example_block_scan.cu
11.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/******************************************************************************
* Simple demonstration of cub::BlockScan
*
* To compile using the command line:
* nvcc -arch=sm_XX example_block_scan.cu -I../.. -lcudart -O3
*
******************************************************************************/
// Ensure printing of CUDA runtime errors to console (define before including cub.h)
#define CUB_STDERR
#include <stdio.h>
#include <iostream>
#include <cub/block/block_load.cuh>
#include <cub/block/block_store.cuh>
#include <cub/block/block_scan.cuh>
#include "../../test/test_util.h"
using namespace cub;
//---------------------------------------------------------------------
// Globals, constants and typedefs
//---------------------------------------------------------------------
/// Verbose output
bool g_verbose = false;
/// Timing iterations
int g_timing_iterations = 100;
/// Default grid size
int g_grid_size = 1;
//---------------------------------------------------------------------
// Kernels
//---------------------------------------------------------------------
/**
* Simple kernel for performing a block-wide exclusive prefix sum over integers
*/
template <
int BLOCK_THREADS,
int ITEMS_PER_THREAD,
BlockScanAlgorithm ALGORITHM>
__global__ void BlockPrefixSumKernel(
int *d_in, // Tile of input
int *d_out, // Tile of output
clock_t *d_elapsed) // Elapsed cycle count of block scan
{
// Specialize BlockLoad type for our thread block (uses warp-striped loads for coalescing, then transposes in shared memory to a blocked arrangement)
typedef BlockLoad<int, BLOCK_THREADS, ITEMS_PER_THREAD, BLOCK_LOAD_WARP_TRANSPOSE> BlockLoadT;
// Specialize BlockStore type for our thread block (uses warp-striped loads for coalescing, then transposes in shared memory to a blocked arrangement)
typedef BlockStore<int, BLOCK_THREADS, ITEMS_PER_THREAD, BLOCK_STORE_WARP_TRANSPOSE> BlockStoreT;
// Specialize BlockScan type for our thread block
typedef BlockScan<int, BLOCK_THREADS, ALGORITHM> BlockScanT;
// Shared memory
__shared__ union TempStorage
{
typename BlockLoadT::TempStorage load;
typename BlockStoreT::TempStorage store;
typename BlockScanT::TempStorage scan;
} temp_storage;
// Per-thread tile data
int data[ITEMS_PER_THREAD];
// Load items into a blocked arrangement
BlockLoadT(temp_storage.load).Load(d_in, data);
// Barrier for smem reuse
__syncthreads();
// Start cycle timer
clock_t start = clock();
// Compute exclusive prefix sum
int aggregate;
BlockScanT(temp_storage.scan).ExclusiveSum(data, data, aggregate);
// Stop cycle timer
clock_t stop = clock();
// Barrier for smem reuse
__syncthreads();
// Store items from a blocked arrangement
BlockStoreT(temp_storage.store).Store(d_out, data);
// Store aggregate and elapsed clocks
if (threadIdx.x == 0)
{
*d_elapsed = (start > stop) ? start - stop : stop - start;
d_out[BLOCK_THREADS * ITEMS_PER_THREAD] = aggregate;
}
}
//---------------------------------------------------------------------
// Host utilities
//---------------------------------------------------------------------
/**
* Initialize exclusive prefix sum problem (and solution).
* Returns the aggregate
*/
int Initialize(
int *h_in,
int *h_reference,
int num_items)
{
int inclusive = 0;
for (int i = 0; i < num_items; ++i)
{
h_in[i] = i % 17;
h_reference[i] = inclusive;
inclusive += h_in[i];
}
return inclusive;
}
/**
* Test thread block scan
*/
template <
int BLOCK_THREADS,
int ITEMS_PER_THREAD,
BlockScanAlgorithm ALGORITHM>
void Test()
{
const int TILE_SIZE = BLOCK_THREADS * ITEMS_PER_THREAD;
// Allocate host arrays
int *h_in = new int[TILE_SIZE];
int *h_reference = new int[TILE_SIZE];
int *h_gpu = new int[TILE_SIZE + 1];
// Initialize problem and reference output on host
int h_aggregate = Initialize(h_in, h_reference, TILE_SIZE);
// Initialize device arrays
int *d_in = NULL;
int *d_out = NULL;
clock_t *d_elapsed = NULL;
cudaMalloc((void**)&d_in, sizeof(int) * TILE_SIZE);
cudaMalloc((void**)&d_out, sizeof(int) * (TILE_SIZE + 1));
cudaMalloc((void**)&d_elapsed, sizeof(clock_t));
// Display input problem data
if (g_verbose)
{
printf("Input data: ");
for (int i = 0; i < TILE_SIZE; i++)
printf("%d, ", h_in[i]);
printf("\n\n");
}
// Kernel props
int max_sm_occupancy;
CubDebugExit(MaxSmOccupancy(max_sm_occupancy, BlockPrefixSumKernel<BLOCK_THREADS, ITEMS_PER_THREAD, ALGORITHM>, BLOCK_THREADS));
// Copy problem to device
cudaMemcpy(d_in, h_in, sizeof(int) * TILE_SIZE, cudaMemcpyHostToDevice);
printf("BlockScan algorithm %s on %d items (%d timing iterations, %d blocks, %d threads, %d items per thread, %d SM occupancy):\n",
(ALGORITHM == BLOCK_SCAN_RAKING) ? "BLOCK_SCAN_RAKING" : (ALGORITHM == BLOCK_SCAN_RAKING_MEMOIZE) ? "BLOCK_SCAN_RAKING_MEMOIZE" : "BLOCK_SCAN_WARP_SCANS",
TILE_SIZE, g_timing_iterations, g_grid_size, BLOCK_THREADS, ITEMS_PER_THREAD, max_sm_occupancy);
// Run aggregate/prefix kernel
BlockPrefixSumKernel<BLOCK_THREADS, ITEMS_PER_THREAD, ALGORITHM><<<g_grid_size, BLOCK_THREADS>>>(
d_in,
d_out,
d_elapsed);
// Check results
printf("\tOutput items: ");
int compare = CompareDeviceResults(h_reference, d_out, TILE_SIZE, g_verbose, g_verbose);
printf("%s\n", compare ? "FAIL" : "PASS");
AssertEquals(0, compare);
// Check total aggregate
printf("\tAggregate: ");
compare = CompareDeviceResults(&h_aggregate, d_out + TILE_SIZE, 1, g_verbose, g_verbose);
printf("%s\n", compare ? "FAIL" : "PASS");
AssertEquals(0, compare);
// Run this several times and average the performance results
GpuTimer timer;
float elapsed_millis = 0.0;
clock_t elapsed_clocks = 0;
for (int i = 0; i < g_timing_iterations; ++i)
{
// Copy problem to device
cudaMemcpy(d_in, h_in, sizeof(int) * TILE_SIZE, cudaMemcpyHostToDevice);
timer.Start();
// Run aggregate/prefix kernel
BlockPrefixSumKernel<BLOCK_THREADS, ITEMS_PER_THREAD, ALGORITHM><<<g_grid_size, BLOCK_THREADS>>>(
d_in,
d_out,
d_elapsed);
timer.Stop();
elapsed_millis += timer.ElapsedMillis();
// Copy clocks from device
clock_t clocks;
CubDebugExit(cudaMemcpy(&clocks, d_elapsed, sizeof(clock_t), cudaMemcpyDeviceToHost));
elapsed_clocks += clocks;
}
// Check for kernel errors and STDIO from the kernel, if any
CubDebugExit(cudaPeekAtLastError());
CubDebugExit(cudaDeviceSynchronize());
// Display timing results
float avg_millis = elapsed_millis / g_timing_iterations;
float avg_items_per_sec = float(TILE_SIZE * g_grid_size) / avg_millis / 1000.0f;
float avg_clocks = float(elapsed_clocks) / g_timing_iterations;
float avg_clocks_per_item = avg_clocks / TILE_SIZE;
printf("\tAverage BlockScan::Sum clocks: %.3f\n", avg_clocks);
printf("\tAverage BlockScan::Sum clocks per item: %.3f\n", avg_clocks_per_item);
printf("\tAverage kernel millis: %.4f\n", avg_millis);
printf("\tAverage million items / sec: %.4f\n", avg_items_per_sec);
// Cleanup
if (h_in) delete[] h_in;
if (h_reference) delete[] h_reference;
if (h_gpu) delete[] h_gpu;
if (d_in) cudaFree(d_in);
if (d_out) cudaFree(d_out);
if (d_elapsed) cudaFree(d_elapsed);
}
/**
* Main
*/
int main(int argc, char** argv)
{
// Initialize command line
CommandLineArgs args(argc, argv);
g_verbose = args.CheckCmdLineFlag("v");
args.GetCmdLineArgument("i", g_timing_iterations);
args.GetCmdLineArgument("grid-size", g_grid_size);
// Print usage
if (args.CheckCmdLineFlag("help"))
{
printf("%s "
"[--device=<device-id>] "
"[--i=<timing iterations (default:%d)>]"
"[--grid-size=<grid size (default:%d)>]"
"[--v] "
"\n", argv[0], g_timing_iterations, g_grid_size);
exit(0);
}
// Initialize device
CubDebugExit(args.DeviceInit());
// Run tests
Test<1024, 1, BLOCK_SCAN_RAKING>();
Test<512, 2, BLOCK_SCAN_RAKING>();
Test<256, 4, BLOCK_SCAN_RAKING>();
Test<128, 8, BLOCK_SCAN_RAKING>();
Test<64, 16, BLOCK_SCAN_RAKING>();
Test<32, 32, BLOCK_SCAN_RAKING>();
printf("-------------\n");
Test<1024, 1, BLOCK_SCAN_RAKING_MEMOIZE>();
Test<512, 2, BLOCK_SCAN_RAKING_MEMOIZE>();
Test<256, 4, BLOCK_SCAN_RAKING_MEMOIZE>();
Test<128, 8, BLOCK_SCAN_RAKING_MEMOIZE>();
Test<64, 16, BLOCK_SCAN_RAKING_MEMOIZE>();
Test<32, 32, BLOCK_SCAN_RAKING_MEMOIZE>();
printf("-------------\n");
Test<1024, 1, BLOCK_SCAN_WARP_SCANS>();
Test<512, 2, BLOCK_SCAN_WARP_SCANS>();
Test<256, 4, BLOCK_SCAN_WARP_SCANS>();
Test<128, 8, BLOCK_SCAN_WARP_SCANS>();
Test<64, 16, BLOCK_SCAN_WARP_SCANS>();
Test<32, 32, BLOCK_SCAN_WARP_SCANS>();
return 0;
}