agent_spmv_orig.cuh
26.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* cub::AgentSpmv implements a stateful abstraction of CUDA thread blocks for participating in device-wide SpMV.
*/
#pragma once
#include <iterator>
#include "../util_type.cuh"
#include "../block/block_reduce.cuh"
#include "../block/block_scan.cuh"
#include "../block/block_exchange.cuh"
#include "../thread/thread_search.cuh"
#include "../thread/thread_operators.cuh"
#include "../iterator/cache_modified_input_iterator.cuh"
#include "../iterator/counting_input_iterator.cuh"
#include "../iterator/tex_ref_input_iterator.cuh"
#include "../util_namespace.cuh"
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/******************************************************************************
* Tuning policy
******************************************************************************/
/**
* Parameterizable tuning policy type for AgentSpmv
*/
template <
int _BLOCK_THREADS, ///< Threads per thread block
int _ITEMS_PER_THREAD, ///< Items per thread (per tile of input)
CacheLoadModifier _ROW_OFFSETS_SEARCH_LOAD_MODIFIER, ///< Cache load modifier for reading CSR row-offsets during search
CacheLoadModifier _ROW_OFFSETS_LOAD_MODIFIER, ///< Cache load modifier for reading CSR row-offsets
CacheLoadModifier _COLUMN_INDICES_LOAD_MODIFIER, ///< Cache load modifier for reading CSR column-indices
CacheLoadModifier _VALUES_LOAD_MODIFIER, ///< Cache load modifier for reading CSR values
CacheLoadModifier _VECTOR_VALUES_LOAD_MODIFIER, ///< Cache load modifier for reading vector values
bool _DIRECT_LOAD_NONZEROS, ///< Whether to load nonzeros directly from global during sequential merging (vs. pre-staged through shared memory)
BlockScanAlgorithm _SCAN_ALGORITHM> ///< The BlockScan algorithm to use
struct AgentSpmvPolicy
{
enum
{
BLOCK_THREADS = _BLOCK_THREADS, ///< Threads per thread block
ITEMS_PER_THREAD = _ITEMS_PER_THREAD, ///< Items per thread (per tile of input)
DIRECT_LOAD_NONZEROS = _DIRECT_LOAD_NONZEROS, ///< Whether to load nonzeros directly from global during sequential merging (pre-staged through shared memory)
};
static const CacheLoadModifier ROW_OFFSETS_SEARCH_LOAD_MODIFIER = _ROW_OFFSETS_SEARCH_LOAD_MODIFIER; ///< Cache load modifier for reading CSR row-offsets
static const CacheLoadModifier ROW_OFFSETS_LOAD_MODIFIER = _ROW_OFFSETS_LOAD_MODIFIER; ///< Cache load modifier for reading CSR row-offsets
static const CacheLoadModifier COLUMN_INDICES_LOAD_MODIFIER = _COLUMN_INDICES_LOAD_MODIFIER; ///< Cache load modifier for reading CSR column-indices
static const CacheLoadModifier VALUES_LOAD_MODIFIER = _VALUES_LOAD_MODIFIER; ///< Cache load modifier for reading CSR values
static const CacheLoadModifier VECTOR_VALUES_LOAD_MODIFIER = _VECTOR_VALUES_LOAD_MODIFIER; ///< Cache load modifier for reading vector values
static const BlockScanAlgorithm SCAN_ALGORITHM = _SCAN_ALGORITHM; ///< The BlockScan algorithm to use
};
/******************************************************************************
* Thread block abstractions
******************************************************************************/
template <
typename ValueT, ///< Matrix and vector value type
typename OffsetT> ///< Signed integer type for sequence offsets
struct SpmvParams
{
ValueT* d_values; ///< Pointer to the array of \p num_nonzeros values of the corresponding nonzero elements of matrix <b>A</b>.
OffsetT* d_row_end_offsets; ///< Pointer to the array of \p m offsets demarcating the end of every row in \p d_column_indices and \p d_values
OffsetT* d_column_indices; ///< Pointer to the array of \p num_nonzeros column-indices of the corresponding nonzero elements of matrix <b>A</b>. (Indices are zero-valued.)
ValueT* d_vector_x; ///< Pointer to the array of \p num_cols values corresponding to the dense input vector <em>x</em>
ValueT* d_vector_y; ///< Pointer to the array of \p num_rows values corresponding to the dense output vector <em>y</em>
int num_rows; ///< Number of rows of matrix <b>A</b>.
int num_cols; ///< Number of columns of matrix <b>A</b>.
int num_nonzeros; ///< Number of nonzero elements of matrix <b>A</b>.
ValueT alpha; ///< Alpha multiplicand
ValueT beta; ///< Beta addend-multiplicand
TexRefInputIterator<ValueT, 66778899, OffsetT> t_vector_x;
};
/**
* \brief AgentSpmv implements a stateful abstraction of CUDA thread blocks for participating in device-wide SpMV.
*/
template <
typename AgentSpmvPolicyT, ///< Parameterized AgentSpmvPolicy tuning policy type
typename ValueT, ///< Matrix and vector value type
typename OffsetT, ///< Signed integer type for sequence offsets
bool HAS_ALPHA, ///< Whether the input parameter \p alpha is 1
bool HAS_BETA, ///< Whether the input parameter \p beta is 0
int PTX_ARCH = CUB_PTX_ARCH> ///< PTX compute capability
struct AgentSpmv
{
//---------------------------------------------------------------------
// Types and constants
//---------------------------------------------------------------------
/// Constants
enum
{
BLOCK_THREADS = AgentSpmvPolicyT::BLOCK_THREADS,
ITEMS_PER_THREAD = AgentSpmvPolicyT::ITEMS_PER_THREAD,
TILE_ITEMS = BLOCK_THREADS * ITEMS_PER_THREAD,
};
/// 2D merge path coordinate type
typedef typename CubVector<OffsetT, 2>::Type CoordinateT;
/// Input iterator wrapper types (for applying cache modifiers)
typedef CacheModifiedInputIterator<
AgentSpmvPolicyT::ROW_OFFSETS_SEARCH_LOAD_MODIFIER,
OffsetT,
OffsetT>
RowOffsetsSearchIteratorT;
typedef CacheModifiedInputIterator<
AgentSpmvPolicyT::ROW_OFFSETS_LOAD_MODIFIER,
OffsetT,
OffsetT>
RowOffsetsIteratorT;
typedef CacheModifiedInputIterator<
AgentSpmvPolicyT::COLUMN_INDICES_LOAD_MODIFIER,
OffsetT,
OffsetT>
ColumnIndicesIteratorT;
typedef CacheModifiedInputIterator<
AgentSpmvPolicyT::VALUES_LOAD_MODIFIER,
ValueT,
OffsetT>
ValueIteratorT;
typedef CacheModifiedInputIterator<
AgentSpmvPolicyT::VECTOR_VALUES_LOAD_MODIFIER,
ValueT,
OffsetT>
VectorValueIteratorT;
// Tuple type for scanning (pairs accumulated segment-value with segment-index)
typedef KeyValuePair<OffsetT, ValueT> KeyValuePairT;
// Reduce-value-by-segment scan operator
typedef ReduceByKeyOp<cub::Sum> ReduceBySegmentOpT;
// BlockReduce specialization
typedef BlockReduce<
ValueT,
BLOCK_THREADS,
BLOCK_REDUCE_WARP_REDUCTIONS>
BlockReduceT;
// BlockScan specialization
typedef BlockScan<
KeyValuePairT,
BLOCK_THREADS,
AgentSpmvPolicyT::SCAN_ALGORITHM>
BlockScanT;
// BlockScan specialization
typedef BlockScan<
ValueT,
BLOCK_THREADS,
AgentSpmvPolicyT::SCAN_ALGORITHM>
BlockPrefixSumT;
// BlockExchange specialization
typedef BlockExchange<
ValueT,
BLOCK_THREADS,
ITEMS_PER_THREAD>
BlockExchangeT;
/// Merge item type (either a non-zero value or a row-end offset)
union MergeItem
{
// Value type to pair with index type OffsetT (NullType if loading values directly during merge)
typedef typename If<AgentSpmvPolicyT::DIRECT_LOAD_NONZEROS, NullType, ValueT>::Type MergeValueT;
OffsetT row_end_offset;
MergeValueT nonzero;
};
/// Shared memory type required by this thread block
struct _TempStorage
{
CoordinateT tile_coords[2];
union Aliasable
{
// Smem needed for tile of merge items
MergeItem merge_items[ITEMS_PER_THREAD + TILE_ITEMS + 1];
// Smem needed for block exchange
typename BlockExchangeT::TempStorage exchange;
// Smem needed for block-wide reduction
typename BlockReduceT::TempStorage reduce;
// Smem needed for tile scanning
typename BlockScanT::TempStorage scan;
// Smem needed for tile prefix sum
typename BlockPrefixSumT::TempStorage prefix_sum;
} aliasable;
};
/// Temporary storage type (unionable)
struct TempStorage : Uninitialized<_TempStorage> {};
//---------------------------------------------------------------------
// Per-thread fields
//---------------------------------------------------------------------
_TempStorage& temp_storage; /// Reference to temp_storage
SpmvParams<ValueT, OffsetT>& spmv_params;
ValueIteratorT wd_values; ///< Wrapped pointer to the array of \p num_nonzeros values of the corresponding nonzero elements of matrix <b>A</b>.
RowOffsetsIteratorT wd_row_end_offsets; ///< Wrapped Pointer to the array of \p m offsets demarcating the end of every row in \p d_column_indices and \p d_values
ColumnIndicesIteratorT wd_column_indices; ///< Wrapped Pointer to the array of \p num_nonzeros column-indices of the corresponding nonzero elements of matrix <b>A</b>. (Indices are zero-valued.)
VectorValueIteratorT wd_vector_x; ///< Wrapped Pointer to the array of \p num_cols values corresponding to the dense input vector <em>x</em>
VectorValueIteratorT wd_vector_y; ///< Wrapped Pointer to the array of \p num_cols values corresponding to the dense input vector <em>x</em>
//---------------------------------------------------------------------
// Interface
//---------------------------------------------------------------------
/**
* Constructor
*/
__device__ __forceinline__ AgentSpmv(
TempStorage& temp_storage, ///< Reference to temp_storage
SpmvParams<ValueT, OffsetT>& spmv_params) ///< SpMV input parameter bundle
:
temp_storage(temp_storage.Alias()),
spmv_params(spmv_params),
wd_values(spmv_params.d_values),
wd_row_end_offsets(spmv_params.d_row_end_offsets),
wd_column_indices(spmv_params.d_column_indices),
wd_vector_x(spmv_params.d_vector_x),
wd_vector_y(spmv_params.d_vector_y)
{}
/**
* Consume a merge tile, specialized for direct-load of nonzeros
*/
__device__ __forceinline__ KeyValuePairT ConsumeTile(
int tile_idx,
CoordinateT tile_start_coord,
CoordinateT tile_end_coord,
Int2Type<true> is_direct_load) ///< Marker type indicating whether to load nonzeros directly during path-discovery or beforehand in batch
{
int tile_num_rows = tile_end_coord.x - tile_start_coord.x;
int tile_num_nonzeros = tile_end_coord.y - tile_start_coord.y;
OffsetT* s_tile_row_end_offsets = &temp_storage.aliasable.merge_items[0].row_end_offset;
// Gather the row end-offsets for the merge tile into shared memory
for (int item = threadIdx.x; item <= tile_num_rows; item += BLOCK_THREADS)
{
s_tile_row_end_offsets[item] = wd_row_end_offsets[tile_start_coord.x + item];
}
CTA_SYNC();
// Search for the thread's starting coordinate within the merge tile
CountingInputIterator<OffsetT> tile_nonzero_indices(tile_start_coord.y);
CoordinateT thread_start_coord;
MergePathSearch(
OffsetT(threadIdx.x * ITEMS_PER_THREAD), // Diagonal
s_tile_row_end_offsets, // List A
tile_nonzero_indices, // List B
tile_num_rows,
tile_num_nonzeros,
thread_start_coord);
CTA_SYNC(); // Perf-sync
// Compute the thread's merge path segment
CoordinateT thread_current_coord = thread_start_coord;
KeyValuePairT scan_segment[ITEMS_PER_THREAD];
ValueT running_total = 0.0;
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
{
OffsetT nonzero_idx = CUB_MIN(tile_nonzero_indices[thread_current_coord.y], spmv_params.num_nonzeros - 1);
OffsetT column_idx = wd_column_indices[nonzero_idx];
ValueT value = wd_values[nonzero_idx];
ValueT vector_value = spmv_params.t_vector_x[column_idx];
#if (CUB_PTX_ARCH >= 350)
vector_value = wd_vector_x[column_idx];
#endif
ValueT nonzero = value * vector_value;
OffsetT row_end_offset = s_tile_row_end_offsets[thread_current_coord.x];
if (tile_nonzero_indices[thread_current_coord.y] < row_end_offset)
{
// Move down (accumulate)
running_total += nonzero;
scan_segment[ITEM].value = running_total;
scan_segment[ITEM].key = tile_num_rows;
++thread_current_coord.y;
}
else
{
// Move right (reset)
scan_segment[ITEM].value = running_total;
scan_segment[ITEM].key = thread_current_coord.x;
running_total = 0.0;
++thread_current_coord.x;
}
}
CTA_SYNC();
// Block-wide reduce-value-by-segment
KeyValuePairT tile_carry;
ReduceBySegmentOpT scan_op;
KeyValuePairT scan_item;
scan_item.value = running_total;
scan_item.key = thread_current_coord.x;
BlockScanT(temp_storage.aliasable.scan).ExclusiveScan(scan_item, scan_item, scan_op, tile_carry);
if (tile_num_rows > 0)
{
if (threadIdx.x == 0)
scan_item.key = -1;
// Direct scatter
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
{
if (scan_segment[ITEM].key < tile_num_rows)
{
if (scan_item.key == scan_segment[ITEM].key)
scan_segment[ITEM].value = scan_item.value + scan_segment[ITEM].value;
if (HAS_ALPHA)
{
scan_segment[ITEM].value *= spmv_params.alpha;
}
if (HAS_BETA)
{
// Update the output vector element
ValueT addend = spmv_params.beta * wd_vector_y[tile_start_coord.x + scan_segment[ITEM].key];
scan_segment[ITEM].value += addend;
}
// Set the output vector element
spmv_params.d_vector_y[tile_start_coord.x + scan_segment[ITEM].key] = scan_segment[ITEM].value;
}
}
}
// Return the tile's running carry-out
return tile_carry;
}
/**
* Consume a merge tile, specialized for indirect load of nonzeros
*/
__device__ __forceinline__ KeyValuePairT ConsumeTile(
int tile_idx,
CoordinateT tile_start_coord,
CoordinateT tile_end_coord,
Int2Type<false> is_direct_load) ///< Marker type indicating whether to load nonzeros directly during path-discovery or beforehand in batch
{
int tile_num_rows = tile_end_coord.x - tile_start_coord.x;
int tile_num_nonzeros = tile_end_coord.y - tile_start_coord.y;
#if (CUB_PTX_ARCH >= 520)
OffsetT* s_tile_row_end_offsets = &temp_storage.aliasable.merge_items[0].row_end_offset;
ValueT* s_tile_nonzeros = &temp_storage.aliasable.merge_items[tile_num_rows + ITEMS_PER_THREAD].nonzero;
// Gather the nonzeros for the merge tile into shared memory
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
{
int nonzero_idx = threadIdx.x + (ITEM * BLOCK_THREADS);
ValueIteratorT a = wd_values + tile_start_coord.y + nonzero_idx;
ColumnIndicesIteratorT ci = wd_column_indices + tile_start_coord.y + nonzero_idx;
ValueT* s = s_tile_nonzeros + nonzero_idx;
if (nonzero_idx < tile_num_nonzeros)
{
OffsetT column_idx = *ci;
ValueT value = *a;
ValueT vector_value = spmv_params.t_vector_x[column_idx];
vector_value = wd_vector_x[column_idx];
ValueT nonzero = value * vector_value;
*s = nonzero;
}
}
#else
OffsetT* s_tile_row_end_offsets = &temp_storage.aliasable.merge_items[0].row_end_offset;
ValueT* s_tile_nonzeros = &temp_storage.aliasable.merge_items[tile_num_rows + ITEMS_PER_THREAD].nonzero;
// Gather the nonzeros for the merge tile into shared memory
if (tile_num_nonzeros > 0)
{
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
{
int nonzero_idx = threadIdx.x + (ITEM * BLOCK_THREADS);
nonzero_idx = CUB_MIN(nonzero_idx, tile_num_nonzeros - 1);
OffsetT column_idx = wd_column_indices[tile_start_coord.y + nonzero_idx];
ValueT value = wd_values[tile_start_coord.y + nonzero_idx];
ValueT vector_value = spmv_params.t_vector_x[column_idx];
#if (CUB_PTX_ARCH >= 350)
vector_value = wd_vector_x[column_idx];
#endif
ValueT nonzero = value * vector_value;
s_tile_nonzeros[nonzero_idx] = nonzero;
}
}
#endif
// Gather the row end-offsets for the merge tile into shared memory
#pragma unroll 1
for (int item = threadIdx.x; item <= tile_num_rows; item += BLOCK_THREADS)
{
s_tile_row_end_offsets[item] = wd_row_end_offsets[tile_start_coord.x + item];
}
CTA_SYNC();
// Search for the thread's starting coordinate within the merge tile
CountingInputIterator<OffsetT> tile_nonzero_indices(tile_start_coord.y);
CoordinateT thread_start_coord;
MergePathSearch(
OffsetT(threadIdx.x * ITEMS_PER_THREAD), // Diagonal
s_tile_row_end_offsets, // List A
tile_nonzero_indices, // List B
tile_num_rows,
tile_num_nonzeros,
thread_start_coord);
CTA_SYNC(); // Perf-sync
// Compute the thread's merge path segment
CoordinateT thread_current_coord = thread_start_coord;
KeyValuePairT scan_segment[ITEMS_PER_THREAD];
ValueT running_total = 0.0;
OffsetT row_end_offset = s_tile_row_end_offsets[thread_current_coord.x];
ValueT nonzero = s_tile_nonzeros[thread_current_coord.y];
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
{
if (tile_nonzero_indices[thread_current_coord.y] < row_end_offset)
{
// Move down (accumulate)
scan_segment[ITEM].value = nonzero;
running_total += nonzero;
++thread_current_coord.y;
nonzero = s_tile_nonzeros[thread_current_coord.y];
}
else
{
// Move right (reset)
scan_segment[ITEM].value = 0.0;
running_total = 0.0;
++thread_current_coord.x;
row_end_offset = s_tile_row_end_offsets[thread_current_coord.x];
}
scan_segment[ITEM].key = thread_current_coord.x;
}
CTA_SYNC();
// Block-wide reduce-value-by-segment
KeyValuePairT tile_carry;
ReduceBySegmentOpT scan_op;
KeyValuePairT scan_item;
scan_item.value = running_total;
scan_item.key = thread_current_coord.x;
BlockScanT(temp_storage.aliasable.scan).ExclusiveScan(scan_item, scan_item, scan_op, tile_carry);
if (threadIdx.x == 0)
{
scan_item.key = thread_start_coord.x;
scan_item.value = 0.0;
}
if (tile_num_rows > 0)
{
CTA_SYNC();
// Scan downsweep and scatter
ValueT* s_partials = &temp_storage.aliasable.merge_items[0].nonzero;
if (scan_item.key != scan_segment[0].key)
{
s_partials[scan_item.key] = scan_item.value;
}
else
{
scan_segment[0].value += scan_item.value;
}
#pragma unroll
for (int ITEM = 1; ITEM < ITEMS_PER_THREAD; ++ITEM)
{
if (scan_segment[ITEM - 1].key != scan_segment[ITEM].key)
{
s_partials[scan_segment[ITEM - 1].key] = scan_segment[ITEM - 1].value;
}
else
{
scan_segment[ITEM].value += scan_segment[ITEM - 1].value;
}
}
CTA_SYNC();
#pragma unroll 1
for (int item = threadIdx.x; item < tile_num_rows; item += BLOCK_THREADS)
{
spmv_params.d_vector_y[tile_start_coord.x + item] = s_partials[item];
}
}
// Return the tile's running carry-out
return tile_carry;
}
/**
* Consume input tile
*/
__device__ __forceinline__ void ConsumeTile(
CoordinateT* d_tile_coordinates, ///< [in] Pointer to the temporary array of tile starting coordinates
KeyValuePairT* d_tile_carry_pairs, ///< [out] Pointer to the temporary array carry-out dot product row-ids, one per block
int num_merge_tiles) ///< [in] Number of merge tiles
{
int tile_idx = (blockIdx.x * gridDim.y) + blockIdx.y; // Current tile index
if (tile_idx >= num_merge_tiles)
return;
// Read our starting coordinates
if (threadIdx.x < 2)
{
if (d_tile_coordinates == NULL)
{
// Search our starting coordinates
OffsetT diagonal = (tile_idx + threadIdx.x) * TILE_ITEMS;
CoordinateT tile_coord;
CountingInputIterator<OffsetT> nonzero_indices(0);
// Search the merge path
MergePathSearch(
diagonal,
RowOffsetsSearchIteratorT(spmv_params.d_row_end_offsets),
nonzero_indices,
spmv_params.num_rows,
spmv_params.num_nonzeros,
tile_coord);
temp_storage.tile_coords[threadIdx.x] = tile_coord;
}
else
{
temp_storage.tile_coords[threadIdx.x] = d_tile_coordinates[tile_idx + threadIdx.x];
}
}
CTA_SYNC();
CoordinateT tile_start_coord = temp_storage.tile_coords[0];
CoordinateT tile_end_coord = temp_storage.tile_coords[1];
// Consume multi-segment tile
KeyValuePairT tile_carry = ConsumeTile(
tile_idx,
tile_start_coord,
tile_end_coord,
Int2Type<AgentSpmvPolicyT::DIRECT_LOAD_NONZEROS>());
// Output the tile's carry-out
if (threadIdx.x == 0)
{
if (HAS_ALPHA)
tile_carry.value *= spmv_params.alpha;
tile_carry.key += tile_start_coord.x;
d_tile_carry_pairs[tile_idx] = tile_carry;
}
}
};
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)