block_scan_raking.cuh
27.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* cub::BlockScanRaking provides variants of raking-based parallel prefix scan across a CUDA thread block.
*/
#pragma once
#include "../../util_ptx.cuh"
#include "../../util_arch.cuh"
#include "../../block/block_raking_layout.cuh"
#include "../../thread/thread_reduce.cuh"
#include "../../thread/thread_scan.cuh"
#include "../../warp/warp_scan.cuh"
#include "../../util_namespace.cuh"
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/**
* \brief BlockScanRaking provides variants of raking-based parallel prefix scan across a CUDA thread block.
*/
template <
typename T, ///< Data type being scanned
int BLOCK_DIM_X, ///< The thread block length in threads along the X dimension
int BLOCK_DIM_Y, ///< The thread block length in threads along the Y dimension
int BLOCK_DIM_Z, ///< The thread block length in threads along the Z dimension
bool MEMOIZE, ///< Whether or not to buffer outer raking scan partials to incur fewer shared memory reads at the expense of higher register pressure
int PTX_ARCH> ///< The PTX compute capability for which to to specialize this collective
struct BlockScanRaking
{
//---------------------------------------------------------------------
// Types and constants
//---------------------------------------------------------------------
/// Constants
enum
{
/// The thread block size in threads
BLOCK_THREADS = BLOCK_DIM_X * BLOCK_DIM_Y * BLOCK_DIM_Z,
};
/// Layout type for padded thread block raking grid
typedef BlockRakingLayout<T, BLOCK_THREADS, PTX_ARCH> BlockRakingLayout;
/// Constants
enum
{
/// Number of raking threads
RAKING_THREADS = BlockRakingLayout::RAKING_THREADS,
/// Number of raking elements per warp synchronous raking thread
SEGMENT_LENGTH = BlockRakingLayout::SEGMENT_LENGTH,
/// Cooperative work can be entirely warp synchronous
WARP_SYNCHRONOUS = (BLOCK_THREADS == RAKING_THREADS),
};
/// WarpScan utility type
typedef WarpScan<T, RAKING_THREADS, PTX_ARCH> WarpScan;
/// Shared memory storage layout type
struct _TempStorage
{
typename WarpScan::TempStorage warp_scan; ///< Buffer for warp-synchronous scan
typename BlockRakingLayout::TempStorage raking_grid; ///< Padded thread block raking grid
T block_aggregate; ///< Block aggregate
};
/// Alias wrapper allowing storage to be unioned
struct TempStorage : Uninitialized<_TempStorage> {};
//---------------------------------------------------------------------
// Per-thread fields
//---------------------------------------------------------------------
// Thread fields
_TempStorage &temp_storage;
unsigned int linear_tid;
T cached_segment[SEGMENT_LENGTH];
//---------------------------------------------------------------------
// Utility methods
//---------------------------------------------------------------------
/// Templated reduction
template <int ITERATION, typename ScanOp>
__device__ __forceinline__ T GuardedReduce(
T* raking_ptr, ///< [in] Input array
ScanOp scan_op, ///< [in] Binary reduction operator
T raking_partial, ///< [in] Prefix to seed reduction with
Int2Type<ITERATION> /*iteration*/)
{
if ((BlockRakingLayout::UNGUARDED) || (((linear_tid * SEGMENT_LENGTH) + ITERATION) < BLOCK_THREADS))
{
T addend = raking_ptr[ITERATION];
raking_partial = scan_op(raking_partial, addend);
}
return GuardedReduce(raking_ptr, scan_op, raking_partial, Int2Type<ITERATION + 1>());
}
/// Templated reduction (base case)
template <typename ScanOp>
__device__ __forceinline__ T GuardedReduce(
T* /*raking_ptr*/, ///< [in] Input array
ScanOp /*scan_op*/, ///< [in] Binary reduction operator
T raking_partial, ///< [in] Prefix to seed reduction with
Int2Type<SEGMENT_LENGTH> /*iteration*/)
{
return raking_partial;
}
/// Templated copy
template <int ITERATION>
__device__ __forceinline__ void CopySegment(
T* out, ///< [out] Out array
T* in, ///< [in] Input array
Int2Type<ITERATION> /*iteration*/)
{
out[ITERATION] = in[ITERATION];
CopySegment(out, in, Int2Type<ITERATION + 1>());
}
/// Templated copy (base case)
__device__ __forceinline__ void CopySegment(
T* /*out*/, ///< [out] Out array
T* /*in*/, ///< [in] Input array
Int2Type<SEGMENT_LENGTH> /*iteration*/)
{}
/// Performs upsweep raking reduction, returning the aggregate
template <typename ScanOp>
__device__ __forceinline__ T Upsweep(
ScanOp scan_op)
{
T *smem_raking_ptr = BlockRakingLayout::RakingPtr(temp_storage.raking_grid, linear_tid);
// Read data into registers
CopySegment(cached_segment, smem_raking_ptr, Int2Type<0>());
T raking_partial = cached_segment[0];
return GuardedReduce(cached_segment, scan_op, raking_partial, Int2Type<1>());
}
/// Performs exclusive downsweep raking scan
template <typename ScanOp>
__device__ __forceinline__ void ExclusiveDownsweep(
ScanOp scan_op,
T raking_partial,
bool apply_prefix = true)
{
T *smem_raking_ptr = BlockRakingLayout::RakingPtr(temp_storage.raking_grid, linear_tid);
// Read data back into registers
if (!MEMOIZE)
{
CopySegment(cached_segment, smem_raking_ptr, Int2Type<0>());
}
internal::ThreadScanExclusive(cached_segment, cached_segment, scan_op, raking_partial, apply_prefix);
// Write data back to smem
CopySegment(smem_raking_ptr, cached_segment, Int2Type<0>());
}
/// Performs inclusive downsweep raking scan
template <typename ScanOp>
__device__ __forceinline__ void InclusiveDownsweep(
ScanOp scan_op,
T raking_partial,
bool apply_prefix = true)
{
T *smem_raking_ptr = BlockRakingLayout::RakingPtr(temp_storage.raking_grid, linear_tid);
// Read data back into registers
if (!MEMOIZE)
{
CopySegment(cached_segment, smem_raking_ptr, Int2Type<0>());
}
internal::ThreadScanInclusive(cached_segment, cached_segment, scan_op, raking_partial, apply_prefix);
// Write data back to smem
CopySegment(smem_raking_ptr, cached_segment, Int2Type<0>());
}
//---------------------------------------------------------------------
// Constructors
//---------------------------------------------------------------------
/// Constructor
__device__ __forceinline__ BlockScanRaking(
TempStorage &temp_storage)
:
temp_storage(temp_storage.Alias()),
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z))
{}
//---------------------------------------------------------------------
// Exclusive scans
//---------------------------------------------------------------------
/// Computes an exclusive thread block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element. With no initial value, the output computed for <em>thread</em><sub>0</sub> is undefined.
template <typename ScanOp>
__device__ __forceinline__ void ExclusiveScan(
T input, ///< [in] Calling thread's input item
T &exclusive_output, ///< [out] Calling thread's output item (may be aliased to \p input)
ScanOp scan_op) ///< [in] Binary scan operator
{
if (WARP_SYNCHRONOUS)
{
// Short-circuit directly to warp-synchronous scan
WarpScan(temp_storage.warp_scan).ExclusiveScan(input, exclusive_output, scan_op);
}
else
{
// Place thread partial into shared memory raking grid
T *placement_ptr = BlockRakingLayout::PlacementPtr(temp_storage.raking_grid, linear_tid);
*placement_ptr = input;
CTA_SYNC();
// Reduce parallelism down to just raking threads
if (linear_tid < RAKING_THREADS)
{
// Raking upsweep reduction across shared partials
T upsweep_partial = Upsweep(scan_op);
// Warp-synchronous scan
T exclusive_partial;
WarpScan(temp_storage.warp_scan).ExclusiveScan(upsweep_partial, exclusive_partial, scan_op);
// Exclusive raking downsweep scan
ExclusiveDownsweep(scan_op, exclusive_partial, (linear_tid != 0));
}
CTA_SYNC();
// Grab thread prefix from shared memory
exclusive_output = *placement_ptr;
}
}
/// Computes an exclusive thread block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element.
template <typename ScanOp>
__device__ __forceinline__ void ExclusiveScan(
T input, ///< [in] Calling thread's input items
T &output, ///< [out] Calling thread's output items (may be aliased to \p input)
const T &initial_value, ///< [in] Initial value to seed the exclusive scan
ScanOp scan_op) ///< [in] Binary scan operator
{
if (WARP_SYNCHRONOUS)
{
// Short-circuit directly to warp-synchronous scan
WarpScan(temp_storage.warp_scan).ExclusiveScan(input, output, initial_value, scan_op);
}
else
{
// Place thread partial into shared memory raking grid
T *placement_ptr = BlockRakingLayout::PlacementPtr(temp_storage.raking_grid, linear_tid);
*placement_ptr = input;
CTA_SYNC();
// Reduce parallelism down to just raking threads
if (linear_tid < RAKING_THREADS)
{
// Raking upsweep reduction across shared partials
T upsweep_partial = Upsweep(scan_op);
// Exclusive Warp-synchronous scan
T exclusive_partial;
WarpScan(temp_storage.warp_scan).ExclusiveScan(upsweep_partial, exclusive_partial, initial_value, scan_op);
// Exclusive raking downsweep scan
ExclusiveDownsweep(scan_op, exclusive_partial);
}
CTA_SYNC();
// Grab exclusive partial from shared memory
output = *placement_ptr;
}
}
/// Computes an exclusive thread block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element. Also provides every thread with the block-wide \p block_aggregate of all inputs. With no initial value, the output computed for <em>thread</em><sub>0</sub> is undefined.
template <typename ScanOp>
__device__ __forceinline__ void ExclusiveScan(
T input, ///< [in] Calling thread's input item
T &output, ///< [out] Calling thread's output item (may be aliased to \p input)
ScanOp scan_op, ///< [in] Binary scan operator
T &block_aggregate) ///< [out] Threadblock-wide aggregate reduction of input items
{
if (WARP_SYNCHRONOUS)
{
// Short-circuit directly to warp-synchronous scan
WarpScan(temp_storage.warp_scan).ExclusiveScan(input, output, scan_op, block_aggregate);
}
else
{
// Place thread partial into shared memory raking grid
T *placement_ptr = BlockRakingLayout::PlacementPtr(temp_storage.raking_grid, linear_tid);
*placement_ptr = input;
CTA_SYNC();
// Reduce parallelism down to just raking threads
if (linear_tid < RAKING_THREADS)
{
// Raking upsweep reduction across shared partials
T upsweep_partial= Upsweep(scan_op);
// Warp-synchronous scan
T inclusive_partial;
T exclusive_partial;
WarpScan(temp_storage.warp_scan).Scan(upsweep_partial, inclusive_partial, exclusive_partial, scan_op);
// Exclusive raking downsweep scan
ExclusiveDownsweep(scan_op, exclusive_partial, (linear_tid != 0));
// Broadcast aggregate to all threads
if (linear_tid == RAKING_THREADS - 1)
temp_storage.block_aggregate = inclusive_partial;
}
CTA_SYNC();
// Grab thread prefix from shared memory
output = *placement_ptr;
// Retrieve block aggregate
block_aggregate = temp_storage.block_aggregate;
}
}
/// Computes an exclusive thread block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element. Also provides every thread with the block-wide \p block_aggregate of all inputs.
template <typename ScanOp>
__device__ __forceinline__ void ExclusiveScan(
T input, ///< [in] Calling thread's input items
T &output, ///< [out] Calling thread's output items (may be aliased to \p input)
const T &initial_value, ///< [in] Initial value to seed the exclusive scan
ScanOp scan_op, ///< [in] Binary scan operator
T &block_aggregate) ///< [out] Threadblock-wide aggregate reduction of input items
{
if (WARP_SYNCHRONOUS)
{
// Short-circuit directly to warp-synchronous scan
WarpScan(temp_storage.warp_scan).ExclusiveScan(input, output, initial_value, scan_op, block_aggregate);
}
else
{
// Place thread partial into shared memory raking grid
T *placement_ptr = BlockRakingLayout::PlacementPtr(temp_storage.raking_grid, linear_tid);
*placement_ptr = input;
CTA_SYNC();
// Reduce parallelism down to just raking threads
if (linear_tid < RAKING_THREADS)
{
// Raking upsweep reduction across shared partials
T upsweep_partial = Upsweep(scan_op);
// Warp-synchronous scan
T exclusive_partial;
WarpScan(temp_storage.warp_scan).ExclusiveScan(upsweep_partial, exclusive_partial, initial_value, scan_op, block_aggregate);
// Exclusive raking downsweep scan
ExclusiveDownsweep(scan_op, exclusive_partial);
// Broadcast aggregate to other threads
if (linear_tid == 0)
temp_storage.block_aggregate = block_aggregate;
}
CTA_SYNC();
// Grab exclusive partial from shared memory
output = *placement_ptr;
// Retrieve block aggregate
block_aggregate = temp_storage.block_aggregate;
}
}
/// Computes an exclusive thread block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element. the call-back functor \p block_prefix_callback_op is invoked by the first warp in the block, and the value returned by <em>lane</em><sub>0</sub> in that warp is used as the "seed" value that logically prefixes the thread block's scan inputs. Also provides every thread with the block-wide \p block_aggregate of all inputs.
template <
typename ScanOp,
typename BlockPrefixCallbackOp>
__device__ __forceinline__ void ExclusiveScan(
T input, ///< [in] Calling thread's input item
T &output, ///< [out] Calling thread's output item (may be aliased to \p input)
ScanOp scan_op, ///< [in] Binary scan operator
BlockPrefixCallbackOp &block_prefix_callback_op) ///< [in-out] <b>[<em>warp</em><sub>0</sub> only]</b> Call-back functor for specifying a thread block-wide prefix to be applied to all inputs.
{
if (WARP_SYNCHRONOUS)
{
// Short-circuit directly to warp-synchronous scan
T block_aggregate;
WarpScan warp_scan(temp_storage.warp_scan);
warp_scan.ExclusiveScan(input, output, scan_op, block_aggregate);
// Obtain warp-wide prefix in lane0, then broadcast to other lanes
T block_prefix = block_prefix_callback_op(block_aggregate);
block_prefix = warp_scan.Broadcast(block_prefix, 0);
output = scan_op(block_prefix, output);
if (linear_tid == 0)
output = block_prefix;
}
else
{
// Place thread partial into shared memory raking grid
T *placement_ptr = BlockRakingLayout::PlacementPtr(temp_storage.raking_grid, linear_tid);
*placement_ptr = input;
CTA_SYNC();
// Reduce parallelism down to just raking threads
if (linear_tid < RAKING_THREADS)
{
WarpScan warp_scan(temp_storage.warp_scan);
// Raking upsweep reduction across shared partials
T upsweep_partial = Upsweep(scan_op);
// Warp-synchronous scan
T exclusive_partial, block_aggregate;
warp_scan.ExclusiveScan(upsweep_partial, exclusive_partial, scan_op, block_aggregate);
// Obtain block-wide prefix in lane0, then broadcast to other lanes
T block_prefix = block_prefix_callback_op(block_aggregate);
block_prefix = warp_scan.Broadcast(block_prefix, 0);
// Update prefix with warpscan exclusive partial
T downsweep_prefix = scan_op(block_prefix, exclusive_partial);
if (linear_tid == 0)
downsweep_prefix = block_prefix;
// Exclusive raking downsweep scan
ExclusiveDownsweep(scan_op, downsweep_prefix);
}
CTA_SYNC();
// Grab thread prefix from shared memory
output = *placement_ptr;
}
}
//---------------------------------------------------------------------
// Inclusive scans
//---------------------------------------------------------------------
/// Computes an inclusive thread block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element.
template <typename ScanOp>
__device__ __forceinline__ void InclusiveScan(
T input, ///< [in] Calling thread's input item
T &output, ///< [out] Calling thread's output item (may be aliased to \p input)
ScanOp scan_op) ///< [in] Binary scan operator
{
if (WARP_SYNCHRONOUS)
{
// Short-circuit directly to warp-synchronous scan
WarpScan(temp_storage.warp_scan).InclusiveScan(input, output, scan_op);
}
else
{
// Place thread partial into shared memory raking grid
T *placement_ptr = BlockRakingLayout::PlacementPtr(temp_storage.raking_grid, linear_tid);
*placement_ptr = input;
CTA_SYNC();
// Reduce parallelism down to just raking threads
if (linear_tid < RAKING_THREADS)
{
// Raking upsweep reduction across shared partials
T upsweep_partial = Upsweep(scan_op);
// Exclusive Warp-synchronous scan
T exclusive_partial;
WarpScan(temp_storage.warp_scan).ExclusiveScan(upsweep_partial, exclusive_partial, scan_op);
// Inclusive raking downsweep scan
InclusiveDownsweep(scan_op, exclusive_partial, (linear_tid != 0));
}
CTA_SYNC();
// Grab thread prefix from shared memory
output = *placement_ptr;
}
}
/// Computes an inclusive thread block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element. Also provides every thread with the block-wide \p block_aggregate of all inputs.
template <typename ScanOp>
__device__ __forceinline__ void InclusiveScan(
T input, ///< [in] Calling thread's input item
T &output, ///< [out] Calling thread's output item (may be aliased to \p input)
ScanOp scan_op, ///< [in] Binary scan operator
T &block_aggregate) ///< [out] Threadblock-wide aggregate reduction of input items
{
if (WARP_SYNCHRONOUS)
{
// Short-circuit directly to warp-synchronous scan
WarpScan(temp_storage.warp_scan).InclusiveScan(input, output, scan_op, block_aggregate);
}
else
{
// Place thread partial into shared memory raking grid
T *placement_ptr = BlockRakingLayout::PlacementPtr(temp_storage.raking_grid, linear_tid);
*placement_ptr = input;
CTA_SYNC();
// Reduce parallelism down to just raking threads
if (linear_tid < RAKING_THREADS)
{
// Raking upsweep reduction across shared partials
T upsweep_partial = Upsweep(scan_op);
// Warp-synchronous scan
T inclusive_partial;
T exclusive_partial;
WarpScan(temp_storage.warp_scan).Scan(upsweep_partial, inclusive_partial, exclusive_partial, scan_op);
// Inclusive raking downsweep scan
InclusiveDownsweep(scan_op, exclusive_partial, (linear_tid != 0));
// Broadcast aggregate to all threads
if (linear_tid == RAKING_THREADS - 1)
temp_storage.block_aggregate = inclusive_partial;
}
CTA_SYNC();
// Grab thread prefix from shared memory
output = *placement_ptr;
// Retrieve block aggregate
block_aggregate = temp_storage.block_aggregate;
}
}
/// Computes an inclusive thread block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element. the call-back functor \p block_prefix_callback_op is invoked by the first warp in the block, and the value returned by <em>lane</em><sub>0</sub> in that warp is used as the "seed" value that logically prefixes the thread block's scan inputs. Also provides every thread with the block-wide \p block_aggregate of all inputs.
template <
typename ScanOp,
typename BlockPrefixCallbackOp>
__device__ __forceinline__ void InclusiveScan(
T input, ///< [in] Calling thread's input item
T &output, ///< [out] Calling thread's output item (may be aliased to \p input)
ScanOp scan_op, ///< [in] Binary scan operator
BlockPrefixCallbackOp &block_prefix_callback_op) ///< [in-out] <b>[<em>warp</em><sub>0</sub> only]</b> Call-back functor for specifying a thread block-wide prefix to be applied to all inputs.
{
if (WARP_SYNCHRONOUS)
{
// Short-circuit directly to warp-synchronous scan
T block_aggregate;
WarpScan warp_scan(temp_storage.warp_scan);
warp_scan.InclusiveScan(input, output, scan_op, block_aggregate);
// Obtain warp-wide prefix in lane0, then broadcast to other lanes
T block_prefix = block_prefix_callback_op(block_aggregate);
block_prefix = warp_scan.Broadcast(block_prefix, 0);
// Update prefix with exclusive warpscan partial
output = scan_op(block_prefix, output);
}
else
{
// Place thread partial into shared memory raking grid
T *placement_ptr = BlockRakingLayout::PlacementPtr(temp_storage.raking_grid, linear_tid);
*placement_ptr = input;
CTA_SYNC();
// Reduce parallelism down to just raking threads
if (linear_tid < RAKING_THREADS)
{
WarpScan warp_scan(temp_storage.warp_scan);
// Raking upsweep reduction across shared partials
T upsweep_partial = Upsweep(scan_op);
// Warp-synchronous scan
T exclusive_partial, block_aggregate;
warp_scan.ExclusiveScan(upsweep_partial, exclusive_partial, scan_op, block_aggregate);
// Obtain block-wide prefix in lane0, then broadcast to other lanes
T block_prefix = block_prefix_callback_op(block_aggregate);
block_prefix = warp_scan.Broadcast(block_prefix, 0);
// Update prefix with warpscan exclusive partial
T downsweep_prefix = scan_op(block_prefix, exclusive_partial);
if (linear_tid == 0)
downsweep_prefix = block_prefix;
// Inclusive raking downsweep scan
InclusiveDownsweep(scan_op, downsweep_prefix);
}
CTA_SYNC();
// Grab thread prefix from shared memory
output = *placement_ptr;
}
}
};
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)