FindNormRules.pl
4.18 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#!/usr/bin/perl -w
#------------------------------------------
# Author : Emmanuel FERREIRA
# Contact: emmanuel.ferreira0194@gmail.com
# Date : 08/02/12
# Brief :
# Analyze a list of coverage reports and process some text transformation
# in order to check usual words spelling mistakes
# create both a NOEMALIZATION_RULES_FILE containing transformation table in order
# to correct guessed mistakes found by this process and a OOV_LST_FILE
# containing the guessed real OOV words
#------------------------------------------
use strict;
use Getopt::Long;
use Pod::Usage;
use Switch;
#-------------------------------------------
# MAIN
#-------------------------------------------
# options variables
my $help = 0;
my $vocab;
my $penalty = 5;
my $oovReport;
# usefull variables
my %vocabMap;
my $sep="\t";
# Parse options and print usage if there is a syntax
# error, or if usage as explicitly requested
GetOptions('help|?' => \$help,
'penalty=s' => \$penalty);
pod2usage(1) if($help);
pod2usage({-msg =>"\nERROR : you must specify an oov report and a lexicon\n", -exitval => 1, -verbose => 0, -output => \*STDERR}) if($#ARGV != 1);
$oovReport = $ARGV[0];
$vocab = $ARGV[1];
#*******************************
# MAIN
#*******************************
#--------------------------
# Load the lexicon in a map
#-------------------------
if($vocab){
my $file;
open($file, $vocab) or die("Cannot open : $vocab");
while(<$file>){
chomp($_);
my $tmp = doTransformation($_);
if(!$vocabMap{$tmp}){
$vocabMap{$tmp}=();
}
push(@{$vocabMap{$tmp}}, $_);
}
close($file);
}
#-----------------------
# Load the OOV report and display the result formatted as follows :
# * normalization rules : r <OCC> <WORD>#<CORREC>#<SCORE> <ID> <EXP>
# * oov : r <OCC> <WORD>#<CORREC>#<SCORE> <ID> <EXP>
#-----------------------
my $file;
open($file, "$oovReport");
while(<$file>)
{
chomp($_);
my @splittedLine = split(/$sep/, $_);
my $word = $splittedLine[1];
my $id = $splittedLine[0];
my $occ = $splittedLine[2];
my $exp = $splittedLine[3];
my $transf = doTransformation($splittedLine[1]);
if($vocabMap{$transf}){
my @bestWord = findBestTransf($word, @{$vocabMap{$transf}});
# on n'afficage pas de score inf a 0
my $score = $bestWord[1];
if($score < 0){
$score = 0;
}
print "r$sep${occ}$sep${word}#$bestWord[0]#$bestWord[1]$sep${id}$sep${exp}\n";
}
else{
print "o$sep${occ}$sep${word}$sep${id}$sep${exp}\n";
}
}
close($file);
#-------------------------------------------
# SUBROUTINES
#-------------------------------------------
sub doTransformation
{
my ($word) = @_;
$word = lc($word);
$word =~ s/\d//g;
$word =~ s/'//g;
return $word;
}
sub findBestTransf
{
my ($word, @vocabTab) = @_;
my $Best;
my $BestScore;
my $i;
my $score;
for( $i = 0; $i <= $#vocabTab; $i++){
if(!$Best){
$Best = $vocabTab[$i];
$BestScore = calculateScore($word, $Best);
}
else{
$score = calculateScore($word, $vocabTab[$i]);
if($score < $BestScore){
$Best = $vocabTab[$i];
$BestScore = $score;
}
}
}
return ($Best, $BestScore);
}
sub calculateScore
{
my ($word, $cmpword) = @_;
my $score = 0;
if(length($word) > length($cmpword)){
$score += $penalty + levenshtein($word, $cmpword);
}
if ($cmpword =~ /^[A-Z]/ && $cmpword !~ /^[A-Z]+$/ && $word =~ /^[A-Z]/){
$score -= 1;
}
# if($cmpword =~ /^[A-Z]+$/ && $word !~ /^[A-Z]+$/){
# $score += $penalty;
# }
$score += levenshtein($word, $cmpword);
return $score;
}
#---------------------------------------------------
# LEVENSHTEIN DISTANCE ALGORITHM
# Initial version : Jorge Mas Trullenque
#---------------------------------------------------
sub levenshtein($$){
my @A=split //, lc shift;
my @B=split //, lc shift;
my @W=(0..@B);
my ($i, $j, $cur, $next);
for $i (0..$#A){
$cur=$i+1;
for $j (0..$#B){
$next=min(
$W[$j+1]+1,
$cur+1,
($A[$i] ne $B[$j])+$W[$j]
);
$W[$j]=$cur;
$cur=$next;
}
$W[@B]=$next;
}
return $next;
}
sub min($$$){
if ($_[0] < $_[2]){ pop @_; } else { shift @_; }
return $_[0] < $_[1]? $_[0]:$_[1];
}
__END__
=head1 NAME
FindNormRules.pl - from oov produce invoc correction proposition
=head1 SYNOPSIS
FindNormRules.pl [options] <report_oov> <lexicon>