train_nnet_cpu_tanh.sh
24.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
#!/bin/bash
# Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0.
# Begin configuration section.
cmd=run.pl
num_epochs=15 # Number of epochs during which we reduce
# the learning rate; number of iteration is worked out from this.
num_epochs_extra=5 # Number of epochs after we stop reducing
# the learning rate.
num_iters_final=10 # Number of final iterations to give to the
# optimization over the validation set.
initial_learning_rate=0.04
final_learning_rate=0.004
softmax_learning_rate_factor=0.5 # Train half as slow as the other layers.
num_utts_subset=300 # number of utterances in validation and training
# subsets used for shrinkage and diagnostics
hidden_layer_dim=300
within_class_factor=0.0001
num_valid_frames_combine=0 # #valid frames for combination weights at the very end.
num_train_frames_combine=10000 # # train frames for the above.
num_frames_diagnostic=4000 # number of frames for "compute_prob" jobs
minibatch_size=128 # by default use a smallish minibatch size for neural net training; this controls instability
# which would otherwise be a problem with multi-threaded update. Note:
# it also interacts with the "preconditioned" update, so it's not completely cost free.
samples_per_iter=400000 # each iteration of training, see this many samples
# per job. This is just a guideline; it will pick a number
# that divides the number of samples in the entire data.
shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples
# on each iter. You could set it to 0 or to a large value for complete
# randomization, but this would both consume memory and cause spikes in
# disk I/O. Smaller is easier on disk and memory but less random. It's
# not a huge deal though, as samples are anyway randomized right at the start.
num_jobs_nnet=16 # Number of neural net jobs to run in parallel; you need to
# keep this in sync with parallel_opts.
feat_type=
initial_dropout_scale=
final_dropout_scale=
add_layers_period=2 # by default, add new layers every 2 iterations.
num_hidden_layers=3
initial_num_hidden_layers=1 # we'll add the rest one by one.
num_parameters=2000000 # 2 million parameters by default.
stage=-9
realign=true
beam=10 # for realignment.
retry_beam=40
scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1"
io_opts="-tc 5" # for jobs with a lot of I/O, limits the number running at one time.
splice_width=4 # meaning +- 4 frames on each side for second LDA
randprune=4.0 # speeds up LDA.
# If alpha is not set to the empty string, will do the preconditioned update.
alpha=4.0
max_change=10.0
mix_up=0 # Number of components to mix up to (should be > #tree leaves, if
# specified.)
num_threads=16
parallel_opts="-pe smp $num_threads" # using a smallish #threads by default, out of stability concerns.
# note: parallel_opts doesn't automatically get adjusted if you adjust num-threads.
cleanup=true
# End configuration section.
echo "$0 $@" # Print the command line for logging
if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;
if [ $# != 4 ]; then
echo "Usage: steps/train_nnet_cpu.sh [opts] <data> <lang> <ali-dir> <exp-dir>"
echo " e.g.: steps/train_nnet_cpu.sh data/train data/lang exp/tri3_ali exp/tri4_nnet"
echo ""
echo "Main options (for others, see top of script file)"
echo " --config <config-file> # config file containing options"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
echo " --num-epochs <#epochs|15> # Number of epochs of main training"
echo " # while reducing learning rate (determines #iterations, together"
echo " # with --samples-per-iter and --num-jobs-nnet)"
echo " --num-epochs-extra <#epochs-extra|5> # Number of extra epochs of training"
echo " # after learning rate fully reduced"
echo " --initial-learning-rate <initial-learning-rate|0.02> # Learning rate at start of training, e.g. 0.02 for small"
echo " # data, 0.01 for large data"
echo " --final-learning-rate <final-learning-rate|0.004> # Learning rate at end of training, e.g. 0.004 for small"
echo " # data, 0.001 for large data"
echo " --num-parameters <num-parameters|2000000> # #parameters. E.g. for 3 hours of data, try 750K parameters;"
echo " # for 100 hours of data, try 10M"
echo " --num-hidden-layers <#hidden-layers|2> # Number of hidden layers, e.g. 2 for 3 hours of data, 4 for 100hrs"
echo " --initial-num-hidden-layers <#hidden-layers|1> # Number of hidden layers to start with."
echo " --add-layers-period <#iters|2> # Number of iterations between adding hidden layers"
echo " --mix-up <#pseudo-gaussians|0> # Can be used to have multiple targets in final output layer,"
echo " # per context-dependent state. Try a number several times #states."
echo " --num-jobs-nnet <num-jobs|8> # Number of parallel jobs to use for main neural net"
echo " # training (will affect results as well as speed; try 8, 16)"
echo " # Note: if you increase this, you may want to also increase"
echo " # the learning rate."
echo " --num-threads <num-threads|16> # Number of parallel threads per job (will affect results"
echo " # as well as speed; may interact with batch size; if you increase"
echo " # this, you may want to decrease the batch size."
echo " --parallel-opts <opts|\"-pe smp 16\"> # extra options to pass to e.g. queue.pl for processes that"
echo " # use multiple threads."
echo " --io-opts <opts|\"-tc 10\"> # Options given to e.g. queue.pl for jobs that do a lot of I/O."
echo " --minibatch-size <minibatch-size|128> # Size of minibatch to process (note: product with --num-threads"
echo " # should not get too large, e.g. >2k)."
echo " --samples-per-iter <#samples|400000> # Number of samples of data to process per iteration, per"
echo " # process."
echo " --splice-width <width|4> # Number of frames on each side to append for feature input"
echo " # (note: we splice processed, typically 40-dimensional frames"
echo " --lda-dim <dim|250> # Dimension to reduce spliced features to with LDA"
echo " --num-iters-final <#iters|10> # Number of final iterations to give to nnet-combine-fast to "
echo " # interpolate parameters (the weights are learned with a validation set)"
echo " --num-utts-subset <#utts|300> # Number of utterances in subsets used for validation and diagnostics"
echo " # (the validation subset is held out from training)"
echo " --num-frames-diagnostic <#frames|4000> # Number of frames used in computing (train,valid) diagnostics"
echo " --num-valid-frames-combine <#frames|10000> # Number of frames used in getting combination weights at the"
echo " # very end."
echo " --stage <stage|-9> # Used to run a partially-completed training process from somewhere in"
echo " # the middle."
exit 1;
fi
data=$1
lang=$2
alidir=$3
dir=$4
# Check some files.
for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/final.mdl $alidir/tree; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
# Set some variables.
oov=`cat $lang/oov.int`
num_leaves=`gmm-info $alidir/final.mdl 2>/dev/null | awk '/number of pdfs/{print $NF}'` || exit 1;
silphonelist=`cat $lang/phones/silence.csl` || exit 1;
nj=`cat $alidir/num_jobs` || exit 1; # number of jobs in alignment dir...
# in this dir we'll have just one job.
sdata=$data/split$nj
utils/split_data.sh $data $nj
mkdir -p $dir/log
echo $nj > $dir/num_jobs
splice_opts=`cat $alidir/splice_opts 2>/dev/null`
cp $alidir/splice_opts $dir 2>/dev/null
cp $alidir/final.mat $dir 2>/dev/null # any LDA matrix...
cp $alidir/tree $dir
# Get list of validation utterances.
awk '{print $1}' $data/utt2spk | utils/shuffle_list.pl | head -$num_utts_subset \
> $dir/valid_uttlist || exit 1;
awk '{print $1}' $data/utt2spk | utils/filter_scp.pl --exclude $dir/valid_uttlist | \
head -$num_utts_subset > $dir/train_subset_uttlist || exit 1;
## Set up features. Note: these are different from the normal features
## because we have one rspecifier that has the features for the entire
## training set, not separate ones for each batch.
if [ -z $feat_type ]; then
if [ -f $alidir/final.mat ]; then feat_type=lda; else feat_type=delta; fi
fi
echo "$0: feature type is $feat_type"
case $feat_type in
delta) feats="ark,s,cs:utils/filter_scp.pl --exclude $dir/valid_uttlist $sdata/JOB/feats.scp | apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:- ark:- | add-deltas ark:- ark:- |"
valid_feats="ark,s,cs:utils/filter_scp.pl $dir/valid_uttlist $data/feats.scp | apply-cmvn --norm-vars=false --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- | add-deltas ark:- ark:- |"
train_subset_feats="ark,s,cs:utils/filter_scp.pl $dir/train_subset_uttlist $data/feats.scp | apply-cmvn --norm-vars=false --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- | add-deltas ark:- ark:- |"
;;
raw) feats="ark,s,cs:utils/filter_scp.pl --exclude $dir/valid_uttlist $sdata/JOB/feats.scp | apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:- ark:- |"
valid_feats="ark,s,cs:utils/filter_scp.pl $dir/valid_uttlist $data/feats.scp | apply-cmvn --norm-vars=false --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- |"
train_subset_feats="ark,s,cs:utils/filter_scp.pl $dir/train_subset_uttlist $data/feats.scp | apply-cmvn --norm-vars=false --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- |"
;;
lda) feats="ark,s,cs:utils/filter_scp.pl --exclude $dir/valid_uttlist $sdata/JOB/feats.scp | apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:- ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $dir/final.mat ark:- ark:- |"
valid_feats="ark,s,cs:utils/filter_scp.pl $dir/valid_uttlist $data/feats.scp | apply-cmvn --norm-vars=false --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $dir/final.mat ark:- ark:- |"
train_subset_feats="ark,s,cs:utils/filter_scp.pl $dir/train_subset_uttlist $data/feats.scp | apply-cmvn --norm-vars=false --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $dir/final.mat ark:- ark:- |"
cp $alidir/final.mat $dir
;;
*) echo "$0: invalid feature type $feat_type" && exit 1;
esac
if [ -f $alidir/trans.1 ] && [ $feat_type != "raw" ]; then
echo "$0: using transforms from $alidir"
feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$alidir/trans.JOB ark:- ark:- |"
valid_feats="$valid_feats transform-feats --utt2spk=ark:$data/utt2spk 'ark:cat $alidir/trans.*|' ark:- ark:- |"
train_subset_feats="$train_subset_feats transform-feats --utt2spk=ark:$data/utt2spk 'ark:cat $alidir/trans.*|' ark:- ark:- |"
fi
if [ $stage -le -9 ]; then
echo "$0: working out number of frames of training data"
num_frames=`feat-to-len scp:$data/feats.scp ark,t:- | awk '{x += $2;} END{print x;}'` || exit 1;
echo $num_frames > $dir/num_frames
else
num_frames=`cat $dir/num_frames` || exit 1;
fi
# Working out number of iterations per epoch.
iters_per_epoch=`perl -e "print int($num_frames/($samples_per_iter * $num_jobs_nnet) + 0.5);"` || exit 1;
[ $iters_per_epoch -eq 0 ] && iters_per_epoch=1
samples_per_iter_real=$[$num_frames/($num_jobs_nnet*$iters_per_epoch)]
echo "Every epoch, splitting the data up into $iters_per_epoch iterations,"
echo "giving samples-per-iteration of $samples_per_iter_real (you requested $samples_per_iter)."
## Do LDA on top of whatever features we already have; store the matrix which
## we'll put into the neural network as a constant.
feat_dim=`feat-to-dim "$train_subset_feats" -` || exit 1;
lda_dim=$[$feat_dim*(1+2*($splice_width))]; # No dim reduction.
if [ $stage -le -8 ]; then
echo "$0: Accumulating LDA statistics."
$cmd JOB=1:$nj $dir/log/lda_acc.JOB.log \
ali-to-post "ark:gunzip -c $alidir/ali.JOB.gz|" ark:- \| \
weight-silence-post 0.0 $silphonelist $alidir/final.mdl ark:- ark:- \| \
acc-lda --rand-prune=$randprune $alidir/final.mdl "$feats splice-feats --left-context=$splice_width --right-context=$splice_width ark:- ark:- |" ark,s,cs:- \
$dir/lda.JOB.acc || exit 1;
est-lda --within-class-factor=$within_class_factor --dim=$lda_dim $dir/lda.mat $dir/lda.*.acc \
2>$dir/log/lda_est.log || exit 1;
rm $dir/lda.*.acc
fi
##
if [ $initial_num_hidden_layers -gt $num_hidden_layers ]; then
echo "Initial num-hidden-layers $initial_num_hidden_layers is greater than final number $num_hidden_layers";
exit 1;
fi
if [ $stage -le -7 ]; then
echo "Compiling graphs of transcripts"
# Use model from $alidir-- anyway it has the same tree.
$cmd JOB=1:$nj $dir/log/compile_graphs.JOB.log \
compile-train-graphs $dir/tree $alidir/final.mdl $lang/L.fst \
"ark:utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt < $data/split$nj/JOB/text |" \
"ark:|gzip -c >$dir/fsts.JOB.gz" || exit 1;
fi
cp $alidir/ali.*.gz $dir
nnet_context_opts="--left-context=$splice_width --right-context=$splice_width"
if [ $stage -le -6 ]; then
echo "Getting validation and training subset examples."
rm $dir/.error 2>/dev/null
$cmd $dir/log/create_valid_subset.log \
nnet-get-egs $nnet_context_opts "$valid_feats" \
"ark,cs:gunzip -c $dir/ali.*.gz | ali-to-pdf $alidir/final.mdl ark:- ark:- | ali-to-post ark:- ark:- |" \
"ark:$dir/valid_all.egs" || touch $dir/.error &
$cmd $dir/log/create_train_subset.log \
nnet-get-egs $nnet_context_opts "$train_subset_feats" \
"ark,cs:gunzip -c $dir/ali.*.gz | ali-to-pdf $alidir/final.mdl ark:- ark:- | ali-to-post ark:- ark:- |" \
"ark:$dir/train_subset_all.egs" || touch $dir/.error &
wait;
[ -f $dir/.error ] && exit 1;
echo "Getting subsets of validation examples for diagnostics and combination."
$cmd $dir/log/create_valid_subset_combine.log \
nnet-subset-egs --n=$num_valid_frames_combine ark:$dir/valid_all.egs \
ark:$dir/valid_combine.egs || touch $dir/.error &
$cmd $dir/log/create_valid_subset_diagnostic.log \
nnet-subset-egs --n=$num_frames_diagnostic ark:$dir/valid_all.egs \
ark:$dir/valid_diagnostic.egs || touch $dir/.error &
$cmd $dir/log/create_train_subset_combine.log \
nnet-subset-egs --n=$num_train_frames_combine ark:$dir/train_subset_all.egs \
ark:$dir/train_combine.egs || touch $dir/.error &
$cmd $dir/log/create_train_subset_diagnostic.log \
nnet-subset-egs --n=$num_frames_diagnostic ark:$dir/train_subset_all.egs \
ark:$dir/train_diagnostic.egs || touch $dir/.error &
wait
cat $dir/valid_combine.egs $dir/train_combine.egs > $dir/combine.egs
for f in $dir/{combine,train_diagnostic,valid_diagnostic}.egs; do
[ ! -s $f ] && echo "No examples in file $f" && exit 1;
done
rm $dir/valid_all.egs $dir/train_subset_all.egs $dir/{train,valid}_combine.egs
fi
if [ $stage -le -5 ]; then
mkdir -p $dir/egs
mkdir -p $dir/temp
echo "Creating training examples";
# in $dir/egs, create $num_jobs_nnet separate files with training examples.
# The order is not randomized at this point.
egs_list=
for n in `seq 1 $num_jobs_nnet`; do
egs_list="$egs_list ark:$dir/egs/egs_orig.$n.JOB.ark"
done
echo "Generating training examples on disk"
# The examples will go round-robin to egs_list.
$cmd $io_opts JOB=1:$nj $dir/log/get_egs.JOB.log \
nnet-get-egs $nnet_context_opts "$feats" \
"ark,cs:gunzip -c $dir/ali.JOB.gz | ali-to-pdf $alidir/final.mdl ark:- ark:- | ali-to-post ark:- ark:- |" ark:- \| \
nnet-copy-egs ark:- $egs_list || exit 1;
fi
if [ $stage -le -4 ]; then
# combine all the "egs_orig.JOB.*.scp" (over the $nj splits of the data) and
# then split into multiple parts egs.JOB.*.scp for different parts of the
# data, 0 .. $iters_per_epoch-1.
if [ $iters_per_epoch -eq 1 ]; then
echo "Since iters-per-epoch == 1, just concatenating the data."
for n in `seq 1 $num_jobs_nnet`; do
cat $dir/egs/egs_orig.$n.*.ark > $dir/egs/egs_tmp.$n.0.ark || exit 1;
rm $dir/egs/egs_orig.$n.*.ark || exit 1;
done
else # We'll have to split it up using nnet-copy-egs.
egs_list=
for n in `seq 0 $[$iters_per_epoch-1]`; do
egs_list="$egs_list ark:$dir/egs/egs_tmp.JOB.$n.ark"
done
$cmd $io_opts JOB=1:$num_jobs_nnet $dir/log/split_egs.JOB.log \
nnet-copy-egs --random=$random_copy --srand=JOB \
"ark:cat $dir/egs/egs_orig.JOB.*.ark|" $egs_list '&&' \
rm $dir/egs/egs_orig.JOB.*.ark || exit 1;
fi
fi
if [ $stage -le -3 ]; then
# Next, shuffle the order of the examples in each of those files.
# Each one should not be too large, so we can do this in memory.
echo "Shuffling the order of training examples"
echo "(in order to avoid stressing the disk, these won't all run at once)."
for n in `seq 0 $[$iters_per_epoch-1]`; do
$cmd $io_opts JOB=1:$num_jobs_nnet $dir/log/shuffle.$n.JOB.log \
nnet-shuffle-egs "--srand=\$[JOB+($num_jobs_nnet*$n)]" \
ark:$dir/egs/egs_tmp.JOB.$n.ark ark:$dir/egs/egs.JOB.$n.ark '&&' \
rm $dir/egs/egs_tmp.JOB.$n.ark || exit 1;
done
fi
if [ $stage -le -2 ]; then
echo "$0: initializing neural net";
stddev=`perl -e "print 1.0/sqrt($hidden_layer_dim);"`
cat >$dir/nnet.config <<EOF
SpliceComponent input-dim=$feat_dim left-context=$splice_width right-context=$splice_width
FixedLinearComponent matrix=$dir/lda.mat
AffineComponentPreconditioned input-dim=$lda_dim output-dim=$hidden_layer_dim alpha=$alpha max-change=$max_change learning-rate=$initial_learning_rate param-stddev=$stddev
TanhComponent dim=$hidden_layer_dim
AffineComponentPreconditioned input-dim=$hidden_layer_dim output-dim=$num_leaves alpha=$alpha max-change=$max_change learning-rate=0.004 param-stddev=0 bias-stddev=0
SoftmaxComponent dim=$num_leaves
EOF
# to hidden.config it will write the part of the config corresponding to a
# single hidden layer; we need this to add new layers.
cat >$dir/hidden.config <<EOF
AffineComponentPreconditioned input-dim=$hidden_layer_dim output-dim=$hidden_layer_dim alpha=$alpha max-change=$max_change learning-rate=$initial_learning_rate param-stddev=$stddev bias-stddev=0
TanhComponent dim=$hidden_layer_dim
EOF
$cmd $dir/log/nnet_init.log \
nnet-am-init $alidir/tree $lang/topo "nnet-init $dir/nnet.config -|" \
$dir/0.mdl || exit 1;
fi
if [ $stage -le -1 ]; then
echo "Training transition probabilities and setting priors"
$cmd $dir/log/train_trans.log \
nnet-train-transitions $dir/0.mdl "ark:gunzip -c $alidir/ali.*.gz|" $dir/0.mdl \
|| exit 1;
fi
num_iters_reduce=$[$num_epochs * $iters_per_epoch];
num_iters_extra=$[$num_epochs_extra * $iters_per_epoch];
num_iters=$[$num_iters_reduce+$num_iters_extra]
echo "Will train for $num_epochs + $num_epochs_extra epochs, equalling "
echo " $num_iters_reduce + $num_iters_extra = $num_iters iterations, "
echo " (while reducing learning rate) + (with constant learning rate)."
# This is when we decide to mix up from:
mix_up_iter=$[($num_hidden_layers-$initial_num_hidden_layers+1)*$add_layers_period + 2]
x=0
while [ $x -lt $num_iters ]; do
if [ $x -ge 0 ] && [ $stage -le $x ]; then
# Set off jobs doing some diagnostics, in the background.
$cmd $dir/log/compute_prob_valid.$x.log \
nnet-compute-prob $dir/$x.mdl ark:$dir/valid_diagnostic.egs &
$cmd $dir/log/compute_prob_train.$x.log \
nnet-compute-prob $dir/$x.mdl ark:$dir/train_diagnostic.egs &
if $realign && [ $x -eq $num_iters_reduce ]; then
echo "Realigning data (pass $x)"
$cmd JOB=1:$nj $dir/log/align.$x.JOB.log \
nnet-align-compiled $scale_opts --beam=$beam --retry-beam=$retry_beam "$mdl" \
"ark:gunzip -c $dir/fsts.JOB.gz|" "$feats" \
"ark:|gzip -c >$dir/ali.JOB.gz" || exit 1;
fi
echo "Training neural net (pass $x)"
if [ $x -gt 0 ] && \
[ $x -le $[($num_hidden_layers-$initial_num_hidden_layers)*$add_layers_period] ] && \
[ $[($x-1) % $add_layers_period] -eq 0 ]; then
mdl="nnet-init --srand=$x $dir/hidden.config - | nnet-insert $dir/$x.mdl - - |"
else
mdl=$dir/$x.mdl
fi
$cmd $parallel_opts JOB=1:$num_jobs_nnet $dir/log/train.$x.JOB.log \
nnet-shuffle-egs --buffer-size=$shuffle_buffer_size --srand=$x \
ark:$dir/egs/egs.JOB.$[$x%$iters_per_epoch].ark ark:- \| \
nnet-train-parallel --num-threads=$num_threads \
--minibatch-size=$minibatch_size --srand=$x "$mdl" \
ark:- $dir/$[$x+1].JOB.mdl \
|| exit 1;
nnets_list=
for n in `seq 1 $num_jobs_nnet`; do
nnets_list="$nnets_list $dir/$[$x+1].$n.mdl"
done
learning_rate=`perl -e '($x,$n,$i,$f)=@ARGV; print ($x >= $n ? $f : $i*exp($x*log($f/$i)/$n));' $[$x+1] $num_iters_reduce $initial_learning_rate $final_learning_rate`;
softmax_learning_rate=`perl -e "print $learning_rate * $softmax_learning_rate_factor;"`;
nnet-am-info $dir/$[$x+1].1.mdl > $dir/foo
nu=`cat $dir/foo | grep num-updatable-components | awk '{print $2}'`
na=`cat $dir/foo | grep AffineComponent | wc -l` # number of last AffineComopnent layer [one-based]
lr_string="$learning_rate"
for n in `seq 2 $nu`; do
if [ $n -eq $na ]; then lr=$softmax_learning_rate;
else lr=$learning_rate; fi
lr_string="$lr_string:$lr"
done
$cmd $dir/log/average.$x.log \
nnet-am-average $nnets_list - \| \
nnet-am-copy --learning-rates=$lr_string - $dir/$[$x+1].mdl || exit 1;
if [ "$mix_up" -gt 0 ] && [ $x -eq $mix_up_iter ]; then
# mix up.
echo Mixing up from $num_leaves to $mix_up components
$cmd $dir/log/mix_up.$x.log \
nnet-am-mixup --min-count=10 --num-mixtures=$mix_up \
$dir/$[$x+1].mdl $dir/$[$x+1].mdl || exit 1;
fi
rm $nnets_list
fi
x=$[$x+1]
done
rm $dir/final.mdl 2>/dev/null
# At the end, final.mdl will be a combination of the last e.g. 10 models.
nnets_list=()
if [ $num_iters_final -gt $num_iters_extra ]; then
echo "setting num_iters_final=$num_iters_extra"
fi
start=$[$num_iters-$num_iters_final+1]
for x in `seq $start $num_iters`; do
idx=$[$x-$start]
if [ $x -gt $mix_up_iter ]; then
nnets_list[$idx]="nnet-am-copy --remove-dropout=true $dir/$x.mdl - |"
fi
done
if [ $stage -le $num_iters ]; then
mb=$[($num_valid_frames_combine+$num_train_frames_combine+$num_threads-1)/$num_threads]
$cmd $parallel_opts $dir/log/combine.log \
nnet-combine-fast --num-threads=$num_threads --verbose=3 --minibatch-size=$mb \
"${nnets_list[@]}" ark:$dir/combine.egs $dir/final.mdl || exit 1;
fi
# Compute the probability of the final, combined model with
# the same subset we used for the previous compute_probs, as the
# different subsets will lead to different probs.
$cmd $dir/log/compute_prob_valid.final.log \
nnet-compute-prob $dir/final.mdl ark:$dir/valid_diagnostic.egs &
$cmd $dir/log/compute_prob_train.final.log \
nnet-compute-prob $dir/final.mdl ark:$dir/train_diagnostic.egs &
echo Done
if $cleanup; then
echo Cleaning up data
echo Removing training examples
rm -r $dir/egs
echo Removing most of the models
for x in `seq 0 $num_iters`; do
if [ $[$x%10] -ne 0 ] && [ $x -lt $[$num_iters-$num_iters_final+1] ]; then
# delete all but every 10th model; don't delete the ones which combine to form the final model.
rm $dir/$x.mdl
fi
done
fi