clustering_pvector.py
5.92 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
'''
The goal of this script is to apply a clustering to pvector in order to find new classes assigned for each utterance or frame.
This new class can be used for new training systems, replacing character classes for example by the calculatering classes from clustering.
We hope this will generate interesting classes that will help the system to understand the structure of the voices.
TODO: Change it in such a way as to take a number (1, 2, 3, 4) and calculate everything needed like clustering. Train on the train set and then project the test on this clustering in order to know to what cluster it belong to.
'''
import os
import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import argparse
import pandas as pd
import pickle
'''
Return data in panda format version
'''
def read_vecfile(filepath, toy_version=False):
vectors = ""
metas = ""
with open(filepath, "r") as f:
for i, line in enumerate(f):
if toy_version == True and i > 100:
break
spl_line = line.split(" ")
if(len(vectors) == 0):
vectors = np.empty((0, len(spl_line[1:])), np.float32)
metas = np.empty((0, len(spl_line[0].split(","))))
# Then we add the current line to the data
metas = np.append(
metas,
np.asarray([spl_line[0].split(",")]),
axis=0)
vectors = np.append(
vectors,
np.asarray([spl_line[1:]], dtype=np.float32),
axis=0)
return (metas, vectors)
'''
Return list of metas of the listfile
'''
def read_lstfile(filepath, toy_version=False):
metas = np.empty((0, 4))
with open(filepath, "r") as f:
for i, line in enumerate(f):
if toy_version == True and i > 100:
break
metas = np.append(
metas,
np.asarray([line.rstrip('\n').split(",")]),
axis=0)
return metas
'''
Save a vector file from metas and vector values
'''
def save_file(filepath, metas, values=None):
with open(filepath, "w") as f:
for i in range(len(metas)):
metas_str = ",".join(str(v) for v in metas[i])
if not values == None:
try:
infos_str = " ".join(str(v) for v in values[i])
except TypeError as te:
infos_str = str(values[i])
f.write(metas_str + " " + infos_str + "\n")
else:
f.write(metas_str + "\n")
'''
Take the data and index them.
'''
def index_data(metas, vectors):
data = {}
data["en-us"] = {}
data["fr-fr"] = {}
for i, vector in enumerate(vectors):
meta = metas[i]
data[meta[0]][meta[3]] = {}
data[meta[0]][meta[3]]["metas"] = meta
data[meta[0]][meta[3]]["vector"] = vector
return data
'''
Récupère un sous ensemble des données de base à partir d'une
liste.
'''
def get_subdata(data, lst):
metas = ""
vectors = ""
for meta in lst:
vector = data[meta[0]][meta[3]]["vector"]
if(len(metas) == 0):
metas = np.empty((0, len(meta)))
vectors = np.empty((0, len(vector)), np.float64)
metas = np.append(
metas,
np.asarray([data[meta[0]][meta[3]]["metas"]]),
axis=0)
vectors = np.append(
vectors,
np.asarray([vector]),
axis=0)
return metas, vectors
'''
Apply clustering on data of filename.
Use a list to determine train et test using train valid, test.
Save the file with the given suffix.
Check the existence of the files before calculating and saving,
if the two files already exist, it will not calculate it again.
However: if one file is not present, this function will calculate
it again.
TODO: Add a variable to force the calculation of all the files
even if they exist.
'''
def apply_clustering(filename, dir_lst, dir_data, suffix_outfile):
# Applicate it for normal version
metas, vectors = read_vecfile(os.path.join(dir_data, filename), toy_version=False)
data = index_data(metas, vectors)
### CURSOR
# Get Train
train_lst = read_lstfile(os.path.join(dir_lst, "train_" + str(NUMBER) + ".lst"))
train_metas, train_vectors = get_subdata(data, train_lst)
# Get Val
val_lst = read_lstfile(os.path.join(dir_lst, "val_" + str(NUMBER) + ".lst"))
val_metas, val_vectors = get_subdata(data, val_lst)
# Get Test
test_lst = read_lstfile(os.path.join(dir_lst, "test_" + str(NUMBER) + ".lst"))
test_metas, test_vectors = get_subdata(data, test_lst)
# Verif shapes
print("verif shapes")
print(train_metas.shape)
print(val_metas.shape)
print(test_metas.shape)
# Entrainer le k-means sur le train + val
#Ks = [12, 24, 48]
print("k=[", end="")
Ks = [6,12,24,48,64]
for k in Ks:
# Process the name
suffix = "_" + suffix_outfile if not suffix_outfile == "" else ""
k_str = "{:03d}".format(k) # K in string
filename_pickle = os.path.join(
DIR_DATA,
"clusters_trained_on_train_" +str(k_str)+ "_pickle_" + suffix + ".txt")
filename_clusters = os.path.join(
DIR_DATA,
"clusters_trained_on_train_" +str(k_str)+ suffix + ".txt")
# Check if on of the two file does not exist
condition = not(
os.path.exists(filename_pickle)
and os.path.exists(filename_clusters)
)
if condition:
print(str(k)+",", end=" ")
kmeans = KMeans(n_clusters=k, n_init=10, random_state=0).fit(
train_vectors)
test_pred = kmeans.predict(np.concatenate((val_vectors, test_vectors), axis=0))
metas_tosave = np.concatenate([train_metas, val_metas, test_metas], axis=0)
values_tosave = np.concatenate([kmeans.labels_, test_pred], axis=0)
metas_tosave[:, 1] = values_tosave # Replace char by clusters
save_file(filename_clusters, metas_tosave)
pickle.dump(kmeans, open( filename_pickle, "wb" ) )
print("]")
for NUMBER in range(1, 5):
print("JACKKNIFING NUMBER: " + str(NUMBER))
DIR_MAIN="exp/pvector-1"
DIR_DATA=os.path.join(DIR_MAIN, str(NUMBER))
DIR_LST=os.path.join(DIR_MAIN, "lst")
OUTFILE_NAME="clustering"
print("Calculating mass_effect_pvectors")
apply_clustering("masseffect_pvectors.txt",
dir_lst = os.path.join(DIR_MAIN, "lst"),
dir_data = DIR_DATA,
suffix_outfile = "")
print("Calculating mass_effect_pvectors_final")
apply_clustering("masseffect_pvectors_final.txt",
dir_lst = os.path.join(DIR_MAIN, "lst"),
dir_data = DIR_DATA,
suffix_outfile = "final")