warp_reduce.cuh 24.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
/******************************************************************************
 * Copyright (c) 2011, Duane Merrill.  All rights reserved.
 * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

/**
 * \file
 * The cub::WarpReduce class provides [<em>collective</em>](index.html#sec0) methods for computing a parallel reduction of items partitioned across a CUDA thread warp.
 */

#pragma once

#include "specializations/warp_reduce_shfl.cuh"
#include "specializations/warp_reduce_smem.cuh"
#include "../thread/thread_operators.cuh"
#include "../util_arch.cuh"
#include "../util_type.cuh"
#include "../util_namespace.cuh"

/// Optional outer namespace(s)
CUB_NS_PREFIX

/// CUB namespace
namespace cub {


/**
 * \addtogroup WarpModule
 * @{
 */

/**
 * \brief The WarpReduce class provides [<em>collective</em>](index.html#sec0) methods for computing a parallel reduction of items partitioned across a CUDA thread warp. ![](warp_reduce_logo.png)
 *
 * \tparam T                        The reduction input/output element type
 * \tparam LOGICAL_WARP_THREADS     <b>[optional]</b> The number of threads per "logical" warp (may be less than the number of hardware warp threads).  Default is the warp size of the targeted CUDA compute-capability (e.g., 32 threads for SM20).
 * \tparam PTX_ARCH                 <b>[optional]</b> \ptxversion
 *
 * \par Overview
 * - A <a href="http://en.wikipedia.org/wiki/Reduce_(higher-order_function)"><em>reduction</em></a> (or <em>fold</em>)
 *   uses a binary combining operator to compute a single aggregate from a list of input elements.
 * - Supports "logical" warps smaller than the physical warp size (e.g., logical warps of 8 threads)
 * - The number of entrant threads must be an multiple of \p LOGICAL_WARP_THREADS
 *
 * \par Performance Considerations
 * - Uses special instructions when applicable (e.g., warp \p SHFL instructions)
 * - Uses synchronization-free communication between warp lanes when applicable
 * - Incurs zero bank conflicts for most types
 * - Computation is slightly more efficient (i.e., having lower instruction overhead) for:
 *     - Summation (<b><em>vs.</em></b> generic reduction)
 *     - The architecture's warp size is a whole multiple of \p LOGICAL_WARP_THREADS
 *
 * \par Simple Examples
 * \warpcollective{WarpReduce}
 * \par
 * The code snippet below illustrates four concurrent warp sum reductions within a block of
 * 128 threads (one per each of the 32-thread warps).
 * \par
 * \code
 * #include <cub/cub.cuh>
 *
 * __global__ void ExampleKernel(...)
 * {
 *     // Specialize WarpReduce for type int
 *     typedef cub::WarpReduce<int> WarpReduce;
 *
 *     // Allocate WarpReduce shared memory for 4 warps
 *     __shared__ typename WarpReduce::TempStorage temp_storage[4];
 *
 *     // Obtain one input item per thread
 *     int thread_data = ...
 *
 *     // Return the warp-wide sums to each lane0 (threads 0, 32, 64, and 96)
 *     int warp_id = threadIdx.x / 32;
 *     int aggregate = WarpReduce(temp_storage[warp_id]).Sum(thread_data);
 *
 * \endcode
 * \par
 * Suppose the set of input \p thread_data across the block of threads is <tt>{0, 1, 2, 3, ..., 127}</tt>.
 * The corresponding output \p aggregate in threads 0, 32, 64, and 96 will \p 496, \p 1520,
 * \p 2544, and \p 3568, respectively (and is undefined in other threads).
 *
 * \par
 * The code snippet below illustrates a single warp sum reduction within a block of
 * 128 threads.
 * \par
 * \code
 * #include <cub/cub.cuh>
 *
 * __global__ void ExampleKernel(...)
 * {
 *     // Specialize WarpReduce for type int
 *     typedef cub::WarpReduce<int> WarpReduce;
 *
 *     // Allocate WarpReduce shared memory for one warp
 *     __shared__ typename WarpReduce::TempStorage temp_storage;
 *     ...
 *
 *     // Only the first warp performs a reduction
 *     if (threadIdx.x < 32)
 *     {
 *         // Obtain one input item per thread
 *         int thread_data = ...
 *
 *         // Return the warp-wide sum to lane0
 *         int aggregate = WarpReduce(temp_storage).Sum(thread_data);
 *
 * \endcode
 * \par
 * Suppose the set of input \p thread_data across the warp of threads is <tt>{0, 1, 2, 3, ..., 31}</tt>.
 * The corresponding output \p aggregate in thread0 will be \p 496 (and is undefined in other threads).
 *
 */
template <
    typename    T,
    int         LOGICAL_WARP_THREADS    = CUB_PTX_WARP_THREADS,
    int         PTX_ARCH                = CUB_PTX_ARCH>
class WarpReduce
{
private:

    /******************************************************************************
     * Constants and type definitions
     ******************************************************************************/

    enum
    {
        /// Whether the logical warp size and the PTX warp size coincide
        IS_ARCH_WARP = (LOGICAL_WARP_THREADS == CUB_WARP_THREADS(PTX_ARCH)),

        /// Whether the logical warp size is a power-of-two
        IS_POW_OF_TWO = PowerOfTwo<LOGICAL_WARP_THREADS>::VALUE,
    };

public:

    #ifndef DOXYGEN_SHOULD_SKIP_THIS    // Do not document

    /// Internal specialization.  Use SHFL-based reduction if (architecture is >= SM30) and (LOGICAL_WARP_THREADS is a power-of-two)
    typedef typename If<(PTX_ARCH >= 300) && (IS_POW_OF_TWO),
        WarpReduceShfl<T, LOGICAL_WARP_THREADS, PTX_ARCH>,
        WarpReduceSmem<T, LOGICAL_WARP_THREADS, PTX_ARCH> >::Type InternalWarpReduce;

    #endif // DOXYGEN_SHOULD_SKIP_THIS


private:

    /// Shared memory storage layout type for WarpReduce
    typedef typename InternalWarpReduce::TempStorage _TempStorage;


    /******************************************************************************
     * Thread fields
     ******************************************************************************/

    /// Shared storage reference
    _TempStorage &temp_storage;


    /******************************************************************************
     * Utility methods
     ******************************************************************************/

public:

    /// \smemstorage{WarpReduce}
    struct TempStorage : Uninitialized<_TempStorage> {};


    /******************************************************************//**
     * \name Collective constructors
     *********************************************************************/
    //@{


    /**
     * \brief Collective constructor using the specified memory allocation as temporary storage.  Logical warp and lane identifiers are constructed from <tt>threadIdx.x</tt>.
     */
    __device__ __forceinline__ WarpReduce(
        TempStorage &temp_storage)             ///< [in] Reference to memory allocation having layout type TempStorage
    :
        temp_storage(temp_storage.Alias())
    {}


    //@}  end member group
    /******************************************************************//**
     * \name Summation reductions
     *********************************************************************/
    //@{


    /**
     * \brief Computes a warp-wide sum in the calling warp.  The output is valid in warp <em>lane</em><sub>0</sub>.
     *
     * \smemreuse
     *
     * \par Snippet
     * The code snippet below illustrates four concurrent warp sum reductions within a block of
     * 128 threads (one per each of the 32-thread warps).
     * \par
     * \code
     * #include <cub/cub.cuh>
     *
     * __global__ void ExampleKernel(...)
     * {
     *     // Specialize WarpReduce for type int
     *     typedef cub::WarpReduce<int> WarpReduce;
     *
     *     // Allocate WarpReduce shared memory for 4 warps
     *     __shared__ typename WarpReduce::TempStorage temp_storage[4];
     *
     *     // Obtain one input item per thread
     *     int thread_data = ...
     *
     *     // Return the warp-wide sums to each lane0
     *     int warp_id = threadIdx.x / 32;
     *     int aggregate = WarpReduce(temp_storage[warp_id]).Sum(thread_data);
     *
     * \endcode
     * \par
     * Suppose the set of input \p thread_data across the block of threads is <tt>{0, 1, 2, 3, ..., 127}</tt>.
     * The corresponding output \p aggregate in threads 0, 32, 64, and 96 will \p 496, \p 1520,
     * \p 2544, and \p 3568, respectively (and is undefined in other threads).
     *
     */
    __device__ __forceinline__ T Sum(
        T                   input)              ///< [in] Calling thread's input
    {
        return InternalWarpReduce(temp_storage).template Reduce<true>(input, LOGICAL_WARP_THREADS, cub::Sum());
    }

    /**
     * \brief Computes a partially-full warp-wide sum in the calling warp.  The output is valid in warp <em>lane</em><sub>0</sub>.
     *
     * All threads across the calling warp must agree on the same value for \p valid_items.  Otherwise the result is undefined.
     *
     * \smemreuse
     *
     * \par Snippet
     * The code snippet below illustrates a sum reduction within a single, partially-full
     * block of 32 threads (one warp).
     * \par
     * \code
     * #include <cub/cub.cuh>
     *
     * __global__ void ExampleKernel(int *d_data, int valid_items)
     * {
     *     // Specialize WarpReduce for type int
     *     typedef cub::WarpReduce<int> WarpReduce;
     *
     *     // Allocate WarpReduce shared memory for one warp
     *     __shared__ typename WarpReduce::TempStorage temp_storage;
     *
     *     // Obtain one input item per thread if in range
     *     int thread_data;
     *     if (threadIdx.x < valid_items)
     *         thread_data = d_data[threadIdx.x];
     *
     *     // Return the warp-wide sums to each lane0
     *     int aggregate = WarpReduce(temp_storage).Sum(
     *         thread_data, valid_items);
     *
     * \endcode
     * \par
     * Suppose the input \p d_data is <tt>{0, 1, 2, 3, 4, ...</tt> and \p valid_items
     * is \p 4.  The corresponding output \p aggregate in thread0 is \p 6 (and is
     * undefined in other threads).
     *
     */
    __device__ __forceinline__ T Sum(
        T                   input,              ///< [in] Calling thread's input
        int                 valid_items)        ///< [in] Total number of valid items in the calling thread's logical warp (may be less than \p LOGICAL_WARP_THREADS)
    {
        // Determine if we don't need bounds checking
        return InternalWarpReduce(temp_storage).template Reduce<false>(input, valid_items, cub::Sum());
    }


    /**
     * \brief Computes a segmented sum in the calling warp where segments are defined by head-flags.  The sum of each segment is returned to the first lane in that segment (which always includes <em>lane</em><sub>0</sub>).
     *
     * \smemreuse
     *
     * \par Snippet
     * The code snippet below illustrates a head-segmented warp sum
     * reduction within a block of 32 threads (one warp).
     * \par
     * \code
     * #include <cub/cub.cuh>
     *
     * __global__ void ExampleKernel(...)
     * {
     *     // Specialize WarpReduce for type int
     *     typedef cub::WarpReduce<int> WarpReduce;
     *
     *     // Allocate WarpReduce shared memory for one warp
     *     __shared__ typename WarpReduce::TempStorage temp_storage;
     *
     *     // Obtain one input item and flag per thread
     *     int thread_data = ...
     *     int head_flag = ...
     *
     *     // Return the warp-wide sums to each lane0
     *     int aggregate = WarpReduce(temp_storage).HeadSegmentedSum(
     *         thread_data, head_flag);
     *
     * \endcode
     * \par
     * Suppose the set of input \p thread_data and \p head_flag across the block of threads
     * is <tt>{0, 1, 2, 3, ..., 31</tt> and is <tt>{1, 0, 0, 0, 1, 0, 0, 0, ..., 1, 0, 0, 0</tt>,
     * respectively.  The corresponding output \p aggregate in threads 0, 4, 8, etc. will be
     * \p 6, \p 22, \p 38, etc. (and is undefined in other threads).
     *
     * \tparam ReductionOp     <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
     *
     */
    template <
        typename            FlagT>
    __device__ __forceinline__ T HeadSegmentedSum(
        T                   input,              ///< [in] Calling thread's input
        FlagT                head_flag)          ///< [in] Head flag denoting whether or not \p input is the start of a new segment
    {
        return HeadSegmentedReduce(input, head_flag, cub::Sum());
    }


    /**
     * \brief Computes a segmented sum in the calling warp where segments are defined by tail-flags.  The sum of each segment is returned to the first lane in that segment (which always includes <em>lane</em><sub>0</sub>).
     *
     * \smemreuse
     *
     * \par Snippet
     * The code snippet below illustrates a tail-segmented warp sum
     * reduction within a block of 32 threads (one warp).
     * \par
     * \code
     * #include <cub/cub.cuh>
     *
     * __global__ void ExampleKernel(...)
     * {
     *     // Specialize WarpReduce for type int
     *     typedef cub::WarpReduce<int> WarpReduce;
     *
     *     // Allocate WarpReduce shared memory for one warp
     *     __shared__ typename WarpReduce::TempStorage temp_storage;
     *
     *     // Obtain one input item and flag per thread
     *     int thread_data = ...
     *     int tail_flag = ...
     *
     *     // Return the warp-wide sums to each lane0
     *     int aggregate = WarpReduce(temp_storage).TailSegmentedSum(
     *         thread_data, tail_flag);
     *
     * \endcode
     * \par
     * Suppose the set of input \p thread_data and \p tail_flag across the block of threads
     * is <tt>{0, 1, 2, 3, ..., 31</tt> and is <tt>{0, 0, 0, 1, 0, 0, 0, 1, ..., 0, 0, 0, 1</tt>,
     * respectively.  The corresponding output \p aggregate in threads 0, 4, 8, etc. will be
     * \p 6, \p 22, \p 38, etc. (and is undefined in other threads).
     *
     * \tparam ReductionOp     <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
     */
    template <
        typename            FlagT>
    __device__ __forceinline__ T TailSegmentedSum(
        T                   input,              ///< [in] Calling thread's input
        FlagT                tail_flag)          ///< [in] Head flag denoting whether or not \p input is the start of a new segment
    {
        return TailSegmentedReduce(input, tail_flag, cub::Sum());
    }



    //@}  end member group
    /******************************************************************//**
     * \name Generic reductions
     *********************************************************************/
    //@{

    /**
     * \brief Computes a warp-wide reduction in the calling warp using the specified binary reduction functor.  The output is valid in warp <em>lane</em><sub>0</sub>.
     *
     * Supports non-commutative reduction operators
     *
     * \smemreuse
     *
     * \par Snippet
     * The code snippet below illustrates four concurrent warp max reductions within a block of
     * 128 threads (one per each of the 32-thread warps).
     * \par
     * \code
     * #include <cub/cub.cuh>
     *
     * __global__ void ExampleKernel(...)
     * {
     *     // Specialize WarpReduce for type int
     *     typedef cub::WarpReduce<int> WarpReduce;
     *
     *     // Allocate WarpReduce shared memory for 4 warps
     *     __shared__ typename WarpReduce::TempStorage temp_storage[4];
     *
     *     // Obtain one input item per thread
     *     int thread_data = ...
     *
     *     // Return the warp-wide reductions to each lane0
     *     int warp_id = threadIdx.x / 32;
     *     int aggregate = WarpReduce(temp_storage[warp_id]).Reduce(
     *         thread_data, cub::Max());
     *
     * \endcode
     * \par
     * Suppose the set of input \p thread_data across the block of threads is <tt>{0, 1, 2, 3, ..., 127}</tt>.
     * The corresponding output \p aggregate in threads 0, 32, 64, and 96 will \p 31, \p 63,
     * \p 95, and \p 127, respectively  (and is undefined in other threads).
     *
     * \tparam ReductionOp     <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
     */
    template <typename ReductionOp>
    __device__ __forceinline__ T Reduce(
        T                   input,              ///< [in] Calling thread's input
        ReductionOp         reduction_op)       ///< [in] Binary reduction operator
    {
        return InternalWarpReduce(temp_storage).template Reduce<true>(input, LOGICAL_WARP_THREADS, reduction_op);
    }

    /**
     * \brief Computes a partially-full warp-wide reduction in the calling warp using the specified binary reduction functor.  The output is valid in warp <em>lane</em><sub>0</sub>.
     *
     * All threads across the calling warp must agree on the same value for \p valid_items.  Otherwise the result is undefined.
     *
     * Supports non-commutative reduction operators
     *
     * \smemreuse
     *
     * \par Snippet
     * The code snippet below illustrates a max reduction within a single, partially-full
     * block of 32 threads (one warp).
     * \par
     * \code
     * #include <cub/cub.cuh>
     *
     * __global__ void ExampleKernel(int *d_data, int valid_items)
     * {
     *     // Specialize WarpReduce for type int
     *     typedef cub::WarpReduce<int> WarpReduce;
     *
     *     // Allocate WarpReduce shared memory for one warp
     *     __shared__ typename WarpReduce::TempStorage temp_storage;
     *
     *     // Obtain one input item per thread if in range
     *     int thread_data;
     *     if (threadIdx.x < valid_items)
     *         thread_data = d_data[threadIdx.x];
     *
     *     // Return the warp-wide reductions to each lane0
     *     int aggregate = WarpReduce(temp_storage).Reduce(
     *         thread_data, cub::Max(), valid_items);
     *
     * \endcode
     * \par
     * Suppose the input \p d_data is <tt>{0, 1, 2, 3, 4, ...</tt> and \p valid_items
     * is \p 4.  The corresponding output \p aggregate in thread0 is \p 3 (and is
     * undefined in other threads).
     *
     * \tparam ReductionOp     <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
     */
    template <typename ReductionOp>
    __device__ __forceinline__ T Reduce(
        T                   input,              ///< [in] Calling thread's input
        ReductionOp         reduction_op,       ///< [in] Binary reduction operator
        int                 valid_items)        ///< [in] Total number of valid items in the calling thread's logical warp (may be less than \p LOGICAL_WARP_THREADS)
    {
        return InternalWarpReduce(temp_storage).template Reduce<false>(input, valid_items, reduction_op);
    }


    /**
     * \brief Computes a segmented reduction in the calling warp where segments are defined by head-flags.  The reduction of each segment is returned to the first lane in that segment (which always includes <em>lane</em><sub>0</sub>).
     *
     * Supports non-commutative reduction operators
     *
     * \smemreuse
     *
     * \par Snippet
     * The code snippet below illustrates a head-segmented warp max
     * reduction within a block of 32 threads (one warp).
     * \par
     * \code
     * #include <cub/cub.cuh>
     *
     * __global__ void ExampleKernel(...)
     * {
     *     // Specialize WarpReduce for type int
     *     typedef cub::WarpReduce<int> WarpReduce;
     *
     *     // Allocate WarpReduce shared memory for one warp
     *     __shared__ typename WarpReduce::TempStorage temp_storage;
     *
     *     // Obtain one input item and flag per thread
     *     int thread_data = ...
     *     int head_flag = ...
     *
     *     // Return the warp-wide reductions to each lane0
     *     int aggregate = WarpReduce(temp_storage).HeadSegmentedReduce(
     *         thread_data, head_flag, cub::Max());
     *
     * \endcode
     * \par
     * Suppose the set of input \p thread_data and \p head_flag across the block of threads
     * is <tt>{0, 1, 2, 3, ..., 31</tt> and is <tt>{1, 0, 0, 0, 1, 0, 0, 0, ..., 1, 0, 0, 0</tt>,
     * respectively.  The corresponding output \p aggregate in threads 0, 4, 8, etc. will be
     * \p 3, \p 7, \p 11, etc. (and is undefined in other threads).
     *
     * \tparam ReductionOp     <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
     */
    template <
        typename            ReductionOp,
        typename            FlagT>
    __device__ __forceinline__ T HeadSegmentedReduce(
        T                   input,              ///< [in] Calling thread's input
        FlagT               head_flag,          ///< [in] Head flag denoting whether or not \p input is the start of a new segment
        ReductionOp         reduction_op)       ///< [in] Reduction operator
    {
        return InternalWarpReduce(temp_storage).template SegmentedReduce<true>(input, head_flag, reduction_op);
    }


    /**
     * \brief Computes a segmented reduction in the calling warp where segments are defined by tail-flags.  The reduction of each segment is returned to the first lane in that segment (which always includes <em>lane</em><sub>0</sub>).
     *
     * Supports non-commutative reduction operators
     *
     * \smemreuse
     *
     * \par Snippet
     * The code snippet below illustrates a tail-segmented warp max
     * reduction within a block of 32 threads (one warp).
     * \par
     * \code
     * #include <cub/cub.cuh>
     *
     * __global__ void ExampleKernel(...)
     * {
     *     // Specialize WarpReduce for type int
     *     typedef cub::WarpReduce<int> WarpReduce;
     *
     *     // Allocate WarpReduce shared memory for one warp
     *     __shared__ typename WarpReduce::TempStorage temp_storage;
     *
     *     // Obtain one input item and flag per thread
     *     int thread_data = ...
     *     int tail_flag = ...
     *
     *     // Return the warp-wide reductions to each lane0
     *     int aggregate = WarpReduce(temp_storage).TailSegmentedReduce(
     *         thread_data, tail_flag, cub::Max());
     *
     * \endcode
     * \par
     * Suppose the set of input \p thread_data and \p tail_flag across the block of threads
     * is <tt>{0, 1, 2, 3, ..., 31</tt> and is <tt>{0, 0, 0, 1, 0, 0, 0, 1, ..., 0, 0, 0, 1</tt>,
     * respectively.  The corresponding output \p aggregate in threads 0, 4, 8, etc. will be
     * \p 3, \p 7, \p 11, etc. (and is undefined in other threads).
     *
     * \tparam ReductionOp     <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
     */
    template <
        typename            ReductionOp,
        typename            FlagT>
    __device__ __forceinline__ T TailSegmentedReduce(
        T                   input,              ///< [in] Calling thread's input
        FlagT               tail_flag,          ///< [in] Tail flag denoting whether or not \p input is the end of the current segment
        ReductionOp         reduction_op)       ///< [in] Reduction operator
    {
        return InternalWarpReduce(temp_storage).template SegmentedReduce<false>(input, tail_flag, reduction_op);
    }



    //@}  end member group
};

/** @} */       // end group WarpModule

}               // CUB namespace
CUB_NS_POSTFIX  // Optional outer namespace(s)