block_histogram.cuh
15.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* The cub::BlockHistogram class provides [<em>collective</em>](index.html#sec0) methods for constructing block-wide histograms from data samples partitioned across a CUDA thread block.
*/
#pragma once
#include "specializations/block_histogram_sort.cuh"
#include "specializations/block_histogram_atomic.cuh"
#include "../util_ptx.cuh"
#include "../util_arch.cuh"
#include "../util_namespace.cuh"
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/******************************************************************************
* Algorithmic variants
******************************************************************************/
/**
* \brief BlockHistogramAlgorithm enumerates alternative algorithms for the parallel construction of block-wide histograms.
*/
enum BlockHistogramAlgorithm
{
/**
* \par Overview
* Sorting followed by differentiation. Execution is comprised of two phases:
* -# Sort the data using efficient radix sort
* -# Look for "runs" of same-valued keys by detecting discontinuities; the run-lengths are histogram bin counts.
*
* \par Performance Considerations
* Delivers consistent throughput regardless of sample bin distribution.
*/
BLOCK_HISTO_SORT,
/**
* \par Overview
* Use atomic addition to update byte counts directly
*
* \par Performance Considerations
* Performance is strongly tied to the hardware implementation of atomic
* addition, and may be significantly degraded for non uniformly-random
* input distributions where many concurrent updates are likely to be
* made to the same bin counter.
*/
BLOCK_HISTO_ATOMIC,
};
/******************************************************************************
* Block histogram
******************************************************************************/
/**
* \brief The BlockHistogram class provides [<em>collective</em>](index.html#sec0) methods for constructing block-wide histograms from data samples partitioned across a CUDA thread block. ![](histogram_logo.png)
* \ingroup BlockModule
*
* \tparam T The sample type being histogrammed (must be castable to an integer bin identifier)
* \tparam BLOCK_DIM_X The thread block length in threads along the X dimension
* \tparam ITEMS_PER_THREAD The number of items per thread
* \tparam BINS The number bins within the histogram
* \tparam ALGORITHM <b>[optional]</b> cub::BlockHistogramAlgorithm enumerator specifying the underlying algorithm to use (default: cub::BLOCK_HISTO_SORT)
* \tparam BLOCK_DIM_Y <b>[optional]</b> The thread block length in threads along the Y dimension (default: 1)
* \tparam BLOCK_DIM_Z <b>[optional]</b> The thread block length in threads along the Z dimension (default: 1)
* \tparam PTX_ARCH <b>[optional]</b> \ptxversion
*
* \par Overview
* - A <a href="http://en.wikipedia.org/wiki/Histogram"><em>histogram</em></a>
* counts the number of observations that fall into each of the disjoint categories (known as <em>bins</em>).
* - BlockHistogram can be optionally specialized to use different algorithms:
* -# <b>cub::BLOCK_HISTO_SORT</b>. Sorting followed by differentiation. [More...](\ref cub::BlockHistogramAlgorithm)
* -# <b>cub::BLOCK_HISTO_ATOMIC</b>. Use atomic addition to update byte counts directly. [More...](\ref cub::BlockHistogramAlgorithm)
*
* \par Performance Considerations
* - \granularity
*
* \par A Simple Example
* \blockcollective{BlockHistogram}
* \par
* The code snippet below illustrates a 256-bin histogram of 512 integer samples that
* are partitioned across 128 threads where each thread owns 4 samples.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_histogram.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize a 256-bin BlockHistogram type for a 1D block of 128 threads having 4 character samples each
* typedef cub::BlockHistogram<unsigned char, 128, 4, 256> BlockHistogram;
*
* // Allocate shared memory for BlockHistogram
* __shared__ typename BlockHistogram::TempStorage temp_storage;
*
* // Allocate shared memory for block-wide histogram bin counts
* __shared__ unsigned int smem_histogram[256];
*
* // Obtain input samples per thread
* unsigned char data[4];
* ...
*
* // Compute the block-wide histogram
* BlockHistogram(temp_storage).Histogram(data, smem_histogram);
*
* \endcode
*
* \par Performance and Usage Considerations
* - The histogram output can be constructed in shared or device-accessible memory
* - See cub::BlockHistogramAlgorithm for performance details regarding algorithmic alternatives
*
*/
template <
typename T,
int BLOCK_DIM_X,
int ITEMS_PER_THREAD,
int BINS,
BlockHistogramAlgorithm ALGORITHM = BLOCK_HISTO_SORT,
int BLOCK_DIM_Y = 1,
int BLOCK_DIM_Z = 1,
int PTX_ARCH = CUB_PTX_ARCH>
class BlockHistogram
{
private:
/******************************************************************************
* Constants and type definitions
******************************************************************************/
/// Constants
enum
{
/// The thread block size in threads
BLOCK_THREADS = BLOCK_DIM_X * BLOCK_DIM_Y * BLOCK_DIM_Z,
};
/**
* Ensure the template parameterization meets the requirements of the
* targeted device architecture. BLOCK_HISTO_ATOMIC can only be used
* on version SM120 or later. Otherwise BLOCK_HISTO_SORT is used
* regardless.
*/
static const BlockHistogramAlgorithm SAFE_ALGORITHM =
((ALGORITHM == BLOCK_HISTO_ATOMIC) && (PTX_ARCH < 120)) ?
BLOCK_HISTO_SORT :
ALGORITHM;
/// Internal specialization.
typedef typename If<(SAFE_ALGORITHM == BLOCK_HISTO_SORT),
BlockHistogramSort<T, BLOCK_DIM_X, ITEMS_PER_THREAD, BINS, BLOCK_DIM_Y, BLOCK_DIM_Z, PTX_ARCH>,
BlockHistogramAtomic<BINS> >::Type InternalBlockHistogram;
/// Shared memory storage layout type for BlockHistogram
typedef typename InternalBlockHistogram::TempStorage _TempStorage;
/******************************************************************************
* Thread fields
******************************************************************************/
/// Shared storage reference
_TempStorage &temp_storage;
/// Linear thread-id
unsigned int linear_tid;
/******************************************************************************
* Utility methods
******************************************************************************/
/// Internal storage allocator
__device__ __forceinline__ _TempStorage& PrivateStorage()
{
__shared__ _TempStorage private_storage;
return private_storage;
}
public:
/// \smemstorage{BlockHistogram}
struct TempStorage : Uninitialized<_TempStorage> {};
/******************************************************************//**
* \name Collective constructors
*********************************************************************/
//@{
/**
* \brief Collective constructor using a private static allocation of shared memory as temporary storage.
*/
__device__ __forceinline__ BlockHistogram()
:
temp_storage(PrivateStorage()),
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z))
{}
/**
* \brief Collective constructor using the specified memory allocation as temporary storage.
*/
__device__ __forceinline__ BlockHistogram(
TempStorage &temp_storage) ///< [in] Reference to memory allocation having layout type TempStorage
:
temp_storage(temp_storage.Alias()),
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z))
{}
//@} end member group
/******************************************************************//**
* \name Histogram operations
*********************************************************************/
//@{
/**
* \brief Initialize the shared histogram counters to zero.
*
* \par Snippet
* The code snippet below illustrates a the initialization and update of a
* histogram of 512 integer samples that are partitioned across 128 threads
* where each thread owns 4 samples.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_histogram.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize a 256-bin BlockHistogram type for a 1D block of 128 threads having 4 character samples each
* typedef cub::BlockHistogram<unsigned char, 128, 4, 256> BlockHistogram;
*
* // Allocate shared memory for BlockHistogram
* __shared__ typename BlockHistogram::TempStorage temp_storage;
*
* // Allocate shared memory for block-wide histogram bin counts
* __shared__ unsigned int smem_histogram[256];
*
* // Obtain input samples per thread
* unsigned char thread_samples[4];
* ...
*
* // Initialize the block-wide histogram
* BlockHistogram(temp_storage).InitHistogram(smem_histogram);
*
* // Update the block-wide histogram
* BlockHistogram(temp_storage).Composite(thread_samples, smem_histogram);
*
* \endcode
*
* \tparam CounterT <b>[inferred]</b> Histogram counter type
*/
template <typename CounterT >
__device__ __forceinline__ void InitHistogram(CounterT histogram[BINS])
{
// Initialize histogram bin counts to zeros
int histo_offset = 0;
#pragma unroll
for(; histo_offset + BLOCK_THREADS <= BINS; histo_offset += BLOCK_THREADS)
{
histogram[histo_offset + linear_tid] = 0;
}
// Finish up with guarded initialization if necessary
if ((BINS % BLOCK_THREADS != 0) && (histo_offset + linear_tid < BINS))
{
histogram[histo_offset + linear_tid] = 0;
}
}
/**
* \brief Constructs a block-wide histogram in shared/device-accessible memory. Each thread contributes an array of input elements.
*
* \par
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a 256-bin histogram of 512 integer samples that
* are partitioned across 128 threads where each thread owns 4 samples.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_histogram.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize a 256-bin BlockHistogram type for a 1D block of 128 threads having 4 character samples each
* typedef cub::BlockHistogram<unsigned char, 128, 4, 256> BlockHistogram;
*
* // Allocate shared memory for BlockHistogram
* __shared__ typename BlockHistogram::TempStorage temp_storage;
*
* // Allocate shared memory for block-wide histogram bin counts
* __shared__ unsigned int smem_histogram[256];
*
* // Obtain input samples per thread
* unsigned char thread_samples[4];
* ...
*
* // Compute the block-wide histogram
* BlockHistogram(temp_storage).Histogram(thread_samples, smem_histogram);
*
* \endcode
*
* \tparam CounterT <b>[inferred]</b> Histogram counter type
*/
template <
typename CounterT >
__device__ __forceinline__ void Histogram(
T (&items)[ITEMS_PER_THREAD], ///< [in] Calling thread's input values to histogram
CounterT histogram[BINS]) ///< [out] Reference to shared/device-accessible memory histogram
{
// Initialize histogram bin counts to zeros
InitHistogram(histogram);
CTA_SYNC();
// Composite the histogram
InternalBlockHistogram(temp_storage).Composite(items, histogram);
}
/**
* \brief Updates an existing block-wide histogram in shared/device-accessible memory. Each thread composites an array of input elements.
*
* \par
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a the initialization and update of a
* histogram of 512 integer samples that are partitioned across 128 threads
* where each thread owns 4 samples.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_histogram.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize a 256-bin BlockHistogram type for a 1D block of 128 threads having 4 character samples each
* typedef cub::BlockHistogram<unsigned char, 128, 4, 256> BlockHistogram;
*
* // Allocate shared memory for BlockHistogram
* __shared__ typename BlockHistogram::TempStorage temp_storage;
*
* // Allocate shared memory for block-wide histogram bin counts
* __shared__ unsigned int smem_histogram[256];
*
* // Obtain input samples per thread
* unsigned char thread_samples[4];
* ...
*
* // Initialize the block-wide histogram
* BlockHistogram(temp_storage).InitHistogram(smem_histogram);
*
* // Update the block-wide histogram
* BlockHistogram(temp_storage).Composite(thread_samples, smem_histogram);
*
* \endcode
*
* \tparam CounterT <b>[inferred]</b> Histogram counter type
*/
template <
typename CounterT >
__device__ __forceinline__ void Composite(
T (&items)[ITEMS_PER_THREAD], ///< [in] Calling thread's input values to histogram
CounterT histogram[BINS]) ///< [out] Reference to shared/device-accessible memory histogram
{
InternalBlockHistogram(temp_storage).Composite(items, histogram);
}
};
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)