train_quick.sh
7.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#!/bin/bash
# Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0.
# Train a model on top of existing features (no feature-space learning of any
# kind is done). This script initializes the model from each stage of the
# previous system's model, judging the similarities based on overlap of counts
# in the tree stats.
# Begin configuration..
cmd=run.pl
scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1"
realign_iters="10 15"; # Only realign twice.
num_iters=20 # Number of iterations of training
maxiterinc=15 # Last iter to increase #Gauss on.
batch_size=750 # batch size to use while compiling graphs... memory/speed tradeoff.
beam=10 # alignment beam.
retry_beam=40
stage=-5
cluster_thresh=-1 # for build-tree control final bottom-up clustering of leaves
# End configuration section.
echo "$0 $@" # Print the command line for logging
[ -f path.sh ] && . ./path.sh
. parse_options.sh || exit 1;
if [ $# != 6 ]; then
echo "Usage: steps/train_quick.sh <num-leaves> <num-gauss> <data> <lang> <ali-dir> <exp-dir>"
echo " e.g.: steps/train_quick.sh 2500 15000 data/train_si284 data/lang exp/tri3c_ali_si284 exp/tri4b"
echo "Main options (for others, see top of script file)"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
echo " --config <config-file> # config containing options"
echo " --stage <stage> # stage to do partial re-run from."
exit 1;
fi
numleaves=$1
totgauss=$2
data=$3
lang=$4
alidir=$5
dir=$6
for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/final.mdl; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
# Set various variables.
oov=`cat $lang/oov.int`
silphonelist=`cat $lang/phones/silence.csl`
ciphonelist=`cat $lang/phones/context_indep.csl`
numgauss=$[totgauss/2] # Start with half the total number of Gaussians. We won't have
# to mix up much probably, as we're initializing with the old (already mixed-up) pdf's.
[ $numgauss -lt $numleaves ] && numgauss=$numleaves
incgauss=$[($totgauss-$numgauss)/$maxiterinc] # per-iter increment for #Gauss
nj=`cat $alidir/num_jobs` || exit 1;
sdata=$data/split$nj
splice_opts=`cat $alidir/splice_opts 2>/dev/null` # frame-splicing options.
mkdir -p $dir/log
echo $nj >$dir/num_jobs
cp $alidir/splice_opts $dir 2>/dev/null
[[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1;
## Set up features.
if [ -f $alidir/final.mat ]; then feat_type=lda; else feat_type=delta; fi
echo "$0: feature type is $feat_type"
case $feat_type in
delta) sifeats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas ark:- ark:- |";;
lda) sifeats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $alidir/final.mat ark:- ark:- |"
cp $alidir/final.mat $dir
;;
*) echo "Invalid feature type $feat_type" && exit 1;
esac
if [ -f $alidir/trans.1 ]; then
echo "$0: using transforms from $alidir"
ln.pl $alidir/trans.* $dir # Link them to dest dir.
feats="$sifeats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$dir/trans.JOB ark:- ark:- |"
fi
##
if [ $stage -le -5 ]; then
echo "$0: accumulating tree stats"
$cmd JOB=1:$nj $dir/log/acc_tree.JOB.log \
acc-tree-stats --ci-phones=$ciphonelist $alidir/final.mdl "$feats" \
"ark:gunzip -c $alidir/ali.JOB.gz|" $dir/JOB.treeacc || exit 1;
[ "`ls $dir/*.treeacc | wc -w`" -ne "$nj" ] && echo "$0: Wrong #tree-stats" && exit 1;
sum-tree-stats $dir/treeacc $dir/*.treeacc 2>$dir/log/sum_tree_acc.log || exit 1;
rm $dir/*.treeacc
fi
if [ $stage -le -4 ]; then
echo "$0: Getting questions for tree clustering."
# preparing questions, roots file...
cluster-phones $dir/treeacc $lang/phones/sets.int $dir/questions.int 2> $dir/log/questions.log || exit 1;
cat $lang/phones/extra_questions.int >> $dir/questions.int
compile-questions $lang/topo $dir/questions.int $dir/questions.qst 2>$dir/log/compile_questions.log || exit 1;
echo "$0: Building the tree"
$cmd $dir/log/build_tree.log \
build-tree --verbose=1 --max-leaves=$numleaves \
--cluster-thresh=$cluster_thresh $dir/treeacc $lang/phones/roots.int \
$dir/questions.qst $lang/topo $dir/tree || exit 1;
fi
if [ $stage -le -3 ]; then
echo "$0: Initializing the model"
# The gmm-init-model command (with more than the normal # of command-line args)
# will initialize the p.d.f.'s to the p.d.f.'s in the alignment model.
gmm-init-model --write-occs=$dir/1.occs \
$dir/tree $dir/treeacc $lang/topo $dir/tmp.mdl $alidir/tree $alidir/final.mdl \
2>$dir/log/init_model.log || exit 1;
grep 'no stats' $dir/log/init_model.log && echo "$0: This is a bad warning.";
rm $dir/treeacc
fi
if [ $stage -le -2 ]; then
echo "$0: mixing up old model."
# We do both mixing-down and mixing-up to get the target #Gauss in each state,
# since the initial model may have either more or fewer Gaussians than we want.
gmm-mixup --mix-down=$numgauss --mix-up=$numgauss $dir/tmp.mdl $dir/1.occs $dir/1.mdl \
2> $dir/log/mixup.log || exit 1;
rm $dir/tmp.mdl
fi
# Convert alignments to the new tree.
if [ $stage -le -1 ]; then
echo "$0: converting old alignments"
$cmd JOB=1:$nj $dir/log/convert.JOB.log \
convert-ali $alidir/final.mdl $dir/1.mdl $dir/tree \
"ark:gunzip -c $alidir/ali.JOB.gz|" "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1;
fi
if [ $stage -le 0 ]; then
echo "$0: compiling training graphs"
$cmd JOB=1:$nj $dir/log/compile_graphs.JOB.log \
compile-train-graphs --batch-size=$batch_size $dir/tree $dir/1.mdl $lang/L.fst \
"ark:sym2int.pl --map-oov $oov -f 2- $lang/words.txt < $sdata/JOB/text |" \
"ark:|gzip -c >$dir/fsts.JOB.gz" || exit 1;
fi
x=1
while [ $x -lt $num_iters ]; do
echo "$0: pass $x"
if echo $realign_iters | grep -w $x >/dev/null && [ $stage -le $x ]; then
echo "$0: aligning data"
$cmd JOB=1:$nj $dir/log/align.$x.JOB.log \
gmm-align-compiled $scale_opts --beam=$beam --retry-beam=$retry_beam $dir/$x.mdl \
"ark:gunzip -c $dir/fsts.JOB.gz|" "$feats" "ark:|gzip -c >$dir/ali.JOB.gz" \
|| exit 1;
fi
if [ $stage -le $x ]; then
$cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \
gmm-acc-stats-ali $dir/$x.mdl "$feats" \
"ark,s,cs:gunzip -c $dir/ali.JOB.gz|" $dir/$x.JOB.acc || exit 1;
[ "`ls $dir/$x.*.acc | wc -w`" -ne "$nj" ] && echo "$0: wrong #accs" && exit 1;
$cmd $dir/log/update.$x.log \
gmm-est --write-occs=$dir/$[$x+1].occs --mix-up=$numgauss $dir/$x.mdl \
"gmm-sum-accs - $dir/$x.*.acc |" $dir/$[$x+1].mdl || exit 1;
rm $dir/$x.mdl $dir/$x.*.acc $dir/$x.occs
fi
[[ $x -le $maxiterinc ]] && numgauss=$[$numgauss+$incgauss];
x=$[$x+1];
done
if [ -f $alidir/trans.1 ]; then
echo "$0: estimating alignment model"
$cmd JOB=1:$nj $dir/log/acc_alimdl.JOB.log \
ali-to-post "ark:gunzip -c $dir/ali.JOB.gz|" ark:- \| \
gmm-acc-stats-twofeats $dir/$x.mdl "$feats" "$sifeats" \
ark,s,cs:- $dir/$x.JOB.acc || exit 1;
[ "`ls $dir/$x.*.acc | wc -w`" -ne "$nj" ] && echo "$0: wrong #accs" && exit 1;
$cmd $dir/log/est_alimdl.log \
gmm-est --write-occs=$dir/final.occs --remove-low-count-gaussians=false $dir/$x.mdl \
"gmm-sum-accs - $dir/$x.*.acc|" $dir/$x.alimdl || exit 1;
rm $dir/$x.*.acc
rm $dir/final.alimdl 2>/dev/null
ln -s $x.alimdl $dir/final.alimdl
fi
rm $dir/final.mdl 2>/dev/null
ln -s $x.mdl $dir/final.mdl
echo Done