dispatch_rle.cuh
23 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* cub::DeviceRle provides device-wide, parallel operations for run-length-encoding sequences of data items residing within device-accessible memory.
*/
#pragma once
#include <stdio.h>
#include <iterator>
#include "dispatch_scan.cuh"
#include "../../agent/agent_rle.cuh"
#include "../../thread/thread_operators.cuh"
#include "../../grid/grid_queue.cuh"
#include "../../util_device.cuh"
#include "../../util_namespace.cuh"
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/******************************************************************************
* Kernel entry points
*****************************************************************************/
/**
* Select kernel entry point (multi-block)
*
* Performs functor-based selection if SelectOp functor type != NullType
* Otherwise performs flag-based selection if FlagIterator's value type != NullType
* Otherwise performs discontinuity selection (keep unique)
*/
template <
typename AgentRlePolicyT, ///< Parameterized AgentRlePolicyT tuning policy type
typename InputIteratorT, ///< Random-access input iterator type for reading input items \iterator
typename OffsetsOutputIteratorT, ///< Random-access output iterator type for writing run-offset values \iterator
typename LengthsOutputIteratorT, ///< Random-access output iterator type for writing run-length values \iterator
typename NumRunsOutputIteratorT, ///< Output iterator type for recording the number of runs encountered \iterator
typename ScanTileStateT, ///< Tile status interface type
typename EqualityOpT, ///< T equality operator type
typename OffsetT> ///< Signed integer type for global offsets
__launch_bounds__ (int(AgentRlePolicyT::BLOCK_THREADS))
__global__ void DeviceRleSweepKernel(
InputIteratorT d_in, ///< [in] Pointer to input sequence of data items
OffsetsOutputIteratorT d_offsets_out, ///< [out] Pointer to output sequence of run-offsets
LengthsOutputIteratorT d_lengths_out, ///< [out] Pointer to output sequence of run-lengths
NumRunsOutputIteratorT d_num_runs_out, ///< [out] Pointer to total number of runs (i.e., length of \p d_offsets_out)
ScanTileStateT tile_status, ///< [in] Tile status interface
EqualityOpT equality_op, ///< [in] Equality operator for input items
OffsetT num_items, ///< [in] Total number of input items (i.e., length of \p d_in)
int num_tiles) ///< [in] Total number of tiles for the entire problem
{
// Thread block type for selecting data from input tiles
typedef AgentRle<
AgentRlePolicyT,
InputIteratorT,
OffsetsOutputIteratorT,
LengthsOutputIteratorT,
EqualityOpT,
OffsetT> AgentRleT;
// Shared memory for AgentRle
__shared__ typename AgentRleT::TempStorage temp_storage;
// Process tiles
AgentRleT(temp_storage, d_in, d_offsets_out, d_lengths_out, equality_op, num_items).ConsumeRange(
num_tiles,
tile_status,
d_num_runs_out);
}
/******************************************************************************
* Dispatch
******************************************************************************/
/**
* Utility class for dispatching the appropriately-tuned kernels for DeviceRle
*/
template <
typename InputIteratorT, ///< Random-access input iterator type for reading input items \iterator
typename OffsetsOutputIteratorT, ///< Random-access output iterator type for writing run-offset values \iterator
typename LengthsOutputIteratorT, ///< Random-access output iterator type for writing run-length values \iterator
typename NumRunsOutputIteratorT, ///< Output iterator type for recording the number of runs encountered \iterator
typename EqualityOpT, ///< T equality operator type
typename OffsetT> ///< Signed integer type for global offsets
struct DeviceRleDispatch
{
/******************************************************************************
* Types and constants
******************************************************************************/
// The input value type
typedef typename std::iterator_traits<InputIteratorT>::value_type T;
// The lengths output value type
typedef typename If<(Equals<typename std::iterator_traits<LengthsOutputIteratorT>::value_type, void>::VALUE), // LengthT = (if output iterator's value type is void) ?
OffsetT, // ... then the OffsetT type,
typename std::iterator_traits<LengthsOutputIteratorT>::value_type>::Type LengthT; // ... else the output iterator's value type
enum
{
INIT_KERNEL_THREADS = 128,
};
// Tile status descriptor interface type
typedef ReduceByKeyScanTileState<LengthT, OffsetT> ScanTileStateT;
/******************************************************************************
* Tuning policies
******************************************************************************/
/// SM35
struct Policy350
{
enum {
NOMINAL_4B_ITEMS_PER_THREAD = 15,
ITEMS_PER_THREAD = CUB_MIN(NOMINAL_4B_ITEMS_PER_THREAD, CUB_MAX(1, (NOMINAL_4B_ITEMS_PER_THREAD * 4 / sizeof(T)))),
};
typedef AgentRlePolicy<
96,
ITEMS_PER_THREAD,
BLOCK_LOAD_DIRECT,
LOAD_LDG,
true,
BLOCK_SCAN_WARP_SCANS>
RleSweepPolicy;
};
/// SM30
struct Policy300
{
enum {
NOMINAL_4B_ITEMS_PER_THREAD = 5,
ITEMS_PER_THREAD = CUB_MIN(NOMINAL_4B_ITEMS_PER_THREAD, CUB_MAX(1, (NOMINAL_4B_ITEMS_PER_THREAD * 4 / sizeof(T)))),
};
typedef AgentRlePolicy<
256,
ITEMS_PER_THREAD,
BLOCK_LOAD_WARP_TRANSPOSE,
LOAD_DEFAULT,
true,
BLOCK_SCAN_RAKING_MEMOIZE>
RleSweepPolicy;
};
/// SM20
struct Policy200
{
enum {
NOMINAL_4B_ITEMS_PER_THREAD = 15,
ITEMS_PER_THREAD = CUB_MIN(NOMINAL_4B_ITEMS_PER_THREAD, CUB_MAX(1, (NOMINAL_4B_ITEMS_PER_THREAD * 4 / sizeof(T)))),
};
typedef AgentRlePolicy<
128,
ITEMS_PER_THREAD,
BLOCK_LOAD_WARP_TRANSPOSE,
LOAD_DEFAULT,
false,
BLOCK_SCAN_WARP_SCANS>
RleSweepPolicy;
};
/// SM13
struct Policy130
{
enum {
NOMINAL_4B_ITEMS_PER_THREAD = 9,
ITEMS_PER_THREAD = CUB_MIN(NOMINAL_4B_ITEMS_PER_THREAD, CUB_MAX(1, (NOMINAL_4B_ITEMS_PER_THREAD * 4 / sizeof(T)))),
};
typedef AgentRlePolicy<
64,
ITEMS_PER_THREAD,
BLOCK_LOAD_WARP_TRANSPOSE,
LOAD_DEFAULT,
true,
BLOCK_SCAN_RAKING_MEMOIZE>
RleSweepPolicy;
};
/// SM10
struct Policy100
{
enum {
NOMINAL_4B_ITEMS_PER_THREAD = 9,
ITEMS_PER_THREAD = CUB_MIN(NOMINAL_4B_ITEMS_PER_THREAD, CUB_MAX(1, (NOMINAL_4B_ITEMS_PER_THREAD * 4 / sizeof(T)))),
};
typedef AgentRlePolicy<
256,
ITEMS_PER_THREAD,
BLOCK_LOAD_WARP_TRANSPOSE,
LOAD_DEFAULT,
true,
BLOCK_SCAN_RAKING_MEMOIZE>
RleSweepPolicy;
};
/******************************************************************************
* Tuning policies of current PTX compiler pass
******************************************************************************/
#if (CUB_PTX_ARCH >= 350)
typedef Policy350 PtxPolicy;
#elif (CUB_PTX_ARCH >= 300)
typedef Policy300 PtxPolicy;
#elif (CUB_PTX_ARCH >= 200)
typedef Policy200 PtxPolicy;
#elif (CUB_PTX_ARCH >= 130)
typedef Policy130 PtxPolicy;
#else
typedef Policy100 PtxPolicy;
#endif
// "Opaque" policies (whose parameterizations aren't reflected in the type signature)
struct PtxRleSweepPolicy : PtxPolicy::RleSweepPolicy {};
/******************************************************************************
* Utilities
******************************************************************************/
/**
* Initialize kernel dispatch configurations with the policies corresponding to the PTX assembly we will use
*/
template <typename KernelConfig>
CUB_RUNTIME_FUNCTION __forceinline__
static void InitConfigs(
int ptx_version,
KernelConfig& device_rle_config)
{
#if (CUB_PTX_ARCH > 0)
// We're on the device, so initialize the kernel dispatch configurations with the current PTX policy
device_rle_config.template Init<PtxRleSweepPolicy>();
#else
// We're on the host, so lookup and initialize the kernel dispatch configurations with the policies that match the device's PTX version
if (ptx_version >= 350)
{
device_rle_config.template Init<typename Policy350::RleSweepPolicy>();
}
else if (ptx_version >= 300)
{
device_rle_config.template Init<typename Policy300::RleSweepPolicy>();
}
else if (ptx_version >= 200)
{
device_rle_config.template Init<typename Policy200::RleSweepPolicy>();
}
else if (ptx_version >= 130)
{
device_rle_config.template Init<typename Policy130::RleSweepPolicy>();
}
else
{
device_rle_config.template Init<typename Policy100::RleSweepPolicy>();
}
#endif
}
/**
* Kernel kernel dispatch configuration. Mirrors the constants within AgentRlePolicyT.
*/
struct KernelConfig
{
int block_threads;
int items_per_thread;
BlockLoadAlgorithm load_policy;
bool store_warp_time_slicing;
BlockScanAlgorithm scan_algorithm;
template <typename AgentRlePolicyT>
CUB_RUNTIME_FUNCTION __forceinline__
void Init()
{
block_threads = AgentRlePolicyT::BLOCK_THREADS;
items_per_thread = AgentRlePolicyT::ITEMS_PER_THREAD;
load_policy = AgentRlePolicyT::LOAD_ALGORITHM;
store_warp_time_slicing = AgentRlePolicyT::STORE_WARP_TIME_SLICING;
scan_algorithm = AgentRlePolicyT::SCAN_ALGORITHM;
}
CUB_RUNTIME_FUNCTION __forceinline__
void Print()
{
printf("%d, %d, %d, %d, %d",
block_threads,
items_per_thread,
load_policy,
store_warp_time_slicing,
scan_algorithm);
}
};
/******************************************************************************
* Dispatch entrypoints
******************************************************************************/
/**
* Internal dispatch routine for computing a device-wide run-length-encode using the
* specified kernel functions.
*/
template <
typename DeviceScanInitKernelPtr, ///< Function type of cub::DeviceScanInitKernel
typename DeviceRleSweepKernelPtr> ///< Function type of cub::DeviceRleSweepKernelPtr
CUB_RUNTIME_FUNCTION __forceinline__
static cudaError_t Dispatch(
void* d_temp_storage, ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
size_t& temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
InputIteratorT d_in, ///< [in] Pointer to the input sequence of data items
OffsetsOutputIteratorT d_offsets_out, ///< [out] Pointer to the output sequence of run-offsets
LengthsOutputIteratorT d_lengths_out, ///< [out] Pointer to the output sequence of run-lengths
NumRunsOutputIteratorT d_num_runs_out, ///< [out] Pointer to the total number of runs encountered (i.e., length of \p d_offsets_out)
EqualityOpT equality_op, ///< [in] Equality operator for input items
OffsetT num_items, ///< [in] Total number of input items (i.e., length of \p d_in)
cudaStream_t stream, ///< [in] CUDA stream to launch kernels within. Default is stream<sub>0</sub>.
bool debug_synchronous, ///< [in] Whether or not to synchronize the stream after every kernel launch to check for errors. Also causes launch configurations to be printed to the console. Default is \p false.
int ptx_version, ///< [in] PTX version of dispatch kernels
DeviceScanInitKernelPtr device_scan_init_kernel, ///< [in] Kernel function pointer to parameterization of cub::DeviceScanInitKernel
DeviceRleSweepKernelPtr device_rle_sweep_kernel, ///< [in] Kernel function pointer to parameterization of cub::DeviceRleSweepKernel
KernelConfig device_rle_config) ///< [in] Dispatch parameters that match the policy that \p device_rle_sweep_kernel was compiled for
{
#ifndef CUB_RUNTIME_ENABLED
// Kernel launch not supported from this device
return CubDebug(cudaErrorNotSupported);
#else
cudaError error = cudaSuccess;
do
{
// Get device ordinal
int device_ordinal;
if (CubDebug(error = cudaGetDevice(&device_ordinal))) break;
// Get SM count
int sm_count;
if (CubDebug(error = cudaDeviceGetAttribute (&sm_count, cudaDevAttrMultiProcessorCount, device_ordinal))) break;
// Number of input tiles
int tile_size = device_rle_config.block_threads * device_rle_config.items_per_thread;
int num_tiles = (num_items + tile_size - 1) / tile_size;
// Specify temporary storage allocation requirements
size_t allocation_sizes[1];
if (CubDebug(error = ScanTileStateT::AllocationSize(num_tiles, allocation_sizes[0]))) break; // bytes needed for tile status descriptors
// Compute allocation pointers into the single storage blob (or compute the necessary size of the blob)
void* allocations[1];
if (CubDebug(error = AliasTemporaries(d_temp_storage, temp_storage_bytes, allocations, allocation_sizes))) break;
if (d_temp_storage == NULL)
{
// Return if the caller is simply requesting the size of the storage allocation
break;
}
// Construct the tile status interface
ScanTileStateT tile_status;
if (CubDebug(error = tile_status.Init(num_tiles, allocations[0], allocation_sizes[0]))) break;
// Log device_scan_init_kernel configuration
int init_grid_size = CUB_MAX(1, (num_tiles + INIT_KERNEL_THREADS - 1) / INIT_KERNEL_THREADS);
if (debug_synchronous) _CubLog("Invoking device_scan_init_kernel<<<%d, %d, 0, %lld>>>()\n", init_grid_size, INIT_KERNEL_THREADS, (long long) stream);
// Invoke device_scan_init_kernel to initialize tile descriptors and queue descriptors
device_scan_init_kernel<<<init_grid_size, INIT_KERNEL_THREADS, 0, stream>>>(
tile_status,
num_tiles,
d_num_runs_out);
// Check for failure to launch
if (CubDebug(error = cudaPeekAtLastError())) break;
// Sync the stream if specified to flush runtime errors
if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break;
// Return if empty problem
if (num_items == 0)
break;
// Get SM occupancy for device_rle_sweep_kernel
int device_rle_kernel_sm_occupancy;
if (CubDebug(error = MaxSmOccupancy(
device_rle_kernel_sm_occupancy, // out
device_rle_sweep_kernel,
device_rle_config.block_threads))) break;
// Get max x-dimension of grid
int max_dim_x;
if (CubDebug(error = cudaDeviceGetAttribute(&max_dim_x, cudaDevAttrMaxGridDimX, device_ordinal))) break;;
// Get grid size for scanning tiles
dim3 scan_grid_size;
scan_grid_size.z = 1;
scan_grid_size.y = ((unsigned int) num_tiles + max_dim_x - 1) / max_dim_x;
scan_grid_size.x = CUB_MIN(num_tiles, max_dim_x);
// Log device_rle_sweep_kernel configuration
if (debug_synchronous) _CubLog("Invoking device_rle_sweep_kernel<<<{%d,%d,%d}, %d, 0, %lld>>>(), %d items per thread, %d SM occupancy\n",
scan_grid_size.x, scan_grid_size.y, scan_grid_size.z, device_rle_config.block_threads, (long long) stream, device_rle_config.items_per_thread, device_rle_kernel_sm_occupancy);
// Invoke device_rle_sweep_kernel
device_rle_sweep_kernel<<<scan_grid_size, device_rle_config.block_threads, 0, stream>>>(
d_in,
d_offsets_out,
d_lengths_out,
d_num_runs_out,
tile_status,
equality_op,
num_items,
num_tiles);
// Check for failure to launch
if (CubDebug(error = cudaPeekAtLastError())) break;
// Sync the stream if specified to flush runtime errors
if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break;
}
while (0);
return error;
#endif // CUB_RUNTIME_ENABLED
}
/**
* Internal dispatch routine
*/
CUB_RUNTIME_FUNCTION __forceinline__
static cudaError_t Dispatch(
void* d_temp_storage, ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
size_t& temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
InputIteratorT d_in, ///< [in] Pointer to input sequence of data items
OffsetsOutputIteratorT d_offsets_out, ///< [out] Pointer to output sequence of run-offsets
LengthsOutputIteratorT d_lengths_out, ///< [out] Pointer to output sequence of run-lengths
NumRunsOutputIteratorT d_num_runs_out, ///< [out] Pointer to total number of runs (i.e., length of \p d_offsets_out)
EqualityOpT equality_op, ///< [in] Equality operator for input items
OffsetT num_items, ///< [in] Total number of input items (i.e., length of \p d_in)
cudaStream_t stream, ///< [in] <b>[optional]</b> CUDA stream to launch kernels within. Default is stream<sub>0</sub>.
bool debug_synchronous) ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors. Also causes launch configurations to be printed to the console. Default is \p false.
{
cudaError error = cudaSuccess;
do
{
// Get PTX version
int ptx_version;
#if (CUB_PTX_ARCH == 0)
if (CubDebug(error = PtxVersion(ptx_version))) break;
#else
ptx_version = CUB_PTX_ARCH;
#endif
// Get kernel kernel dispatch configurations
KernelConfig device_rle_config;
InitConfigs(ptx_version, device_rle_config);
// Dispatch
if (CubDebug(error = Dispatch(
d_temp_storage,
temp_storage_bytes,
d_in,
d_offsets_out,
d_lengths_out,
d_num_runs_out,
equality_op,
num_items,
stream,
debug_synchronous,
ptx_version,
DeviceCompactInitKernel<ScanTileStateT, NumRunsOutputIteratorT>,
DeviceRleSweepKernel<PtxRleSweepPolicy, InputIteratorT, OffsetsOutputIteratorT, LengthsOutputIteratorT, NumRunsOutputIteratorT, ScanTileStateT, EqualityOpT, OffsetT>,
device_rle_config))) break;
}
while (0);
return error;
}
};
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)