device_select.cuh
18.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* cub::DeviceSelect provides device-wide, parallel operations for compacting selected items from sequences of data items residing within device-accessible memory.
*/
#pragma once
#include <stdio.h>
#include <iterator>
#include "dispatch/dispatch_select_if.cuh"
#include "../util_namespace.cuh"
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/**
* \brief DeviceSelect provides device-wide, parallel operations for compacting selected items from sequences of data items residing within device-accessible memory. ![](select_logo.png)
* \ingroup SingleModule
*
* \par Overview
* These operations apply a selection criterion to selectively copy
* items from a specified input sequence to a compact output sequence.
*
* \par Usage Considerations
* \cdp_class{DeviceSelect}
*
* \par Performance
* \linear_performance{select-flagged, select-if, and select-unique}
*
* \par
* The following chart illustrates DeviceSelect::If
* performance across different CUDA architectures for \p int32 items,
* where 50% of the items are randomly selected.
*
* \image html select_if_int32_50_percent.png
*
* \par
* The following chart illustrates DeviceSelect::Unique
* performance across different CUDA architectures for \p int32 items
* where segments have lengths uniformly sampled from [1,1000].
*
* \image html select_unique_int32_len_500.png
*
* \par
* \plots_below
*
*/
struct DeviceSelect
{
/**
* \brief Uses the \p d_flags sequence to selectively copy the corresponding items from \p d_in into \p d_out. The total number of items selected is written to \p d_num_selected_out. ![](select_flags_logo.png)
*
* \par
* - The value type of \p d_flags must be castable to \p bool (e.g., \p bool, \p char, \p int, etc.).
* - Copies of the selected items are compacted into \p d_out and maintain their original relative ordering.
* - \devicestorage
*
* \par Snippet
* The code snippet below illustrates the compaction of items selected from an \p int device vector.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/device/device_select.cuh>
*
* // Declare, allocate, and initialize device-accessible pointers for input, flags, and output
* int num_items; // e.g., 8
* int *d_in; // e.g., [1, 2, 3, 4, 5, 6, 7, 8]
* char *d_flags; // e.g., [1, 0, 0, 1, 0, 1, 1, 0]
* int *d_out; // e.g., [ , , , , , , , ]
* int *d_num_selected_out; // e.g., [ ]
* ...
*
* // Determine temporary device storage requirements
* void *d_temp_storage = NULL;
* size_t temp_storage_bytes = 0;
* cub::DeviceSelect::Flagged(d_temp_storage, temp_storage_bytes, d_in, d_flags, d_out, d_num_selected_out, num_items);
*
* // Allocate temporary storage
* cudaMalloc(&d_temp_storage, temp_storage_bytes);
*
* // Run selection
* cub::DeviceSelect::Flagged(d_temp_storage, temp_storage_bytes, d_in, d_flags, d_out, d_num_selected_out, num_items);
*
* // d_out <-- [1, 4, 6, 7]
* // d_num_selected_out <-- [4]
*
* \endcode
*
* \tparam InputIteratorT <b>[inferred]</b> Random-access input iterator type for reading input items \iterator
* \tparam FlagIterator <b>[inferred]</b> Random-access input iterator type for reading selection flags \iterator
* \tparam OutputIteratorT <b>[inferred]</b> Random-access output iterator type for writing selected items \iterator
* \tparam NumSelectedIteratorT <b>[inferred]</b> Output iterator type for recording the number of items selected \iterator
*/
template <
typename InputIteratorT,
typename FlagIterator,
typename OutputIteratorT,
typename NumSelectedIteratorT>
CUB_RUNTIME_FUNCTION __forceinline__
static cudaError_t Flagged(
void* d_temp_storage, ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
size_t &temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
InputIteratorT d_in, ///< [in] Pointer to the input sequence of data items
FlagIterator d_flags, ///< [in] Pointer to the input sequence of selection flags
OutputIteratorT d_out, ///< [out] Pointer to the output sequence of selected data items
NumSelectedIteratorT d_num_selected_out, ///< [out] Pointer to the output total number of items selected (i.e., length of \p d_out)
int num_items, ///< [in] Total number of input items (i.e., length of \p d_in)
cudaStream_t stream = 0, ///< [in] <b>[optional]</b> CUDA stream to launch kernels within. Default is stream<sub>0</sub>.
bool debug_synchronous = false) ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors. May cause significant slowdown. Default is \p false.
{
typedef int OffsetT; // Signed integer type for global offsets
typedef NullType SelectOp; // Selection op (not used)
typedef NullType EqualityOp; // Equality operator (not used)
return DispatchSelectIf<InputIteratorT, FlagIterator, OutputIteratorT, NumSelectedIteratorT, SelectOp, EqualityOp, OffsetT, false>::Dispatch(
d_temp_storage,
temp_storage_bytes,
d_in,
d_flags,
d_out,
d_num_selected_out,
SelectOp(),
EqualityOp(),
num_items,
stream,
debug_synchronous);
}
/**
* \brief Uses the \p select_op functor to selectively copy items from \p d_in into \p d_out. The total number of items selected is written to \p d_num_selected_out. ![](select_logo.png)
*
* \par
* - Copies of the selected items are compacted into \p d_out and maintain their original relative ordering.
* - \devicestorage
*
* \par Performance
* The following charts illustrate saturated select-if performance across different
* CUDA architectures for \p int32 and \p int64 items, respectively. Items are
* selected with 50% probability.
*
* \image html select_if_int32_50_percent.png
* \image html select_if_int64_50_percent.png
*
* \par
* The following charts are similar, but 5% selection probability:
*
* \image html select_if_int32_5_percent.png
* \image html select_if_int64_5_percent.png
*
* \par Snippet
* The code snippet below illustrates the compaction of items selected from an \p int device vector.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/device/device_select.cuh>
*
* // Functor type for selecting values less than some criteria
* struct LessThan
* {
* int compare;
*
* CUB_RUNTIME_FUNCTION __forceinline__
* LessThan(int compare) : compare(compare) {}
*
* CUB_RUNTIME_FUNCTION __forceinline__
* bool operator()(const int &a) const {
* return (a < compare);
* }
* };
*
* // Declare, allocate, and initialize device-accessible pointers for input and output
* int num_items; // e.g., 8
* int *d_in; // e.g., [0, 2, 3, 9, 5, 2, 81, 8]
* int *d_out; // e.g., [ , , , , , , , ]
* int *d_num_selected_out; // e.g., [ ]
* LessThan select_op(7);
* ...
*
* // Determine temporary device storage requirements
* void *d_temp_storage = NULL;
* size_t temp_storage_bytes = 0;
* cub::DeviceSelect::If(d_temp_storage, temp_storage_bytes, d_in, d_out, d_num_selected_out, num_items, select_op);
*
* // Allocate temporary storage
* cudaMalloc(&d_temp_storage, temp_storage_bytes);
*
* // Run selection
* cub::DeviceSelect::If(d_temp_storage, temp_storage_bytes, d_in, d_out, d_num_selected_out, num_items, select_op);
*
* // d_out <-- [0, 2, 3, 5, 2]
* // d_num_selected_out <-- [5]
*
* \endcode
*
* \tparam InputIteratorT <b>[inferred]</b> Random-access input iterator type for reading input items \iterator
* \tparam OutputIteratorT <b>[inferred]</b> Random-access output iterator type for writing selected items \iterator
* \tparam NumSelectedIteratorT <b>[inferred]</b> Output iterator type for recording the number of items selected \iterator
* \tparam SelectOp <b>[inferred]</b> Selection operator type having member <tt>bool operator()(const T &a)</tt>
*/
template <
typename InputIteratorT,
typename OutputIteratorT,
typename NumSelectedIteratorT,
typename SelectOp>
CUB_RUNTIME_FUNCTION __forceinline__
static cudaError_t If(
void* d_temp_storage, ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
size_t &temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
InputIteratorT d_in, ///< [in] Pointer to the input sequence of data items
OutputIteratorT d_out, ///< [out] Pointer to the output sequence of selected data items
NumSelectedIteratorT d_num_selected_out, ///< [out] Pointer to the output total number of items selected (i.e., length of \p d_out)
int num_items, ///< [in] Total number of input items (i.e., length of \p d_in)
SelectOp select_op, ///< [in] Unary selection operator
cudaStream_t stream = 0, ///< [in] <b>[optional]</b> CUDA stream to launch kernels within. Default is stream<sub>0</sub>.
bool debug_synchronous = false) ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors. May cause significant slowdown. Default is \p false.
{
typedef int OffsetT; // Signed integer type for global offsets
typedef NullType* FlagIterator; // FlagT iterator type (not used)
typedef NullType EqualityOp; // Equality operator (not used)
return DispatchSelectIf<InputIteratorT, FlagIterator, OutputIteratorT, NumSelectedIteratorT, SelectOp, EqualityOp, OffsetT, false>::Dispatch(
d_temp_storage,
temp_storage_bytes,
d_in,
NULL,
d_out,
d_num_selected_out,
select_op,
EqualityOp(),
num_items,
stream,
debug_synchronous);
}
/**
* \brief Given an input sequence \p d_in having runs of consecutive equal-valued keys, only the first key from each run is selectively copied to \p d_out. The total number of items selected is written to \p d_num_selected_out. ![](unique_logo.png)
*
* \par
* - The <tt>==</tt> equality operator is used to determine whether keys are equivalent
* - Copies of the selected items are compacted into \p d_out and maintain their original relative ordering.
* - \devicestorage
*
* \par Performance
* The following charts illustrate saturated select-unique performance across different
* CUDA architectures for \p int32 and \p int64 items, respectively. Segments have
* lengths uniformly sampled from [1,1000].
*
* \image html select_unique_int32_len_500.png
* \image html select_unique_int64_len_500.png
*
* \par
* The following charts are similar, but with segment lengths uniformly sampled from [1,10]:
*
* \image html select_unique_int32_len_5.png
* \image html select_unique_int64_len_5.png
*
* \par Snippet
* The code snippet below illustrates the compaction of items selected from an \p int device vector.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/device/device_select.cuh>
*
* // Declare, allocate, and initialize device-accessible pointers for input and output
* int num_items; // e.g., 8
* int *d_in; // e.g., [0, 2, 2, 9, 5, 5, 5, 8]
* int *d_out; // e.g., [ , , , , , , , ]
* int *d_num_selected_out; // e.g., [ ]
* ...
*
* // Determine temporary device storage requirements
* void *d_temp_storage = NULL;
* size_t temp_storage_bytes = 0;
* cub::DeviceSelect::Unique(d_temp_storage, temp_storage_bytes, d_in, d_out, d_num_selected_out, num_items);
*
* // Allocate temporary storage
* cudaMalloc(&d_temp_storage, temp_storage_bytes);
*
* // Run selection
* cub::DeviceSelect::Unique(d_temp_storage, temp_storage_bytes, d_in, d_out, d_num_selected_out, num_items);
*
* // d_out <-- [0, 2, 9, 5, 8]
* // d_num_selected_out <-- [5]
*
* \endcode
*
* \tparam InputIteratorT <b>[inferred]</b> Random-access input iterator type for reading input items \iterator
* \tparam OutputIteratorT <b>[inferred]</b> Random-access output iterator type for writing selected items \iterator
* \tparam NumSelectedIteratorT <b>[inferred]</b> Output iterator type for recording the number of items selected \iterator
*/
template <
typename InputIteratorT,
typename OutputIteratorT,
typename NumSelectedIteratorT>
CUB_RUNTIME_FUNCTION __forceinline__
static cudaError_t Unique(
void* d_temp_storage, ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
size_t &temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
InputIteratorT d_in, ///< [in] Pointer to the input sequence of data items
OutputIteratorT d_out, ///< [out] Pointer to the output sequence of selected data items
NumSelectedIteratorT d_num_selected_out, ///< [out] Pointer to the output total number of items selected (i.e., length of \p d_out)
int num_items, ///< [in] Total number of input items (i.e., length of \p d_in)
cudaStream_t stream = 0, ///< [in] <b>[optional]</b> CUDA stream to launch kernels within. Default is stream<sub>0</sub>.
bool debug_synchronous = false) ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors. May cause significant slowdown. Default is \p false.
{
typedef int OffsetT; // Signed integer type for global offsets
typedef NullType* FlagIterator; // FlagT iterator type (not used)
typedef NullType SelectOp; // Selection op (not used)
typedef Equality EqualityOp; // Default == operator
return DispatchSelectIf<InputIteratorT, FlagIterator, OutputIteratorT, NumSelectedIteratorT, SelectOp, EqualityOp, OffsetT, false>::Dispatch(
d_temp_storage,
temp_storage_bytes,
d_in,
NULL,
d_out,
d_num_selected_out,
SelectOp(),
EqualityOp(),
num_items,
stream,
debug_synchronous);
}
};
/**
* \example example_device_select_flagged.cu
* \example example_device_select_if.cu
* \example example_device_select_unique.cu
*/
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)