train_lda_mllt.sh.svn-base
9.83 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#!/bin/bash
# Copyright 2012 Johns Hopkins University (Author: Daniel Povey)
# Korbinian Riedhammer
# Apache 2.0.
# Begin configuration.
cmd=run.pl
config=
stage=-5
scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1"
realign_iters="10 20 30";
mllt_iters="2 4 6 12";
num_iters=35 # Number of iterations of training
max_iter_inc=25 # Last iter to increase #Gauss on.
beam=10
retry_beam=40
boost_silence=1.0 # Factor by which to boost silence likelihoods in alignment
power=0.2 # Exponent for number of gaussians according to occurrence counts
randprune=4.0 # This is approximately the ratio by which we will speed up the
# LDA and MLLT calculations via randomized pruning.
splice_opts=
cluster_thresh=-1 # for build-tree control final bottom-up clustering of leaves
dim1=30 # dimension first stream (spectral features)
dim2=40 # dimension second stream (pasted features, usually bn/posteriors)
# apply CMVN to the second feature stream
normft2=true
# do an extra LDA after pasting the features?
extra_lda=false
# End configuration.
echo "$0 $@" # Print the command line for logging
[ -f path.sh ] && . ./path.sh
. parse_options.sh || exit 1;
if [ $# != 7 ]; then
echo "Usage: steps/tandem/train_lda_mllt.sh [options] <#leaves> <#gauss> <data1> <data2> <lang> <alignments> <dir>"
echo " e.g.: steps/tandem/train_lda_mllt.sh 2500 15000 {mfcc,bottleneck}/data/train_si84 data/lang exp/tri1_ali_si84 exp/tri2b"
echo "Main options (for others, see top of script file)"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
echo " --config <config-file> # config containing options"
echo " --stage <stage> # stage to do partial re-run from."
echo " --normft2 (true|false) # apply CMVN to second data set (true)"
echo " --extra-lda (true|false) # apply extra LDA after feature paste (false)"
echo " --dim1 <n> # dimension of the first feature stream by HLDA"
echo " --dim2 <m> # dimension of of the pasted features after 2nd HLDA"
exit 1;
fi
numleaves=$1
totgauss=$2
data1=$3
data2=$4
lang=$5
alidir=$6
dir=$7
for f in $alidir/final.mdl $alidir/ali.1.gz $data1/feats.scp $data2/feats.scp $lang/phones.txt; do
[ ! -f $f ] && echo "train_tandem_lda_mllt.sh: no such file $f" && exit 1;
done
numgauss=$numleaves
incgauss=$[($totgauss-$numgauss)/$max_iter_inc] # per-iter #gauss increment
oov=`cat $lang/oov.int` || exit 1;
nj=`cat $alidir/num_jobs` || exit 1;
silphonelist=`cat $lang/phones/silence.csl` || exit 1;
ciphonelist=`cat $lang/phones/context_indep.csl` || exit 1;
mkdir -p $dir/log
echo $nj >$dir/num_jobs
# Set up features.
sdata1=$data1/split$nj;
sdata2=$data2/split$nj;
[[ -d $sdata1 && $data1/feats.scp -ot $sdata1 ]] || split_data.sh $data1 $nj || exit 1;
[[ -d $sdata2 && $data2/feats.scp -ot $sdata2 ]] || split_data.sh $data2 $nj || exit 1;
# set up feature stream 1; here we assume spectral features which we will
# splice instead of deltas
feats1="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata1/JOB/utt2spk scp:$sdata1/JOB/cmvn.scp scp:$sdata1/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- |"
# Now estimate LDA, which will only be applied to the spectral features
# (assuming that the tandem features were already discriminatively trained).
# This is instead of the deltas.
if [ $stage -le -5 ]; then
echo "Accumulating LDA statistics (this only applies to the base feature part)."
$cmd JOB=1:$nj $dir/log/lda_acc.JOB.log \
ali-to-post "ark:gunzip -c $alidir/ali.JOB.gz|" ark:- \| \
weight-silence-post 0.0 $silphonelist $alidir/final.mdl ark:- ark:- \| \
acc-lda --rand-prune=$randprune $alidir/final.mdl "$feats1" ark,s,cs:- \
$dir/lda.JOB.acc || exit 1;
est-lda --write-full-matrix=$dir/full.mat --dim=$dim1 $dir/lda.mat $dir/lda.*.acc \
2>$dir/log/lda_est.log || exit 1;
rm $dir/lda.*.acc
fi
# add transform to the features
feats1="$feats1 transform-feats $dir/lda.mat ark:- ark:- |"
# set up feature stream 2; this are usually bottleneck or posterior features,
# which may be normalized if desired
feats2="scp:$sdata2/JOB/feats.scp"
if [ "$normft2" == "true" ]; then
feats2="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata2/JOB/utt2spk scp:$sdata2/JOB/cmvn.scp $feats2 ark:- |"
fi
# assemble tandem features; note: $feats gets overwritten later in the script
# once we have MLLT matrices
tandemfeats="ark,s,cs:paste-feats '$feats1' '$feats2' ark:- |"
feats="$tandemfeats"
# keep track of splicing/normalization options
echo $splice_opts > $dir/splice_opts
echo $normft2 > $dir/normft2
# Begin training; initially, we have no MLLT matrix
cur_mllt_iter=0
if [ $stage -le -4 -a $extra_lda == true ]; then
echo "Accumulating LDA statistics (for tandem features this time)."
$cmd JOB=1:$nj $dir/log/lda_acc.JOB.log \
ali-to-post "ark:gunzip -c $alidir/ali.JOB.gz|" ark:- \| \
weight-silence-post 0.0 $silphonelist $alidir/final.mdl ark:- ark:- \| \
acc-lda --rand-prune=$randprune $alidir/final.mdl "$tandemfeats" ark,s,cs:- \
$dir/lda.JOB.acc || exit 1;
est-lda --write-full-matrix=$dir/full.mat --dim=$dim2 $dir/0.mat $dir/lda.*.acc \
2>$dir/log/lda_est.log || exit 1;
rm $dir/lda.*.acc
feats="$tandemfeats transform-feats $dir/0.mat ark:- ark:- |"
fi
# keep track of the features
echo $feats > $dir/tandem
if [ $stage -le -3 ]; then
echo "Accumulating tree stats"
$cmd JOB=1:$nj $dir/log/acc_tree.JOB.log \
acc-tree-stats --ci-phones=$ciphonelist $alidir/final.mdl "$feats" \
"ark:gunzip -c $alidir/ali.JOB.gz|" $dir/JOB.treeacc || exit 1;
[ `ls $dir/*.treeacc | wc -w` -ne "$nj" ] && echo "Wrong #tree-accs" && exit 1;
$cmd $dir/log/sum_tree_acc.log \
sum-tree-stats $dir/treeacc $dir/*.treeacc || exit 1;
rm $dir/*.treeacc
fi
if [ $stage -le -2 ]; then
echo "Getting questions for tree clustering."
# preparing questions, roots file...
cluster-phones $dir/treeacc $lang/phones/sets.int $dir/questions.int 2> $dir/log/questions.log || exit 1;
cat $lang/phones/extra_questions.int >> $dir/questions.int
compile-questions $lang/topo $dir/questions.int $dir/questions.qst 2>$dir/log/compile_questions.log || exit 1;
echo "Building the tree"
$cmd $dir/log/build_tree.log \
build-tree --verbose=1 --max-leaves=$numleaves \
--cluster-thresh=$cluster_thresh $dir/treeacc $lang/phones/roots.int \
$dir/questions.qst $lang/topo $dir/tree || exit 1;
gmm-init-model --write-occs=$dir/1.occs \
$dir/tree $dir/treeacc $lang/topo $dir/1.mdl 2> $dir/log/init_model.log || exit 1;
grep 'no stats' $dir/log/init_model.log && echo "This is a bad warning.";
# could mix up if we wanted:
# gmm-mixup --mix-up=$numgauss $dir/1.mdl $dir/1.occs $dir/1.mdl 2>$dir/log/mixup.log || exit 1;
rm $dir/treeacc
fi
if [ $stage -le -1 ]; then
# Convert the alignments.
echo "Converting alignments from $alidir to use current tree"
$cmd JOB=1:$nj $dir/log/convert.JOB.log \
convert-ali $alidir/final.mdl $dir/1.mdl $dir/tree \
"ark:gunzip -c $alidir/ali.JOB.gz|" "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1;
fi
if [ $stage -le 0 ]; then
echo "Compiling graphs of transcripts"
$cmd JOB=1:$nj $dir/log/compile_graphs.JOB.log \
compile-train-graphs $dir/tree $dir/1.mdl $lang/L.fst \
"ark:utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt < $data1/split$nj/JOB/text |" \
"ark:|gzip -c >$dir/fsts.JOB.gz" || exit 1;
fi
x=1
while [ $x -lt $num_iters ]; do
echo Training pass $x
if echo $realign_iters | grep -w $x >/dev/null && [ $stage -le $x ]; then
echo Aligning data
mdl="gmm-boost-silence --boost=$boost_silence `cat $lang/phones/optional_silence.csl` $dir/$x.mdl - |"
$cmd JOB=1:$nj $dir/log/align.$x.JOB.log \
gmm-align-compiled $scale_opts --beam=$beam --retry-beam=$retry_beam "$mdl" \
"ark:gunzip -c $dir/fsts.JOB.gz|" "$feats" \
"ark:|gzip -c >$dir/ali.JOB.gz" || exit 1;
fi
if echo $mllt_iters | grep -w $x >/dev/null; then
if [ $stage -le $x ]; then
echo "Estimating MLLT"
$cmd JOB=1:$nj $dir/log/macc.$x.JOB.log \
ali-to-post "ark:gunzip -c $dir/ali.JOB.gz|" ark:- \| \
weight-silence-post 0.0 $silphonelist $dir/$x.mdl ark:- ark:- \| \
gmm-acc-mllt --rand-prune=$randprune $dir/$x.mdl "$feats" ark:- $dir/$x.JOB.macc \
|| exit 1;
est-mllt $dir/$x.mat.new $dir/$x.*.macc 2> $dir/log/mupdate.$x.log || exit 1;
gmm-transform-means $dir/$x.mat.new $dir/$x.mdl $dir/$x.mdl \
2> $dir/log/transform_means.$x.log || exit 1;
# see if this is the first MLLT iteration and there is no lda; otherwise compose transforms
if [ $cur_mllt_iter == 0 -a $extra_lda == false ]; then
mv $dir/$x.mat.new $dir/$x.mat || exit 1;
else
compose-transforms --print-args=false $dir/$x.mat.new $dir/$cur_mllt_iter.mat $dir/$x.mat || exit 1;
fi
rm $dir/$x.*.macc
fi
# update features
feats="$tandemfeats transform-feats $dir/$x.mat ark:- ark:- |"
cur_mllt_iter=$x
fi
if [ $stage -le $x ]; then
$cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \
gmm-acc-stats-ali $dir/$x.mdl "$feats" \
"ark,s,cs:gunzip -c $dir/ali.JOB.gz|" $dir/$x.JOB.acc || exit 1;
$cmd $dir/log/update.$x.log \
gmm-est --write-occs=$dir/$[$x+1].occs --mix-up=$numgauss --power=$power \
$dir/$x.mdl "gmm-sum-accs - $dir/$x.*.acc |" $dir/$[$x+1].mdl || exit 1;
rm $dir/$x.mdl $dir/$x.*.acc $dir/$x.occs
fi
[ $x -le $max_iter_inc ] && numgauss=$[$numgauss+$incgauss];
x=$[$x+1];
done
rm $dir/final.{mdl,mat,occs} 2>/dev/null
ln -s $x.mdl $dir/final.mdl
ln -s $x.occs $dir/final.occs
ln -s $cur_mllt_iter.mat $dir/final.mat
# Summarize warning messages...
utils/summarize_warnings.pl $dir/log
echo Done training system with LDA+MLLT tandem features in $dir