    // The input values type
    typedef typename std::iterator_traits<ValuesInputIteratorT>::value_type ValueInputT;

    // The output values type
    typedef typename If<(Equals<typename std::iterator_traits<AggregatesOutputIteratorT>::value_type, void>::VALUE),    // ValueOutputT =  (if output iterator's value type is void) ?
        typename std::iterator_traits<ValuesInputIteratorT>::value_type,                                                // ... then the input iterator's value type,
        typename std::iterator_traits<AggregatesOutputIteratorT>::value_type>::Type ValueOutputT;                       // ... else the output iterator's value type

    // Tuple type for scanning (pairs accumulated segment-value with segment-index)
    typedef KeyValuePair<OffsetT, ValueOutputT> OffsetValuePairT;

    // Tuple type for pairing keys and values
    typedef KeyValuePair<KeyOutputT, ValueOutputT> KeyValuePairT;

    // Tile status descriptor interface type
    typedef ReduceByKeyScanTileState<ValueOutputT, OffsetT> ScanTileStateT;

    // Guarded inequality functor
    template <typename _EqualityOpT>
    struct GuardedInequalityWrapper
    {
        _EqualityOpT     op;             ///< Wrapped equality operator
        int             num_remaining;  ///< Items remaining

        /// Constructor
        __host__ __device__ __forceinline__
        GuardedInequalityWrapper(_EqualityOpT op, int num_remaining) : op(op), num_remaining(num_remaining) {}

        /// Boolean inequality operator, returns <tt>(a != b)</tt>
        template <typename T>
        __host__ __device__ __forceinline__ bool operator()(const T &a, const T &b, int idx) const
        {
            if (idx < num_remaining)
                return !op(a, b);   // In bounds

            // Return true if first out-of-bounds item, false otherwise
            return (idx == num_remaining);
       }
    };


    // Constants
    enum
    {
        BLOCK_THREADS       = AgentReduceByKeyPolicyT::BLOCK_THREADS,
        ITEMS_PER_THREAD    = AgentReduceByKeyPolicyT::ITEMS_PER_THREAD,
        TILE_ITEMS          = BLOCK_THREADS * ITEMS_PER_THREAD,
        TWO_PHASE_SCATTER   = (ITEMS_PER_THREAD > 1),

        // Whether or not the scan operation has a zero-valued identity value (true if we're performing addition on a primitive type)
        HAS_IDENTITY_ZERO   = (Equals<ReductionOpT, cub::Sum>::VALUE) && (Traits<ValueOutputT>::PRIMITIVE),
    };

    // Cache-modified Input iterator wrapper type (for applying cache modifier) for keys
    typedef typename If<IsPointer<KeysInputIteratorT>::VALUE,
            CacheModifiedInputIterator<AgentReduceByKeyPolicyT::LOAD_MODIFIER, KeyInputT, OffsetT>,     // Wrap the native input pointer with CacheModifiedValuesInputIterator
            KeysInputIteratorT>::Type                                                                   // Directly use the supplied input iterator type
        WrappedKeysInputIteratorT;

    // Cache-modified Input iterator wrapper type (for applying cache modifier) for values
    typedef typename If<IsPointer<ValuesInputIteratorT>::VALUE,
            CacheModifiedInputIterator<AgentReduceByKeyPolicyT::LOAD_MODIFIER, ValueInputT, OffsetT>,   // Wrap the native input pointer with CacheModifiedValuesInputIterator
            ValuesInputIteratorT>::Type                                                                 // Directly use the supplied input iterator type
        WrappedValuesInputIteratorT;

    // Cache-modified Input iterator wrapper type (for applying cache modifier) for fixup values
    typedef typename If<IsPointer<AggregatesOutputIteratorT>::VALUE,
            CacheModifiedInputIterator<AgentReduceByKeyPolicyT::LOAD_MODIFIER, ValueInputT, OffsetT>,   // Wrap the native input pointer with CacheModifiedValuesInputIterator
            AggregatesOutputIteratorT>::Type                                                            // Directly use the supplied input iterator type
        WrappedFixupInputIteratorT;

    // Reduce-value-by-segment scan operator
    typedef ReduceBySegmentOp<ReductionOpT> ReduceBySegmentOpT;

    // Parameterized BlockLoad type for keys
    typedef BlockLoad<
            KeyOutputT,
            BLOCK_THREADS,
            ITEMS_PER_THREAD,
            AgentReduceByKeyPolicyT::LOAD_ALGORITHM>
        BlockLoadKeysT;

    // Parameterized BlockLoad type for values
    typedef BlockLoad<
            ValueOutputT,
            BLOCK_THREADS,
            ITEMS_PER_THREAD,
            AgentReduceByKeyPolicyT::LOAD_ALGORITHM>
        BlockLoadValuesT;

    // Parameterized BlockDiscontinuity type for keys
    typedef BlockDiscontinuity<
            KeyOutputT,
            BLOCK_THREADS>
        BlockDiscontinuityKeys;

    // Parameterized BlockScan type
    typedef BlockScan<
            OffsetValuePairT,
            BLOCK_THREADS,
            AgentReduceByKeyPolicyT::SCAN_ALGORITHM>
        BlockScanT;

    // Callback type for obtaining tile prefix during block scan
    typedef TilePrefixCallbackOp<
            OffsetValuePairT,
            ReduceBySegmentOpT,
            ScanTileStateT>
        TilePrefixCallbackOpT;

    // Key and value exchange types
    typedef KeyOutputT    KeyExchangeT[TILE_ITEMS + 1];
    typedef ValueOutputT  ValueExchangeT[TILE_ITEMS + 1];

    // Shared memory type for this thread block
    union _TempStorage
    {
        struct
        {
            typename BlockScanT::TempStorage                scan;           // Smem needed for tile scanning
            typename TilePrefixCallbackOpT::TempStorage     prefix;         // Smem needed for cooperative prefix callback
            typename BlockDiscontinuityKeys::TempStorage    discontinuity;  // Smem needed for discontinuity detection
        };

        // Smem needed for loading keys
        typename BlockLoadKeysT::TempStorage load_keys;

        // Smem needed for loading values
        typename BlockLoadValuesT::TempStorage load_values;

        // Smem needed for compacting key value pairs(allows non POD items in this union)
        Uninitialized<KeyValuePairT[TILE_ITEMS + 1]> raw_exchange;
    };

    // Alias wrapper allowing storage to be unioned
    struct TempStorage : Uninitialized<_TempStorage> {};


    //---------------------------------------------------------------------
    // Per-thread fields
    //---------------------------------------------------------------------

    _TempStorage&                   temp_storage;       ///< Reference to temp_storage
    WrappedKeysInputIteratorT       d_keys_in;          ///< Input keys
    UniqueOutputIteratorT           d_unique_out;       ///< Unique output keys
    WrappedValuesInputIteratorT     d_values_in;        ///< Input values
    AggregatesOutputIteratorT       d_aggregates_out;   ///< Output value aggregates
    NumRunsOutputIteratorT          d_num_runs_out;     ///< Output pointer for total number of segments identified
    EqualityOpT                     equality_op;        ///< KeyT equality operator
    ReductionOpT                    reduction_op;       ///< Reduction operator
    ReduceBySegmentOpT              scan_op;            ///< Reduce-by-segment scan operator


    //---------------------------------------------------------------------
    // Constructor
    //---------------------------------------------------------------------

    // Constructor
    __device__ __forceinline__
    AgentReduceByKey(
        TempStorage&                temp_storage,       ///< Reference to temp_storage
        KeysInputIteratorT          d_keys_in,          ///< Input keys
        UniqueOutputIteratorT       d_unique_out,       ///< Unique output keys
        ValuesInputIteratorT        d_values_in,        ///< Input values
        AggregatesOutputIteratorT   d_aggregates_out,   ///< Output value aggregates
        NumRunsOutputIteratorT      d_num_runs_out,     ///< Output pointer for total number of segments identified
        EqualityOpT                 equality_op,        ///< KeyT equality operator
        ReductionOpT                reduction_op)       ///< ValueT reduction operator
    :
        temp_storage(temp_storage.Alias()),
        d_keys_in(d_keys_in),
        d_unique_out(d_unique_out),
        d_values_in(d_values_in),
        d_aggregates_out(d_aggregates_out),
        d_num_runs_out(d_num_runs_out),
        equality_op(equality_op),
        reduction_op(reduction_op),
        scan_op(reduction_op)
    {}


    //---------------------------------------------------------------------
    // Scatter utility methods
    //---------------------------------------------------------------------

    /**
     * Directly scatter flagged items to output offsets
     */
    __device__ __forceinline__ void ScatterDirect(
        KeyValuePairT   (&scatter_items)[ITEMS_PER_THREAD],
        OffsetT         (&segment_flags)[ITEMS_PER_THREAD],
        OffsetT         (&segment_indices)[ITEMS_PER_THREAD])
    {
        // Scatter flagged keys and values
        #pragma unroll
        for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
        {
            if (segment_flags[ITEM])
            {
                d_unique_out[segment_indices[ITEM]]     = scatter_items[ITEM].key;
                d_aggregates_out[segment_indices[ITEM]] = scatter_items[ITEM].value;
            }
        }
    }


    /**
     * 2-phase scatter flagged items to output offsets
     *
     * The exclusive scan causes each head flag to be paired with the previous
     * value aggregate: the scatter offsets must be decremented for value aggregates
     */
    __device__ __forceinline__ void ScatterTwoPhase(
        KeyValuePairT   (&scatter_items)[ITEMS_PER_THREAD],
        OffsetT         (&segment_flags)[ITEMS_PER_THREAD],
        OffsetT         (&segment_indices)[ITEMS_PER_THREAD],
        OffsetT         num_tile_segments,
        OffsetT         num_tile_segments_prefix)
    {
        CTA_SYNC();

        // Compact and scatter pairs
        #pragma unroll
        for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
        {
            if (segment_flags[ITEM])
            {
                temp_storage.raw_exchange.Alias()[segment_indices[ITEM] - num_tile_segments_prefix] = scatter_items[ITEM];
            }
        }

        CTA_SYNC();

        for (int item = threadIdx.x; item < num_tile_segments; item += BLOCK_THREADS)
        {
            KeyValuePairT pair                                  = temp_storage.raw_exchange.Alias()[item];
            d_unique_out[num_tile_segments_prefix + item]       = pair.key;
            d_aggregates_out[num_tile_segments_prefix + item]   = pair.value;
        }
    }


    /**
     * Scatter flagged items
     */
    __device__ __forceinline__ void Scatter(
        KeyValuePairT   (&scatter_items)[ITEMS_PER_THREAD],
        OffsetT         (&segment_flags)[ITEMS_PER_THREAD],
        OffsetT         (&segment_indices)[ITEMS_PER_THREAD],
        OffsetT         num_tile_segments,
        OffsetT         num_tile_segments_prefix)
    {
        // Do a one-phase scatter if (a) two-phase is disabled or (b) the average number of selected items per thread is less than one
        if (TWO_PHASE_SCATTER && (num_tile_segments > BLOCK_THREADS))
        {
            ScatterTwoPhase(
                scatter_items,
                segment_flags,
                segment_indices,
                num_tile_segments,
                num_tile_segments_prefix);
        }
        else
        {
            ScatterDirect(
                scatter_items,
                segment_flags,
                segment_indices);
        }
    }


    //---------------------------------------------------------------------
    // Cooperatively scan a device-wide sequence of tiles with other CTAs
    //---------------------------------------------------------------------

    /**
     * Process a tile of input (dynamic chained scan)
     */
    template <bool IS_LAST_TILE>                ///< Whether the current tile is the last tile
    __device__ __forceinline__ void ConsumeTile(
        OffsetT             num_remaining,      ///< Number of global input items remaining (including this tile)
        int                 tile_idx,           ///< Tile index
        OffsetT             tile_offset,        ///< Tile offset
        ScanTileStateT&     tile_state)         ///< Global tile state descriptor
    {
        KeyOutputT          keys[ITEMS_PER_THREAD];             // Tile keys
        KeyOutputT          prev_keys[ITEMS_PER_THREAD];        // Tile keys shuffled up
        ValueOutputT        values[ITEMS_PER_THREAD];           // Tile values
        OffsetT             head_flags[ITEMS_PER_THREAD];       // Segment head flags
        OffsetT             segment_indices[ITEMS_PER_THREAD];  // Segment indices
        OffsetValuePairT    scan_items[ITEMS_PER_THREAD];       // Zipped values and segment flags|indices
        KeyValuePairT       scatter_items[ITEMS_PER_THREAD];    // Zipped key value pairs for scattering

        // Load keys
        if (IS_LAST_TILE)
            BlockLoadKeysT(temp_storage.load_keys).Load(d_keys_in + tile_offset, keys, num_remaining);
        else
            BlockLoadKeysT(temp_storage.load_keys).Load(d_keys_in + tile_offset, keys);

        // Load tile predecessor key in first thread
        KeyOutputT tile_predecessor;
        if (threadIdx.x == 0)
        {
            tile_predecessor = (tile_idx == 0) ?
                keys[0] :                       // First tile gets repeat of first item (thus first item will not be flagged as a head)
                d_keys_in[tile_offset - 1];     // Subsequent tiles get last key from previous tile
        }

        CTA_SYNC();

        // Load values
        if (IS_LAST_TILE)
            BlockLoadValuesT(temp_storage.load_values).Load(d_values_in + tile_offset, values, num_remaining);
        else
            BlockLoadValuesT(temp_storage.load_values).Load(d_values_in + tile_offset, values);

        CTA_SYNC();

        // Initialize head-flags and shuffle up the previous keys
        if (IS_LAST_TILE)
        {
            // Use custom flag operator to additionally flag the first out-of-bounds item
            GuardedInequalityWrapper<EqualityOpT> flag_op(equality_op, num_remaining);
            BlockDiscontinuityKeys(temp_storage.discontinuity).FlagHeads(
                head_flags, keys, prev_keys, flag_op, tile_predecessor);
        }
        else
        {
            InequalityWrapper<EqualityOpT> flag_op(equality_op);
            BlockDiscontinuityKeys(temp_storage.discontinuity).FlagHeads(
                head_flags, keys, prev_keys, flag_op, tile_predecessor);
        }

        // Zip values and head flags
        #pragma unroll
        for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
        {
            scan_items[ITEM].value  = values[ITEM];
            scan_items[ITEM].key    = head_flags[ITEM];
        }

        // Perform exclusive tile scan
        OffsetValuePairT    block_aggregate;        // Inclusive block-wide scan aggregate
        OffsetT             num_segments_prefix;    // Number of segments prior to this tile
        OffsetValuePairT    total_aggregate;        // The tile prefix folded with block_aggregate
        if (tile_idx == 0)
        {
            // Scan first tile
            BlockScanT(temp_storage.scan).ExclusiveScan(scan_items, scan_items, scan_op, block_aggregate);
            num_segments_prefix     = 0;
            total_aggregate         = block_aggregate;

            // Update tile status if there are successor tiles
            if ((!IS_LAST_TILE) && (threadIdx.x == 0))
                tile_state.SetInclusive(0, block_aggregate);
        }
        else
        {
            // Scan non-first tile
            TilePrefixCallbackOpT prefix_op(tile_state, temp_storage.prefix, scan_op, tile_idx);
            BlockScanT(temp_storage.scan).ExclusiveScan(scan_items, scan_items, scan_op, prefix_op);

            block_aggregate         = prefix_op.GetBlockAggregate();
            num_segments_prefix     = prefix_op.GetExclusivePrefix().key;
            total_aggregate         = prefix_op.GetInclusivePrefix();
        }

        // Rezip scatter items and segment indices
        #pragma unroll
        for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
        {
            scatter_items[ITEM].key     = prev_keys[ITEM];
            scatter_items[ITEM].value   = scan_items[ITEM].value;
            segment_indices[ITEM]       = scan_items[ITEM].key;
        }

        // At this point, each flagged segment head has:
        //  - The key for the previous segment
        //  - The reduced value from the previous segment
        //  - The segment index for the reduced value

        // Scatter flagged keys and values
        OffsetT num_tile_segments = block_aggregate.key;
        Scatter(scatter_items, head_flags, segment_indices, num_tile_segments, num_segments_prefix);

        // Last thread in last tile will output final count (and last pair, if necessary)
        if ((IS_LAST_TILE) && (threadIdx.x == BLOCK_THREADS - 1))
        {
            OffsetT num_segments = num_segments_prefix + num_tile_segments;

            // If the last tile is a whole tile, output the final_value
            if (num_remaining == TILE_ITEMS)
            {
                d_unique_out[num_segments]      = keys[ITEMS_PER_THREAD - 1];
                d_aggregates_out[num_segments]  = total_aggregate.value;
                num_segments++;
            }

            // Output the total number of items selected
            *d_num_runs_out = num_segments;
        }
    }


    /**
     * Scan tiles of items as part of a dynamic chained scan
     */
    __device__ __forceinline__ void ConsumeRange(
        int                 num_items,          ///< Total number of input items
        ScanTileStateT&     tile_state,         ///< Global tile state descriptor
        int                 start_tile)         ///< The starting tile for the current grid
    {
        // Blocks are launched in increasing order, so just assign one tile per block
        int     tile_idx        = start_tile + blockIdx.x;          // Current tile index
        OffsetT tile_offset     = OffsetT(TILE_ITEMS) * tile_idx;   // Global offset for the current tile
        OffsetT num_remaining   = num_items - tile_offset;          // Remaining items (including this tile)

        if (num_remaining > TILE_ITEMS)
        {
            // Not last tile
            ConsumeTile<false>(num_remaining, tile_idx, tile_offset, tile_state);
        }
        else if (num_remaining > 0)
        {
            // Last tile
            ConsumeTile<true>(num_remaining, tile_idx, tile_offset, tile_state);
        }
    }

};


}               // CUB namespace
CUB_NS_POSTFIX  // Optional outer namespace(s)