sparse_matrix.h 38.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
/******************************************************************************
 * Copyright (c) 2011, Duane Merrill.  All rights reserved.
 * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

/******************************************************************************
 * Matrix data structures and parsing logic
 ******************************************************************************/

#pragma once

#include <cmath>
#include <cstring>

#include <iterator>
#include <string>
#include <algorithm>
#include <iostream>
#include <queue>
#include <set>
#include <fstream>
#include <stdio.h>

#ifdef CUB_MKL
    #include <numa.h>
    #include <mkl.h>
#endif

using namespace std;

/******************************************************************************
 * COO matrix type
 ******************************************************************************/

struct GraphStats
{
    int         num_rows;
    int         num_cols;
    int         num_nonzeros;

    double      diag_dist_mean;         // mean
    double      diag_dist_std_dev;      // sample std dev
    double      pearson_r;    // coefficient of variation

    double      row_length_mean;        // mean
    double      row_length_std_dev;     // sample std_dev
    double      row_length_variation;   // coefficient of variation
    double      row_length_skewness;    // skewness

    void Display(bool show_labels = true)
    {
        if (show_labels)
            printf("\n"
                "\t num_rows: %d\n"
                "\t num_cols: %d\n"
                "\t num_nonzeros: %d\n"
                "\t diag_dist_mean: %.2f\n"
                "\t diag_dist_std_dev: %.2f\n"
                "\t pearson_r: %f\n"
                "\t row_length_mean: %.5f\n"
                "\t row_length_std_dev: %.5f\n"
                "\t row_length_variation: %.5f\n"
                "\t row_length_skewness: %.5f\n",
                    num_rows,
                    num_cols,
                    num_nonzeros,
                    diag_dist_mean,
                    diag_dist_std_dev,
                    pearson_r,
                    row_length_mean,
                    row_length_std_dev,
                    row_length_variation,
                    row_length_skewness);
        else
            printf(
                "%d, "
                "%d, "
                "%d, "
                "%.2f, "
                "%.2f, "
                "%f, "
                "%.5f, "
                "%.5f, "
                "%.5f, "
                "%.5f, ",
                    num_rows,
                    num_cols,
                    num_nonzeros,
                    diag_dist_mean,
                    diag_dist_std_dev,
                    pearson_r,
                    row_length_mean,
                    row_length_std_dev,
                    row_length_variation,
                    row_length_skewness);
    }
};



/******************************************************************************
 * COO matrix type
 ******************************************************************************/


/**
 * COO matrix type.  A COO matrix is just a vector of edge tuples.  Tuples are sorted
 * first by row, then by column.
 */
template<typename ValueT, typename OffsetT>
struct CooMatrix
{
    //---------------------------------------------------------------------
    // Type definitions and constants
    //---------------------------------------------------------------------

    // COO edge tuple
    struct CooTuple
    {
        OffsetT            row;
        OffsetT            col;
        ValueT             val;

        CooTuple() {}
        CooTuple(OffsetT row, OffsetT col) : row(row), col(col) {}
        CooTuple(OffsetT row, OffsetT col, ValueT val) : row(row), col(col), val(val) {}

        /**
         * Comparator for sorting COO sparse format num_nonzeros
         */
        bool operator<(const CooTuple &other) const
        {
            if ((row < other.row) || ((row == other.row) && (col < other.col)))
            {
                return true;
            }

            return false;
        }
    };


    //---------------------------------------------------------------------
    // Data members
    //---------------------------------------------------------------------

    // Fields
    int                 num_rows;
    int                 num_cols;
    int                 num_nonzeros;
    CooTuple*           coo_tuples;

    //---------------------------------------------------------------------
    // Methods
    //---------------------------------------------------------------------

    // Constructor
    CooMatrix() : num_rows(0), num_cols(0), num_nonzeros(0), coo_tuples(NULL) {}


    /**
     * Clear
     */
    void Clear()
    {
        if (coo_tuples) delete[] coo_tuples;
        coo_tuples = NULL;
    }


    // Destructor
    ~CooMatrix()
    {
        Clear();
    }


    // Display matrix to stdout
    void Display()
    {
        cout << "COO Matrix (" << num_rows << " rows, " << num_cols << " columns, " << num_nonzeros << " non-zeros):\n";
        cout << "Ordinal, Row, Column, Value\n";
        for (int i = 0; i < num_nonzeros; i++)
        {
            cout << '\t' << i << ',' << coo_tuples[i].row << ',' << coo_tuples[i].col << ',' << coo_tuples[i].val << "\n";
        }
    }


    /**
     * Builds a symmetric COO sparse from an asymmetric CSR matrix.
     */
    template <typename CsrMatrixT>
    void InitCsrSymmetric(CsrMatrixT &csr_matrix)
    {
        if (coo_tuples)
        {
            fprintf(stderr, "Matrix already constructed\n");
            exit(1);
        }

        num_rows        = csr_matrix.num_cols;
        num_cols        = csr_matrix.num_rows;
        num_nonzeros    = csr_matrix.num_nonzeros * 2;
        coo_tuples      = new CooTuple[num_nonzeros];

        for (OffsetT row = 0; row < csr_matrix.num_rows; ++row)
        {
            for (OffsetT nonzero = csr_matrix.row_offsets[row]; nonzero < csr_matrix.row_offsets[row + 1]; ++nonzero)
            {
                coo_tuples[nonzero].row = row;
                coo_tuples[nonzero].col = csr_matrix.column_indices[nonzero];
                coo_tuples[nonzero].val = csr_matrix.values[nonzero];

                coo_tuples[csr_matrix.num_nonzeros + nonzero].row = coo_tuples[nonzero].col;
                coo_tuples[csr_matrix.num_nonzeros + nonzero].col = coo_tuples[nonzero].row;
                coo_tuples[csr_matrix.num_nonzeros + nonzero].val = csr_matrix.values[nonzero];

            }
        }

        // Sort by rows, then columns
        std::stable_sort(coo_tuples, coo_tuples + num_nonzeros);
    }

    /**
     * Builds a COO sparse from a relabeled CSR matrix.
     */
    template <typename CsrMatrixT>
    void InitCsrRelabel(CsrMatrixT &csr_matrix, OffsetT* relabel_indices)
    {
        if (coo_tuples)
        {
            fprintf(stderr, "Matrix already constructed\n");
            exit(1);
        }

        num_rows        = csr_matrix.num_rows;
        num_cols        = csr_matrix.num_cols;
        num_nonzeros    = csr_matrix.num_nonzeros;
        coo_tuples      = new CooTuple[num_nonzeros];

        for (OffsetT row = 0; row < num_rows; ++row)
        {
            for (OffsetT nonzero = csr_matrix.row_offsets[row]; nonzero < csr_matrix.row_offsets[row + 1]; ++nonzero)
            {
                coo_tuples[nonzero].row = relabel_indices[row];
                coo_tuples[nonzero].col = relabel_indices[csr_matrix.column_indices[nonzero]];
                coo_tuples[nonzero].val = csr_matrix.values[nonzero];
            }
        }

        // Sort by rows, then columns
        std::stable_sort(coo_tuples, coo_tuples + num_nonzeros);
    }



    /**
     * Builds a METIS COO sparse from the given file.
     */
    void InitMetis(const string &metis_filename)
    {
        if (coo_tuples)
        {
            fprintf(stderr, "Matrix already constructed\n");
            exit(1);
        }

        // TODO
    }


    /**
     * Builds a MARKET COO sparse from the given file.
     */
    void InitMarket(
        const string&   market_filename,
        ValueT          default_value       = 1.0,
        bool            verbose             = false)
    {
        if (verbose) {
            printf("Reading... "); fflush(stdout);
        }

        if (coo_tuples)
        {
            fprintf(stderr, "Matrix already constructed\n");
            exit(1);
        }

        std::ifstream ifs;
        ifs.open(market_filename.c_str(), std::ifstream::in);
        if (!ifs.good())
        {
            fprintf(stderr, "Error opening file\n");
            exit(1);
        }

        bool    array = false;
        bool    symmetric = false;
        bool    skew = false;
        int     current_edge = -1;
        char    line[1024];

        if (verbose) {
            printf("Parsing... "); fflush(stdout);
        }

        while (true)
        {
            ifs.getline(line, 1024);
            if (!ifs.good())
            {
                // Done
                break;
            }

            if (line[0] == '%')
            {
                // Comment
                if (line[1] == '%')
                {
                    // Banner
                    symmetric   = (strstr(line, "symmetric") != NULL);
                    skew        = (strstr(line, "skew") != NULL);
                    array       = (strstr(line, "array") != NULL);

                    if (verbose) {
                        printf("(symmetric: %d, skew: %d, array: %d) ", symmetric, skew, array); fflush(stdout);
                    }
                }
            }
            else if (current_edge == -1)
            {
                // Problem description
                int nparsed = sscanf(line, "%d %d %d", &num_rows, &num_cols, &num_nonzeros);
                if ((!array) && (nparsed == 3))
                {
                    if (symmetric)
                        num_nonzeros *= 2;

                    // Allocate coo matrix
                    coo_tuples = new CooTuple[num_nonzeros];
                    current_edge = 0;

                }
                else if (array && (nparsed == 2))
                {
                    // Allocate coo matrix
                    num_nonzeros = num_rows * num_cols;
                    coo_tuples = new CooTuple[num_nonzeros];
                    current_edge = 0;
                }
                else
                {
                    fprintf(stderr, "Error parsing MARKET matrix: invalid problem description: %s\n", line);
                    exit(1);
                }

            }
            else
            {
                // Edge
                if (current_edge >= num_nonzeros)
                {
                    fprintf(stderr, "Error parsing MARKET matrix: encountered more than %d num_nonzeros\n", num_nonzeros);
                    exit(1);
                }

                int row, col;
                double val;

                if (array)
                {
                    if (sscanf(line, "%lf", &val) != 1)
                    {
                        fprintf(stderr, "Error parsing MARKET matrix: badly formed current_edge: '%s' at edge %d\n", line, current_edge);
                        exit(1);
                    }
                    col = (current_edge / num_rows);
                    row = (current_edge - (num_rows * col));

                    coo_tuples[current_edge] = CooTuple(row, col, val);    // Convert indices to zero-based
                }
                else
                {
                    // Parse nonzero (note: using strtol and strtod is 2x faster than sscanf or istream parsing)
                    char *l = line;
                    char *t = NULL;

                    // parse row
                    row = strtol(l, &t, 0);
                    if (t == l)
                    {
                        fprintf(stderr, "Error parsing MARKET matrix: badly formed row at edge %d\n", current_edge);
                        exit(1);
                    }
                    l = t;

                    // parse col
                    col = strtol(l, &t, 0);
                    if (t == l)
                    {
                        fprintf(stderr, "Error parsing MARKET matrix: badly formed col at edge %d\n", current_edge);
                        exit(1);
                    }
                    l = t;

                    // parse val
                    val = strtod(l, &t);
                    if (t == l)
                    {
                        val = default_value;
                    }
/*
                    int nparsed = sscanf(line, "%d %d %lf", &row, &col, &val);
                    if (nparsed == 2)
                    {
                        // No value specified
                        val = default_value;
                        
                    }
                    else if (nparsed != 3)
                    {
                        fprintf(stderr, "Error parsing MARKET matrix 1: badly formed current_edge: %d parsed at edge %d\n", nparsed, current_edge);
                        exit(1);
                    }
*/

                    coo_tuples[current_edge] = CooTuple(row - 1, col - 1, val);    // Convert indices to zero-based

                }

                current_edge++;

                if (symmetric && (row != col))
                {
                    coo_tuples[current_edge].row = coo_tuples[current_edge - 1].col;
                    coo_tuples[current_edge].col = coo_tuples[current_edge - 1].row;
                    coo_tuples[current_edge].val = coo_tuples[current_edge - 1].val * (skew ? -1 : 1);
                    current_edge++;
                }
            }
        }

        // Adjust nonzero count (nonzeros along the diagonal aren't reversed)
        num_nonzeros = current_edge;

        if (verbose) {
            printf("done. Ordering..."); fflush(stdout);
        }

        // Sort by rows, then columns
        std::stable_sort(coo_tuples, coo_tuples + num_nonzeros);

        if (verbose) {
            printf("done. "); fflush(stdout);
        }

        ifs.close();
    }


    /**
     * Builds a dense matrix
     */
    int InitDense(
        OffsetT     num_rows,
        OffsetT     num_cols,
        ValueT      default_value   = 1.0,
        bool        verbose         = false)
    {
        if (coo_tuples)
        {
            fprintf(stderr, "Matrix already constructed\n");
            exit(1);
        }

        this->num_rows  = num_rows;
        this->num_cols  = num_cols;

        num_nonzeros    = num_rows * num_cols;
        coo_tuples      = new CooTuple[num_nonzeros];

        for (OffsetT row = 0; row < num_rows; ++row)
        {
            for (OffsetT col = 0; col < num_cols; ++col)
            {
                coo_tuples[(row * num_cols) + col] = CooTuple(row, col, default_value);
            }
        }

        // Sort by rows, then columns
        std::stable_sort(coo_tuples, coo_tuples + num_nonzeros);

        return 0;
    }

    /**
     * Builds a wheel COO sparse matrix having spokes spokes.
     */
    int InitWheel(
        OffsetT     spokes,
        ValueT      default_value   = 1.0,
        bool        verbose         = false)
    {
        if (coo_tuples)
        {
            fprintf(stderr, "Matrix already constructed\n");
            exit(1);
        }

        num_rows        = spokes + 1;
        num_cols        = num_rows;
        num_nonzeros    = spokes * 2;
        coo_tuples      = new CooTuple[num_nonzeros];

        // Add spoke num_nonzeros
        int current_edge = 0;
        for (OffsetT i = 0; i < spokes; i++)
        {
            coo_tuples[current_edge] = CooTuple(0, i + 1, default_value);
            current_edge++;
        }

        // Add rim
        for (OffsetT i = 0; i < spokes; i++)
        {
            OffsetT dest = (i + 1) % spokes;
            coo_tuples[current_edge] = CooTuple(i + 1, dest + 1, default_value);
            current_edge++;
        }

        // Sort by rows, then columns
        std::stable_sort(coo_tuples, coo_tuples + num_nonzeros);

        return 0;
    }


    /**
     * Builds a square 2D grid CSR matrix.  Interior num_vertices have degree 5 when including
     * a self-loop.
     *
     * Returns 0 on success, 1 on failure.
     */
    int InitGrid2d(OffsetT width, bool self_loop, ValueT default_value = 1.0)
    {
        if (coo_tuples)
        {
            fprintf(stderr, "Matrix already constructed\n");
            exit(1);
        }

        int     interior_nodes  = (width - 2) * (width - 2);
        int     edge_nodes      = (width - 2) * 4;
        int     corner_nodes    = 4;
        num_rows                       = width * width;
        num_cols                       = num_rows;
        num_nonzeros                   = (interior_nodes * 4) + (edge_nodes * 3) + (corner_nodes * 2);

        if (self_loop)
            num_nonzeros += num_rows;

        coo_tuples          = new CooTuple[num_nonzeros];
        int current_edge    = 0;

        for (OffsetT j = 0; j < width; j++)
        {
            for (OffsetT k = 0; k < width; k++)
            {
                OffsetT me = (j * width) + k;

                // West
                OffsetT neighbor = (j * width) + (k - 1);
                if (k - 1 >= 0) {
                    coo_tuples[current_edge] = CooTuple(me, neighbor, default_value);
                    current_edge++;
                }

                // East
                neighbor = (j * width) + (k + 1);
                if (k + 1 < width) {
                    coo_tuples[current_edge] = CooTuple(me, neighbor, default_value);
                    current_edge++;
                }

                // North
                neighbor = ((j - 1) * width) + k;
                if (j - 1 >= 0) {
                    coo_tuples[current_edge] = CooTuple(me, neighbor, default_value);
                    current_edge++;
                }

                // South
                neighbor = ((j + 1) * width) + k;
                if (j + 1 < width) {
                    coo_tuples[current_edge] = CooTuple(me, neighbor, default_value);
                    current_edge++;
                }

                if (self_loop)
                {
                    neighbor = me;
                    coo_tuples[current_edge] = CooTuple(me, neighbor, default_value);
                    current_edge++;
                }
            }
        }

        // Sort by rows, then columns, update dims
        std::stable_sort(coo_tuples, coo_tuples + num_nonzeros);

        return 0;
    }


    /**
     * Builds a square 3D grid COO sparse matrix.  Interior num_vertices have degree 7 when including
     * a self-loop.  Values are unintialized, coo_tuples are sorted.
     */
    int InitGrid3d(OffsetT width, bool self_loop, ValueT default_value = 1.0)
    {
        if (coo_tuples)
        {
            fprintf(stderr, "Matrix already constructed\n");
            return -1;
        }

        OffsetT interior_nodes  = (width - 2) * (width - 2) * (width - 2);
        OffsetT face_nodes      = (width - 2) * (width - 2) * 6;
        OffsetT edge_nodes      = (width - 2) * 12;
        OffsetT corner_nodes    = 8;
        num_cols                       = width * width * width;
        num_rows                       = num_cols;
        num_nonzeros                     = (interior_nodes * 6) + (face_nodes * 5) + (edge_nodes * 4) + (corner_nodes * 3);

        if (self_loop)
            num_nonzeros += num_rows;

        coo_tuples          = new CooTuple[num_nonzeros];
        int current_edge    = 0;

        for (OffsetT i = 0; i < width; i++)
        {
            for (OffsetT j = 0; j < width; j++)
            {
                for (OffsetT k = 0; k < width; k++)
                {

                    OffsetT me = (i * width * width) + (j * width) + k;

                    // Up
                    OffsetT neighbor = (i * width * width) + (j * width) + (k - 1);
                    if (k - 1 >= 0) {
                        coo_tuples[current_edge] = CooTuple(me, neighbor, default_value);
                        current_edge++;
                    }

                    // Down
                    neighbor = (i * width * width) + (j * width) + (k + 1);
                    if (k + 1 < width) {
                        coo_tuples[current_edge] = CooTuple(me, neighbor, default_value);
                        current_edge++;
                    }

                    // West
                    neighbor = (i * width * width) + ((j - 1) * width) + k;
                    if (j - 1 >= 0) {
                        coo_tuples[current_edge] = CooTuple(me, neighbor, default_value);
                        current_edge++;
                    }

                    // East
                    neighbor = (i * width * width) + ((j + 1) * width) + k;
                    if (j + 1 < width) {
                        coo_tuples[current_edge] = CooTuple(me, neighbor, default_value);
                        current_edge++;
                    }

                    // North
                    neighbor = ((i - 1) * width * width) + (j * width) + k;
                    if (i - 1 >= 0) {
                        coo_tuples[current_edge] = CooTuple(me, neighbor, default_value);
                        current_edge++;
                    }

                    // South
                    neighbor = ((i + 1) * width * width) + (j * width) + k;
                    if (i + 1 < width) {
                        coo_tuples[current_edge] = CooTuple(me, neighbor, default_value);
                        current_edge++;
                    }

                    if (self_loop)
                    {
                        neighbor = me;
                        coo_tuples[current_edge] = CooTuple(me, neighbor, default_value);
                        current_edge++;
                    }
                }
            }
        }

        // Sort by rows, then columns, update dims
        std::stable_sort(coo_tuples, coo_tuples + num_nonzeros);

        return 0;
    }
};



/******************************************************************************
 * COO matrix type
 ******************************************************************************/


/**
 * CSR sparse format matrix
 */
template<
    typename ValueT,
    typename OffsetT>
struct CsrMatrix
{
    int         num_rows;
    int         num_cols;
    int         num_nonzeros;
    OffsetT*    row_offsets;
    OffsetT*    column_indices;
    ValueT*     values;
    bool        numa_malloc;

    /**
     * Constructor
     */
    CsrMatrix() : num_rows(0), num_cols(0), num_nonzeros(0), row_offsets(NULL), column_indices(NULL), values(NULL) 
    {
#ifdef CUB_MKL
        numa_malloc = ((numa_available() >= 0) && (numa_num_task_nodes() > 1));
#else
        numa_malloc = false;
#endif
    }


    /**
     * Clear
     */
    void Clear()
    {
#ifdef CUB_MKL
        if (numa_malloc) 
        {
            numa_free(row_offsets, sizeof(OffsetT) * (num_rows + 1));
            numa_free(values, sizeof(ValueT) * num_nonzeros);
            numa_free(column_indices, sizeof(OffsetT) * num_nonzeros);
        }
        else
        {
            if (row_offsets)    mkl_free(row_offsets);
            if (column_indices) mkl_free(column_indices);
            if (values)         mkl_free(values);
        }

#else
        if (row_offsets)    delete[] row_offsets;
        if (column_indices) delete[] column_indices;
        if (values)         delete[] values;
#endif

        row_offsets = NULL;
        column_indices = NULL;
        values = NULL;
    }

    /**
     * Destructor
     */
    ~CsrMatrix()
    {
        Clear();
    }

    GraphStats Stats()
    {
        GraphStats stats;
        stats.num_rows = num_rows;
        stats.num_cols = num_cols;
        stats.num_nonzeros = num_nonzeros;

        //
        // Compute diag-distance statistics
        //

        OffsetT samples     = 0;
        double  mean        = 0.0;
        double  ss_tot      = 0.0;

        for (OffsetT row = 0; row < num_rows; ++row)
        {
            OffsetT nz_idx_start    = row_offsets[row];
            OffsetT nz_idx_end      = row_offsets[row + 1];

            for (int nz_idx = nz_idx_start; nz_idx < nz_idx_end; ++nz_idx)
            {
                OffsetT col             = column_indices[nz_idx];
                double x                = (col > row) ? col - row : row - col;

                samples++;
                double delta            = x - mean;
                mean                    = mean + (delta / samples);
                ss_tot                  += delta * (x - mean);
            }
        }
        stats.diag_dist_mean            = mean;
        double variance                 = ss_tot / samples;
        stats.diag_dist_std_dev         = sqrt(variance);


        //
        // Compute deming statistics
        //

        samples         = 0;
        double mean_x   = 0.0;
        double mean_y   = 0.0;
        double ss_x     = 0.0;
        double ss_y     = 0.0;

        for (OffsetT row = 0; row < num_rows; ++row)
        {
            OffsetT nz_idx_start    = row_offsets[row];
            OffsetT nz_idx_end      = row_offsets[row + 1];

            for (int nz_idx = nz_idx_start; nz_idx < nz_idx_end; ++nz_idx)
            {
                OffsetT col             = column_indices[nz_idx];

                samples++;
                double x                = col;
                double y                = row;
                double delta;

                delta                   = x - mean_x;
                mean_x                  = mean_x + (delta / samples);
                ss_x                    += delta * (x - mean_x);

                delta                   = y - mean_y;
                mean_y                  = mean_y + (delta / samples);
                ss_y                    += delta * (y - mean_y);
            }
        }

        samples         = 0;
        double s_xy     = 0.0;
        double s_xxy    = 0.0;
        double s_xyy    = 0.0;
        for (OffsetT row = 0; row < num_rows; ++row)
        {
            OffsetT nz_idx_start    = row_offsets[row];
            OffsetT nz_idx_end      = row_offsets[row + 1];

            for (int nz_idx = nz_idx_start; nz_idx < nz_idx_end; ++nz_idx)
            {
                OffsetT col             = column_indices[nz_idx];

                samples++;
                double x                = col;
                double y                = row;

                double xy =             (x - mean_x) * (y - mean_y);
                double xxy =            (x - mean_x) * (x - mean_x) * (y - mean_y);
                double xyy =            (x - mean_x) * (y - mean_y) * (y - mean_y);
                double delta;

                delta                   = xy - s_xy;
                s_xy                    = s_xy + (delta / samples);

                delta                   = xxy - s_xxy;
                s_xxy                   = s_xxy + (delta / samples);

                delta                   = xyy - s_xyy;
                s_xyy                   = s_xyy + (delta / samples);
            }
        }

        double s_xx     = ss_x / num_nonzeros;
        double s_yy     = ss_y / num_nonzeros;

        double deming_slope = (s_yy - s_xx + sqrt(((s_yy - s_xx) * (s_yy - s_xx)) + (4 * s_xy * s_xy))) / (2 * s_xy);

        stats.pearson_r = (num_nonzeros * s_xy) / (sqrt(ss_x) * sqrt(ss_y));


        //
        // Compute row-length statistics
        //

        // Sample mean
        stats.row_length_mean       = double(num_nonzeros) / num_rows;
        variance                    = 0.0;
        stats.row_length_skewness   = 0.0;
        for (OffsetT row = 0; row < num_rows; ++row)
        {
            OffsetT length              = row_offsets[row + 1] - row_offsets[row];
            double delta                = double(length) - stats.row_length_mean;
            variance   += (delta * delta);
            stats.row_length_skewness   += (delta * delta * delta);
        }
        variance                    /= num_rows;
        stats.row_length_std_dev    = sqrt(variance);
        stats.row_length_skewness   = (stats.row_length_skewness / num_rows) / pow(stats.row_length_std_dev, 3.0);
        stats.row_length_variation  = stats.row_length_std_dev / stats.row_length_mean;

        return stats;
    }

    /**
     * Build CSR matrix from sorted COO matrix
     */
    void FromCoo(const CooMatrix<ValueT, OffsetT> &coo_matrix)
    {
        num_rows        = coo_matrix.num_rows;
        num_cols        = coo_matrix.num_cols;
        num_nonzeros    = coo_matrix.num_nonzeros;

#ifdef CUB_MKL

        if (numa_malloc)
        {
            numa_set_strict(1);
//            numa_set_bind_policy(1);

//        values          = (ValueT*) numa_alloc_interleaved(sizeof(ValueT) * num_nonzeros);
//        row_offsets     = (OffsetT*) numa_alloc_interleaved(sizeof(OffsetT) * (num_rows + 1));
//        column_indices  = (OffsetT*) numa_alloc_interleaved(sizeof(OffsetT) * num_nonzeros);

            row_offsets     = (OffsetT*) numa_alloc_onnode(sizeof(OffsetT) * (num_rows + 1), 0);
            column_indices  = (OffsetT*) numa_alloc_onnode(sizeof(OffsetT) * num_nonzeros, 0);
            values          = (ValueT*) numa_alloc_onnode(sizeof(ValueT) * num_nonzeros, 1);
        }
        else
        {
            values          = (ValueT*) mkl_malloc(sizeof(ValueT) * num_nonzeros, 4096);
            row_offsets     = (OffsetT*) mkl_malloc(sizeof(OffsetT) * (num_rows + 1), 4096);
            column_indices  = (OffsetT*) mkl_malloc(sizeof(OffsetT) * num_nonzeros, 4096);

        }

#else
        row_offsets     = new OffsetT[num_rows + 1];
        column_indices  = new OffsetT[num_nonzeros];
        values          = new ValueT[num_nonzeros];
#endif

        OffsetT prev_row = -1;
        for (OffsetT current_edge = 0; current_edge < num_nonzeros; current_edge++)
        {
            OffsetT current_row = coo_matrix.coo_tuples[current_edge].row;

            // Fill in rows up to and including the current row
            for (OffsetT row = prev_row + 1; row <= current_row; row++)
            {
                row_offsets[row] = current_edge;
            }
            prev_row = current_row;

            column_indices[current_edge]    = coo_matrix.coo_tuples[current_edge].col;
            values[current_edge]            = coo_matrix.coo_tuples[current_edge].val;
        }

        // Fill out any trailing edgeless vertices (and the end-of-list element)
        for (OffsetT row = prev_row + 1; row <= num_rows; row++)
        {
            row_offsets[row] = num_nonzeros;
        }
    }


    /**
     * Display log-histogram to stdout
     */
    void DisplayHistogram()
    {
        // Initialize
        int log_counts[9];
        for (int i = 0; i < 9; i++)
        {
            log_counts[i] = 0;
        }

        // Scan
        int max_log_length = -1;
        for (OffsetT row = 0; row < num_rows; row++)
        {
            OffsetT length = row_offsets[row + 1] - row_offsets[row];

            int log_length = -1;
            while (length > 0)
            {
                length /= 10;
                log_length++;
            }
            if (log_length > max_log_length)
            {
                max_log_length = log_length;
            }

            log_counts[log_length + 1]++;
        }
        printf("CSR matrix (%d rows, %d columns, %d non-zeros):\n", (int) num_rows, (int) num_cols, (int) num_nonzeros);
        for (int i = -1; i < max_log_length + 1; i++)
        {
            printf("\tDegree 1e%d: \t%d (%.2f%%)\n", i, log_counts[i + 1], (float) log_counts[i + 1] * 100.0 / num_cols);
        }
        fflush(stdout);
    }


    /**
     * Display matrix to stdout
     */
    void Display()
    {
        printf("Input Matrix:\n");
        for (OffsetT row = 0; row < num_rows; row++)
        {
            printf("%d [@%d, #%d]: ", row, row_offsets[row], row_offsets[row + 1] - row_offsets[row]);
            for (OffsetT current_edge = row_offsets[row]; current_edge < row_offsets[row + 1]; current_edge++)
            {
                printf("%d (%f), ", column_indices[current_edge], values[current_edge]);
            }
            printf("\n");
        }
        fflush(stdout);
    }


};



/******************************************************************************
 * Matrix transformations
 ******************************************************************************/

// Comparator for ordering rows by degree (lowest first), then by row-id (lowest first)
template <typename OffsetT>
struct OrderByLow
{
    OffsetT* row_degrees;
    OrderByLow(OffsetT* row_degrees) : row_degrees(row_degrees) {}

    bool operator()(const OffsetT &a, const OffsetT &b)
    {
        if (row_degrees[a] < row_degrees[b])
            return true;
        else if (row_degrees[a] > row_degrees[b])
            return false;
        else
            return (a < b);
    }
};

// Comparator for ordering rows by degree (highest first), then by row-id (lowest first)
template <typename OffsetT>
struct OrderByHigh
{
    OffsetT* row_degrees;
    OrderByHigh(OffsetT* row_degrees) : row_degrees(row_degrees) {}

    bool operator()(const OffsetT &a, const OffsetT &b)
    {
        if (row_degrees[a] > row_degrees[b])
            return true;
        else if (row_degrees[a] < row_degrees[b])
            return false;
        else
            return (a < b);
    }
};



/**
 * Reverse Cuthill-McKee
 */
template <typename ValueT, typename OffsetT>
void RcmRelabel(
    CsrMatrix<ValueT, OffsetT>&     matrix,
    OffsetT*                        relabel_indices)
{
    // Initialize row degrees
    OffsetT* row_degrees_in     = new OffsetT[matrix.num_rows];
    OffsetT* row_degrees_out    = new OffsetT[matrix.num_rows];
    for (OffsetT row = 0; row < matrix.num_rows; ++row)
    {
        row_degrees_in[row]         = 0;
        row_degrees_out[row]        = matrix.row_offsets[row + 1] - matrix.row_offsets[row];
    }
    for (OffsetT nonzero = 0; nonzero < matrix.num_nonzeros; ++nonzero)
    {
        row_degrees_in[matrix.column_indices[nonzero]]++;
    }

    // Initialize unlabeled set 
    typedef std::set<OffsetT, OrderByLow<OffsetT> > UnlabeledSet;
    typename UnlabeledSet::key_compare  unlabeled_comp(row_degrees_in);
    UnlabeledSet                        unlabeled(unlabeled_comp);
    for (OffsetT row = 0; row < matrix.num_rows; ++row)
    {
        relabel_indices[row]    = -1;
        unlabeled.insert(row);
    }

    // Initialize queue set
    std::deque<OffsetT> q;

    // Process unlabeled vertices (traverse connected components)
    OffsetT relabel_idx = 0;
    while (!unlabeled.empty())
    {
        // Seed the unvisited frontier queue with the unlabeled vertex of lowest-degree
        OffsetT vertex = *unlabeled.begin();
        q.push_back(vertex);

        while (!q.empty())
        {
            vertex = q.front();
            q.pop_front();

            if (relabel_indices[vertex] == -1)
            {
                // Update this vertex
                unlabeled.erase(vertex);
                relabel_indices[vertex] = relabel_idx;
                relabel_idx++;

                // Sort neighbors by degree
                OrderByLow<OffsetT> neighbor_comp(row_degrees_in);
                std::sort(
                    matrix.column_indices + matrix.row_offsets[vertex],
                    matrix.column_indices + matrix.row_offsets[vertex + 1],
                    neighbor_comp);

                // Inspect neighbors, adding to the out frontier if unlabeled
                for (OffsetT neighbor_idx = matrix.row_offsets[vertex];
                    neighbor_idx < matrix.row_offsets[vertex + 1];
                    ++neighbor_idx)
                {
                    OffsetT neighbor = matrix.column_indices[neighbor_idx];
                    q.push_back(neighbor);
                }
            }
        }
    }

/*
    // Reverse labels
    for (int row = 0; row < matrix.num_rows; ++row)
    {
        relabel_indices[row] = matrix.num_rows - relabel_indices[row] - 1;
    }
*/

    // Cleanup
    if (row_degrees_in) delete[] row_degrees_in;
    if (row_degrees_out) delete[] row_degrees_out;
}


/**
 * Reverse Cuthill-McKee
 */
template <typename ValueT, typename OffsetT>
void RcmRelabel(
    CsrMatrix<ValueT, OffsetT>&     matrix,
    bool                            verbose = false)
{
    // Do not process if not square
    if (matrix.num_cols != matrix.num_rows)
    {
        if (verbose) {
            printf("RCM transformation ignored (not square)\n"); fflush(stdout);
        }
        return;
    }

    // Initialize relabel indices
    OffsetT* relabel_indices = new OffsetT[matrix.num_rows];

    if (verbose) {
        printf("RCM relabeling... "); fflush(stdout);
    }

    RcmRelabel(matrix, relabel_indices);

    if (verbose) {
        printf("done. Reconstituting... "); fflush(stdout);
    }

    // Create a COO matrix from the relabel indices
    CooMatrix<ValueT, OffsetT> coo_matrix;
    coo_matrix.InitCsrRelabel(matrix, relabel_indices);

    // Reconstitute the CSR matrix from the sorted COO tuples
    if (relabel_indices) delete[] relabel_indices;
    matrix.Clear();
    matrix.FromCoo(coo_matrix);

    if (verbose) {
        printf("done. "); fflush(stdout);
    }
}